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Abstract

Merge trees, contour trees, and Reeb graphs are graph-based topolog-
ical descriptors that capture topological changes of (sub)level sets of
scalar fields. Comparing scalar fields using their topological descriptors
has many applications in topological data analysis and visualization
of scientific data. Recently, Munch and Stefanou introduced a labeled
interleaving distance for comparing two labeled merge trees, which
enjoys a number of theoretical and algorithmic properties. In partic-
ular, the labeled interleaving distance between merge trees can be
computed in polynomial time. In this work, we define the labeled
interleaving distance for labeled Reeb graphs. We then prove that the
(ordinary) interleaving distance between Reeb graphs equals the min-
imum of the labeled interleaving distance over all labelings. We also
provide an efficient algorithm for computing the labeled interleaving
distance between two labeled contour trees (which are special types of
Reeb graphs that arise from simply-connected domains). In the case of
merge trees, the notion of the labeled interleaving distance was used
by Gasparovic et al. to prove that the (ordinary) interleaving distance
on the set of (unlabeled) merge trees is intrinsic. As our final contri-
bution, we present counterexamples showing that, on the contrary, the
(ordinary) interleaving distance on (unlabeled) Reeb graphs (and con-
tour trees) is not intrinsic. It turns out that, under mild conditions on
the labelings, the labeled interleaving distance is a metric on isomor-
phism classes of Reeb graphs, analogous to the ordinary interleaving
distance. This provides new metrics on large classes of Reeb graphs.

Keywords: Reeb graphs, merge trees, interleaving distance, topological data
analysis
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1 Introduction

Topological descriptors such as merge trees, contour trees, and Reeb graphs
capture topological changes of (sub)level sets of scalar fields. Comparing scalar
fields using their topological descriptors has a number of applications in topo-
logical data analysis (TDA) and visualization of scientific datasets such as
combustion and molecular dynamics simulations, including symmetry detec-
tion [1-4], shape matching and retrieval [3, 5-8]; feature tracking [9-11] and
event detection [1, 3, 12]; clustering and classification [7, 8], summarization [13,
14], uncertainty visualization [14-16], and interactive exploration [14, 17];
see [18] for a survey.

Fig. 1 An example of a Reeb graph.

Given a continuous function f : M — R defined on a connected domain M,
a Reeb graph records the connectivity of its level sets. Two points x,y € M
are considered equivalent (w.r.t. f), denoted as z ~ vy, if f(x) = f(y) =t and
x and y belong to the same connected component of the level set f —L(t), for
some t € R. The Reeb graph M/~ is the quotient space obtained by identifying
equivalent points. For well-behaved data, e.g., a Morse function on a manifold,
M/~ is a graph G that inherits a function f from the original input data
(M, f) See Figure 1 for an example. A contour tree is a special type of Reeb
graph when the domain M is simply connected. A merge tree, on the other
hand, relies on equivalence relations among points in the sublevel sets of f .
That is, z ~ y, if f(ac) = f(y) = t, and they belong to the same connected
component of the sublevel set f (o0, t], for some t € R.

Since Reeb graphs generalize contour trees, and to some extent, merge
trees, we mainly focus on comparative measures for Reeb graphs. A num-
ber of distances have been proposed for Reeb graphs and their variants, such
as interleaving distance [19-24], functional distortion distance [25, 26], func-
tional contortion distance [27], edit distance [3, 28-30], Gromov-Hausdorff
distance [31, 32], distances based on branch decompositions and match-
ing [1, 33], and metrics for phylogenetic trees [34]. The bottleneck distance [35]
is also defined for Reeb graphs [31] by computing the distance between their
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extended persistence diagrams [36]. The stability of distances between Reeb
graphs, their equivalence and the inequalities between them has been the topic
of much research [21, 25, 26, 30, 37, 38]. Recently, it has been shown that the
edit distance is universal, that is, it is stable and upper bounds all other stable
distances [30], and hence is more discriminating. There is now a vast literature
on the subject of distances for Reeb graphs, see [18, 39] for surveys.

From the above distances, the bottleneck distance is polynomial-time com-
putable. The interleaving distance, the functional distortion distance and the
edit distance are actually metrics on the isomorphism classes of Reeb graphs,
hence most discriminatory. However, a major drawback of these metrics is that
they are hard to compute. Reeb graph O-interleaving is shown to be graph
isomorphism complete [21, 40]. And interleaving distances between multipa-
rameter persistence modules are also NP-hard [40, 41]. As noted in [32], the
reduction of [42] shows that it is NP-hard to approximate the interleaving dis-
tance for merge trees [22] within a factor of 3. Therefore, it is also hard for
Reeb graphs, since merge trees are special cases of Reeb graphs.

Nevertheless, not all hope is lost. Recently, Munch and Stefanou [23] showed
that the [°°-cophenetic metric originally defined on phylogenetic trees is an
example of an interleaving distance on labeled merge trees, where nodes of a
merge tree are given labels from a fixed set. Gasparovic et al. [43] extended
this work on the labeled interleaving distance of merge trees and proved that
the (ordinary) interleaving distance is obtained as the minimum of the labeled
distance over all possible labelings. The advantage of the labeled interleaving
distance is that it can be computed efficiently in O(n?) (n being the number of
critical points of f). Such a notion makes the distance computation feasible in
real-world applications [14, 44], and it appears to be a reasonable replacement
for the (ordinary) interleaving distance, which is quite desirable.

A labeled interleaving distance is applicable when there is a natural labeling
for the nodes, or when a labeling may be inferred from the data. For instance, a
climate simulation may give rise to an ensemble of scalar fields (e.g., tempera-
ture and pressure) simulated with different parameter settings. Each ensemble
member is a scalar field defined on the same underlying mesh and gives rise
to a slightly different merge tree. We may use the indices of mesh nodes as
the labeling or infer correspondences between nodes of the merge tree based
on similarities among features of their underlying scalar fields.

Apart from computational efficiency, another desirable property for a dis-
tance between Reeb graphs is for the distance to be intrinsic, i.e., the distance
between any two Reeb graphs can be realized or approximated arbitrar-
ily closely by a geodesic (a shortest continuous path) in the space of Reeb
graphs [31, 43]. An intrinsic distance is desirable for not only discrimination
but also interpolation between a pair of Reeb graphs. Instead of studying the
intrinsic-ness of a distance directly, Carriere and Oudot [31] studied the intrin-
sic metrics induced by a number of distances between Reeb graphs, and showed
that the intrinsic versions of Gromov-Hausdorff distance, interleaving distance,
functional distortion distance and the bottleneck distance are all equivalent.
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To the best of our knowledge, it remains unknown whether most of the above
distances proposed for Reeb graphs are intrinsic or not [31]. Gasparovic et
al. [43] gave the first positive answer in the setting of merge trees. They used
the labeled interleaving distance to prove that the ordinary interleaving dis-
tance on merge trees is strictly intrinsic. This means that one can always find
geodesics in the space of merge trees connecting two given merge trees, and
such that their length approximates the distance arbitrarily closely. Therefore,
there exists an average, albiet not necessarily unique, of two merge trees, i.e.,
a merge tree that lies halfway between them in the sense of the interleaving
distance. Thus, for instance, in the climate simulation application, we may
compute an average merge tree from an ensemble of merge trees. It appears
hopeful that we could perform statistics on the space of contour trees and
Reeb graphs, similar to merge trees, using the interleaving distance. However,
we show that the (ordinary, unlabeled) interleaving distance is not intrinsic.
We arrived at this result by trying to prove the opposite, that is, to use the
labeled interleaving distance to deduce, as in [43], that there are intermediary
Reeb graphs. Hence the connection to the first part of our results.

Very recently, Bauer et al. [45] proved that the interleaving distance of
sheaves on the real line is not intrinsic, which implies that the interleaving
distance of Reeb graph is not intrinsic either. We were not aware of this result.
In contrast, our counterexamples are simple and we have a direct argument
that proves that the interleaving distance of Reeb graphs is not intrinsic.

We aim to generalize the results of [43] to the setting of Reeb graphs,
succeeding partly:

¢ Our main contribution is the definition of a labeled interleaving distance
for Reeb graphs (Section 3) and Theorem 1, which states that the ordinary
interleaving distance between a pair of Reeb graphs can be obtained by
taking the minimum of the labeled interleaving distance over all suitable
labelings. Moreover, we show that under reasonable assumptions on the
labelings, the resulting distance enjoys the same metric properties as the
(unlabeled) interleaving distance (Theorem 2 and Appendix B).

e We provide a simple O(nQ) algorithm to compute the labeled interleav-
ing distance between contour trees, where n is the number of nodes in the
contour tree (Section 4).

® In the negative direction, we provide simple but not immediate counterex-
amples and prove that the interleaving distance on Reeb graphs (and contour
trees) is not intrinsic (Section 5). It follows that computing averages of Reeb
graphs is challenging at least with respect to the interleaving distance.

2 Background
2.1 Reeb Graphs

Assume we are given a well-behaved function f : Ml — R, i.e., a Morse function
on a manifold, a constructible R-space [21], or a levelset-tame function [46] on a
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topological space. Following Figure 1, a Reeb graph M/~ arises from a quotient
map 7 : (M, f) — (M/~, f). In our context, a Reeb graph is denoted as a pair
R = (G, f) where G is a combinatorial ﬁmte multi-graph and f : |G| — R
a function inherited from the input data defined as f(w(x)) = f(z). Here,
G is a combinatorial object and |G| is its underlying topological space; we
sometimes use G in place of |G| for simplicity. In fact, our results apply to
a more general setting, where a Reeb graph is defined to be a graph G with
function values associated with each node such that the function value on the
edges is strictly monotone (with the maximum and minimum determined by
the function values at the nodes) [21]. For the rest of the paper, we work with
this definition. Therefore, f is strictly monotone on any edge of G. We also
assume that f is injective on the nodes.

The up-degree d+ of a node v of G is the number of edges uv such that
f(uw) > f(v). The down-degree d~ is defined analogously. A node is called a
split node if its d* > 1 and d= = 1. A node is called a join node if d* = 1
and d- > 1. In Figure 1, u is a split node and v is a join node. A node with
dt =d~ =1is a regular node. A node with d* =0 and d~ = 1 is a (local)
mazimum. A (local) minimum is defined analogously. A non-regular node is
critical and corresponds to a critical point of f (i.e., for a smooth f ).

In degenerate scenarios, a Reeb graph might contam a degenerate node, for
instance, with d* = 0 and d~ = 2. For technical reasons and for simplifying our
proofs, we consider such a node a superposition of two nodes, one with d™ =1
and d~ = 2, and another with d* = 0 and d~ = 1. We apply similar operations
for nodes with d* > 2 and d— > 2. This way, a single degenerate node of
the Reeb graph consists of several superposed simpler nodes. We consider the
nodes in superposition to be connected by edges of length 0.

When it is clear from the context, we abuse the notations and denote by R
some geometric realization of the Reeb graph R = (G, f) (e.g., embedded in
R3 for visualization) such that f is shown as a height function in the vertical
direction; see Figure 1. In this way, we could talk about an arc being a subset
of R that does not necessarily start or end at a node. In addition, we denote
a geometric realization of the graph G also by G.

2.2 Interleaving Distance Between Reeb Graphs

We recall the (ordinary) interleaving distance in a geometric way following
notations in [21, 24]. We refrain from using categorical language as long as it is
not needed in our arguments; see [21] for a categorical interpretation of Reeb
graphs.

Let Ry = (G1, f1) and Ry = (Ga, f2) be two Reeb graphs. A morphism
of Reeb graphs, h : Ry — Rs, is a continuous function h : G; — G5 that is
function-preserving, i.e., fa(h(z)) = fi(x).

For a Reeb graph R = (G, f) and ¢ > 0, we define the e-thickening of R,
denoted T¢(R), to be G x [—¢,¢] with the product topology, together with
the function F* : G x [—¢,¢e] = R, F¢(z,t) — f(z) +t. We then define the e-
smoothing S¢(R) to be the Reeb graph of T¢(R) with respect to F°. S¢(R) is
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Fig. 2 Examples for a contour tree (top) and a Reeb graph (bottom). From left to right: a
Reeb graph R = (G, f), its e-thickening G x [—¢, €] with a function F¢, and the Reeb graph
S¢(R) of the e-thickening.

equipped with a function f€ that is inherited from F*. See Figure 2 for exam-
ples involving a contour tree (top) and a Reeb graph (bottom) respectively.
The e-thickening of the Reeb graph in Figure 2 (bottom) is tilted slightly to
reveal its structure. For simplicity, we abbreviate R = S°(R).

By construction, there is an inclusion ¢ : G — G X [—¢,¢],  — (x,0), as
well as a quotient map 7 : G X [—¢,e] — RF; their composition gives rise to an
e-shift morphism, 1 := m o4 : R — R®, which assigns to the point x € G the
connected component of (x,0) € G X [—¢,¢] in the pre-image of F¢, see [21]
for details.

If ¢ : Ry — RS is a morphism, then, for every 6 > 0 including § = ¢,
there exists a morphism ¢° : RS — Rg+8.1 Analogously, if ¢ : Ry — Rj is a
morphism, then there exists a morphism ¢ : R — R?. Similarly, given a
morphism 7, : Ry — RS, there exists a morphism 75 : Rf — R2°; 15 is defined
analogously.

Definition 1 Let R; and R2 be a pair of Reeb graphs. An e-interleaving between
R; and Ry is given by two morphisms, ¢ : Ry — R5, 1 : Re — Rj, such that the

! This map is defined first as a function-preserving map from the thickening T5(R1) into the
thickening T (R§) as ®°(x,t) = (¢, t). This map will induce the map ¢° on the Reeb graphs.
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following diagram commutes.

RE R26

/// 4?/ (1)

R2—>R2—>R

Equivalently, see [21, Definition 4.38], we require that the following two relations
hold,

¢°op =n3°
W o =ni°

where 72¢ = 55 omy : Ry — R and 13° = n5on : Ry — R are the 2e-shift
morphisms.
The interleaving distance is defined to be

(2)

dr(R1, Rz) := inf{e > 0 | there exists an e-interleaving between R; and Ra}. (3)

Smoothing by 2¢ is isomorphic to smoothing twice by . It is known that if
we consider e-smoothings of a Reeb graph R for increasing values of € > 0, the
minima and join nodes move downwards (i.e., they move to points with lower
function values in the smoothed Reeb graph), and maxima and split nodes
move upwards, see [26, 47] for a proof. Recall that we consider a degenerate
node (e.g. with d™ > 1 and d~ > 1) as a superposition of a join node and a
split node. When smoothed by € these nodes give rise to two nodes, one split
and the other join, that are separated by 2¢.

If T := R is a contour tree, every node v of T" corresponds to a node in T
which lies € above or below in function value. We denote this correspondence
by s: V(T) — V(T*¢). For nodes in a superposition, each superposed node has
its image under s. This is the reason behind the idea of superposition, since
each superposed node moves differently when smoothed.

If R is a Reeb graph, a split node v and a join node w might cancel each
other in the smoothed graph, and a loop might disappear. In this case, there
are no node correspondences in the smoothed graph. For a split vertex v, we
define s(v) = m((v,€)) € R°, and, for a merge vertex w, we define s(w) =
m((w, —€)) € R®. In this way, s : V(R) — R is defined on all nodes.

2.3 Intrinsic Metrics and Geodesic Spaces

Two Reeb graphs Ry and Ry are isomorphic if there are function-preserving
continuous maps h : Ry — Ry and g : Ry — R; such that fog and go f are
identity maps. This is equivalent to dj(R1, Re) = 0 since by definition, h and
g define a O-interleaving.

The interleaving distance is a metric if we identify isomorphic Reeb graphs,
see [21, Proposition 4.8]. Given any metric d over the set of (isomorphism
classes) of Reeb graphs, we obtain the space of Reeb graphs. Given a continuous
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path v (i.e., continuous w.r.t. d) into the space of Reeb graphs, where v(0) = R,
and v(1) = Ra, the length ¢4(y) induced by d is defined as

la(y) = sup Y d(v('(§)),7(T(i + 1)),

where n ranges over all N (natural numbers) and T' ranges over all partitions
of [0, 1], i.e. all ordered sets of n points I' = (T'(1),...,I'(n)) such that I'(i) €
[0, 1]; see [43, 48].

Given a metric d, the intrinsic metric d induced by d is defined as
d(Ry, Ry) = inf, £4(7); it is the infimum of the lengths of all paths from one
point to another. It is known that d < d. A metric d is intrinsic if it is always
equal to its intrinsic version (f; in this case, the metric space is said to be a
length space. A metric space is a geodesic space if any two points in the space
can be connected by a curve of length equal to the distance between the two
points; the metric is then called strictly intrinsic [31, 43, 48]. A strictly intrin-
sic metric is of course intrinsic, thus a geodesic space is necessarily a length
space.

3 Labeled Interleaving Distance Between Reeb
Graphs

In this section, we first define the labeled interleaving distance between a pair
of labeled Reeb graphs and prove its properties. Then we show that such a
distance generalizes the labeled interleaving distance between merge trees.

3.1 Labeled Reeb Graphs and Their Distance

Definition 2 Let L be a finite set of labels. For simplicity, L = [N] := {1,..., N}.
Let V = V(R) denote the set of nodes of a Reeb graph R = (G, f). A labeling of R is
a function A : L — V. We call the triple Ry = (G, f,\) an L-labeled Reeb graph, or
simply a labeled Reeb graph when the set of labels L is clear from context. Ry is fully-
labeled if X is surjective. Note that X is not necessarily injective. A morphism between
labeled Reeb graphs is defined to be the morphism of the underlying unlabeled Reeb
graphs.

Definition 3 Let v € V(R) be a node in the Reeb graph R = (G, f). The e-path-
neighborhood of v, denoted P*(v), is m({v} X [—&,¢€]) C R® in the e-smoothed Reeb
graph R®. Here 7 : G x [—¢,¢] — R® is the quotient map. For any z € R, P®(z) is
defined similarly.

As illustrated in Figure 3, we observe that for any point x € R and any ¢ >
0, P¢(z) is a monotonic path in R such that f€(P(z)) = [f(x)—e, f(z)+£)].
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n:ﬂ'Oi

R€
Fig. 3 The e-path-neighborhoods of node a and b are highlighted in green and yellow in
the right-most figure, respectively.

In other words, P¢(x) is a monotonic path centered on the image of = in R°,
i.e., centered on n(z) := 7o i(x).

Definition 4 Let Ry ), = (G1, f1,A1) and Ry ), = (Ga, f2,A2) be two L-labeled
Reeb graphs, and let ¢ > 0. We say a pair of morphisms ¢ : Ry — R5 and ¢ : Ra —
RS define a labeled e-interleaving between Ry y, and Ry y, if the following hold:

1. ¢ and v define an e-interleaving between R; and Rs.
2. For each ¢ € L, we have the following label-preserving properties,

¢ (s(A1(0))) € P*(s(A2(0))), ()

P°(s(X2(0))) € P*(s(Ai(0))).
In the the above formulae, P¥(s(A1(£))) C R3¢ and P%(s(\2(£))) C R3. The labeled
interleaving distance between Ry , and Ry ), is defined as

L
dr (Rix,, Ra»)
= inf{e > 0 | there exists a labeled e-interleaving between R; , and Rg », }. (5)

Recall that the function s maps the nodes of a Reeb graph to the points of
the e-smoothed Reeb graph (see the end of Section 3). Intuitively, it outputs
the point where the original node would arrive at after moving up or down
by e. For simplified notation, we refer to all such functions by s, instead of
naming them differently based on their domain or co-domain.

From Definition 4, it follows easily that for all Ry, Ra, A1, and Ao, we have,

d% (RL)\l ) RQ,kg) > dI (Rl, Rz)

If the label set L is empty, then the second condition in Definition 4 is vacuous
and the labeled interleaving distance equals the unlabeled one.

Let Ry and R5 be two Reeb graphs. It turns out that the existence of maps
defining an e-interleaving between R; and Ry does not depend on all of the
nodes and edges of Ry and Rs. Intuitively, it depends only on the topological
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Fig. 4 e-essential (left) and e-inessential nodes (right).

features that are significant enough w.r.t. to €. We make this precise by defining
the notion of e-essential and e-inessential nodes.

Definition 5 Let R = (G, f) be a Reeb graph and let € > 0 be given. A split node
v is called e-inessential if one of the following holds:

1. There exists a join node w and two paths @J; and Qs such that each Q;
(i € {1,2}) joins v to w with f(v) < f(z) < f(v) + 4e, for all z € Q.

2. Let Q be the set of all paths @Q = vu such that f(u) > f(v) + 2¢ and
Vo € Q, f(z) > f(v). Then all paths in Q use the same outgoing edge from
V.

An e-inessential join node is defined analogously. Then e-essential nodes are all
maxima, minima, join and split nodes that are not e-inessential.

The first condition of the e-inessential definition implies that there is a loop
of height at most 4e such that v is the lowest point of the loop. The second
condition indicates that the parts of the graph reachable from v via paths that
do not go below f(v) either have heights at most 2¢, or they are reached using
the same edge incident on v; see Figure 4.

We call a labeling an e-essential labeling if every e-essential node is labeled.
The following main theorem shows that we obtain the (ordinary) interleav-
ing distance between two Reeb graphs if we consider all possible e-essential
labelings.

Theorem 1 Let Ry and Ry be two Reeb graphs and set € = dj(R1, R2). There exist
a set L of labels and e-essential labelings A1 and A2 such that for L-labeled Reeb
graphs Ry x, and Ry ),, we have

dr(Ri,R2) = df (Ry,, Rax,)-

The reason for considering e-essential labelings in Theorem 1 is to present
a label set L and labelings that cover a good portion of the nodes; the theorem
would be trivial for L = ().

We first sketch the proof and then present it in full detail. Let ¢ =
dr(R1, Rg). We consider the case of a maximum or an essential split node v in
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Fig. 5 An illustration for the proof of Theorem 1.

Ry, as illustrated in Figure 5. Then v” = s(s(v)) is also a maximum or split
node in R$. Let P = P°(s(v)) C R% be the e-path neighborhood of s(v).
We then consider the space W = (¢°)~}(P) C R5. From the properties of
e-interleaving, we deduce that w = ¢(v) € W. Next, we walk upward in W:
starting from w until reaching a split node or a maximum. We argue that one
of these nodes (i.e., a split node or a maximum) is reachable inside W. We
denote such a maximum or split node by s(y) for some y € Rs, and pair v
with y. These pairs provide the desired labeling.

Proof Let ¢ = dy(R1, R2) be realized by morphisms ¢ : Ry — R5, ¥ : Re — Rj.
Let Vi = V(R1) and Vo = V(R2) be the node sets. We will construct a subset
B C Vi x V5 and use B to define a labeling on R; and Rs.

As illustrated in Figure 5, let v € V; be either a maximum or an essential split
node. Then there is also a maximum or a split node v” = s(s(v)) in R?° such that
FEW") = f1(v) 4 2. Let w = ¢(v) in R§. Also, let v’ = s(v) and let P = P%(v') be
the e-path neighborhood of v’ in R%E, P is a path with endpoints v" from above and
v%¢ from below. For simplicity, we denote the image 71 (v;) for any node v; € Ry by
v$. Then, 75 (11 (v)) = v*¢. Let W C R§ be the pre-image W = (¢°)~1(P). We have
w € W, since 4% (w) = ¥ (6(v)) = 15 (n1 (v)).

We walk up (i.e. in the direction of increasing function values) from w € W until
we reach a split node or a maximum. We claim that one of these two possibilities
must occur while the function value is at most fi(v) 4+ 2 = f25(v"). If v is a
maximum then the point with the maximum value in W must be a maximum node
with function value at most f125 (v""). Tt follows that in this case we either reach a split
mode or a maximum. If v is an essential split node, we claim that for a sufficiently
small 6 > 0, there are two points a and b in Ry with fi(a) = f1(b) = fi(v) + 2+
such that a2 #* b%. To see this, we argue as follows. We move up along the two
different branches of the split node v. If the branches join before advancing by value
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2¢ + 6, then this satisfies the first condition of inessentiality (Definition 5), violating
our assumption that v is an essential split node. Thus, a # b at function value
f(v) 4 2 + 8. Since the split node moves up at most 2¢ in R?¢, a?® = b% is only
possible if there exists a join node j € R; that moves past the value of a and b
from a higher function value. Since j moves down by 2¢, j/ will merge with the split
node v if it moves at most § more. Thus, there must be a loop with height at most
4e + 4. Since ¢ is small, the loop has height at most 4e, which again satisfies the first
condition of inessentiality. We reach a contradiction. Therefore, we have a®e #* b2e.

Since ¥ 0 ¢ = 15 oy and a? # b€, then ¢(a) # H(b). This implies that we will
see a split node when moving up from w before passing the function value fi(v) + 2¢
(in fact, before passing fi1(v) + 2¢ + & by the above argument for all small § > 0,
which implies before passing f1(v) + 2¢). It might be that the split node has value
f1(v) + 2e. This proves our claim for an essential split node.

Regardless of the type of the node v, let ¢’ be the split node or the maximum
we reach when moving up from w. Note that it could be that 3’ = w. Then f5(y') <
2 (@") = fi(v) + 2e, meaning that we travel by at most 2¢ in function values.
oy corresponds to a split or a maximum y in Ry such that 4’ = s(y) (recall our
convention on superposition of nodes). We add (v,y) to B, indicating that v € Ry
and y € Ry are assigned the same label. We have ¥°(y’) € P°(v’) by construction.
If y is an inessential split mode, we have completed the proof. Otherwise, we need
to show that ¢°(v') € P(y) to stop considering the node y.

Let Q be the path that we have traversed connecting w to 3. Since Q is a
monotone path with height at most 2¢, applying Lemma 1 below with v and z = 3/
implies that ¢(v') € P°(y').

We analogously pair all minima and essential join nodes of R; with minima and
join nodes of Rg. After pairing all the essential nodes of R; with nodes of Rg, we
repeat the above process for the essential nodes of Rz that are not paired yet. In the
end, we obtain a set B containing all paired nodes. We choose B to be our label set
L. By construction the morphisms ¢ and v define a labeled e-interleaving w.r.t. this
choice of labels. (|

Lemma 1 Let ¢ and i define an e-interleaving between Ry and Ra. Let v be a split
node or a maximum in the Reeb graph Ri and let z be a split node or a maximum
in R5. Let M: (z) C RS be the union of all points x that are connected to z by a
monotone path Qz of height at most 2e and such that f2(q) < f2(z), for all ¢ € Q.
If p(v) € MZ (2) then ¢°(v') € P%(2). The analogous statement holds for a join node
oT a MINIMUM.

Proof Set © = ¢(v), then there is a monotone path @ connecting = to z that lies
below z. Let F5 be the function on 7°(R5). Since the height of Q is at most 2¢, the
point (z,e) € T°(R5) and the point (z,e — Q) (where € — Q > —¢) are connected
in the pre-image (F§)~L(F§(x,e)) C T°(RS), see Figure 6. By the definition of
¢°, we have ¢F(v') = 735 (p(v),e) = 75 (x,e) = 73°(2,¢ — ||Q]|). It follows that
#°(v') € P°(z) C R%:. 0

Remark 1 Based on Theorem 1, observe that the nodes with the same label move
in the same direction when smoothed. We call this consistency between the two
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Ry R R¥*
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v m(v)
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M2 T ’L%E ) {. z W%E
/ M, (z) O HQH‘LS 2e
b(v) =
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Fig. 6 An illustration for the proof of Lemma 1.

labelings. This condition is necessary for the distance to be a metric; see Theorem 2
and its proof in Appendix B.

Theorem 2 Let Rg be a mazimal set of isomorphism classes of consistently L-
labeled Reeb graphs. The labeled interleaving distance is an extended metric on ’Rg‘.

We have made additional observations regarding the local neighbor-
hood of a node w under the mapping of n w.r.t. its e-path-neighborhood,
see Appendix A.

3.2 Generalizing Labeled Interleaving Between Merge
Trees

In this section, we show that our definition of the labeled interleaving dis-
tance between Reeb graphs generalizes the labeled interleaving distance defined
in [43] for merge trees. Viewed as graphs with functions defined on them, merge
trees may be considered as special cases of Reeb graphs. In [43], the maxi-
mum node of a merge tree T is defined to have value co and a labeling A is
assumed to be surjective on the set of non-root leaves. A matrix U(T)) called
the induced matrixz is assigned to a labeled merge tree T). It is defined as

U(T))i, j] = fF(LCA(A(), A(7))),

where L = [n] and LCA denotes the lowest common ancestor of nodes labeled
i and j in Ty. Given two labeled merge trees T} x, and T3, with the same
label set L, the labeled interleaving distance between the two merge trees (in
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the sense of [43]), denoted d¥, is defined as
A (Tyx,, Tox,) = 1U(T1, M) — U (T2, A2)|lmax-

where || - ||max 1S the element-wise maximum.

A labeled merge tree as defined in [43] is also a labeled merge tree based
on our definition (as a special case of Reeb graphs), if we replace oo by a
large number depending on the function values of the tree. We assume this
modification for the following proposition.

Proposition 1 For any two labeled merge trees (in the sense of [43]), we have

L L
di (T1 n,, To,n,) = d7 (T1 0, To 0, )-

The main observation for the proof of this proposition is that for a merge
tree with root at oo, the smoothing operation does not change the structure
of the tree, but it pushes the entire tree down uniformly.

Proof Since the oo nodes in the two trees have large and equal function values, the
maps ¢,y realizing di (T1,7,,T2,),) map these nodes to the path-neighborhoods of
each other. Since they do not cause any restriction, we ignore these nodes.

We first show that d%(TL)\l,TQ,)\Z) < J%(TI’AI,TQ’)\2). Let £ = J%(TI’AI,Tz’)\Q).
Since every leaf is labeled, every node is the LCA of two leaves and must appear in
the matrix. Therefore, the right hand side is the maximum of the differences between
nodes with the same label, and nodes that are LCA for the same pair of labeled
leaves. We claim that there exist ¢, 1 defining a é-labeled interleaving between the
two trees. We can define ¢ by mapping a leaf v of 77 to the &-path-neighborhood
of the node with the same label, say v2 in T3. This is possible because v2 has moved
down by at least the height-difference between these nodes. With similar reasoning,
after mapping two leaves v; and wjy, we can also map the join node which is their
LCA to the LCA of nodes with the same label in T5>. The paths connecting v; and
wi to their individual LCA are therefore mapped to the the smoothed tree Tf. The
map ¢ defined here satisfies a condition stronger than the label-preserving property
(4), see Remark 2 in Section 3.2. These paths cover the whole tree, hence we have
defined the morphism on all of T%. Since we can consider 77 as a subset of Té(Tg),
and analogously Tb as a subset of 7¢(11), it is easily checked that the commutativity
relations (2) hold.

Next, we show that c?%(TL)\l T n,) < d%(Tl,)\l ,T55,) Let e = d%(TL,\l T 5, )-
Let ¢ and 1 realize d%. Let v1 € T1 and vo € T be leaves with the same label. Since
the second condition of the labeled interleaving distance is satisfied by ¢, we see that
the height-difference between v} = s(v1) and vy = s(v2) is at most e. Since all nodes
move in the same direction, the height difference between v; and v is also at most €.

We also need to show that the height difference between unlabeled join nodes is
at most €. Take two leaves v, w1 € T1 and set u; = LCA(v1,w1). Let Ay C T be
the union of two paths that connect v; and w; to uj. Let vo and ws be the nodes
in Ty with the same labels as v and w1, respectively. Set ug = LC A(va, ws2) and let
Ao C T3 be the union of the two paths connecting ug to va and ws. Now observe that
since we are working with merge trees, the part of T other than the edge connecting
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to the co node is exactly the same as 77 but shifted down by e. Therefore, there
exist paths A] C Tf and A5 C T5 corresponding to A; and Ag, respectively.

Now assume the height difference between u; and ug is larger than €. Without
loss of generality, assume wu; is higher than ug as in Figure 7. Observe that now
the subtree rooted at u’2 = s(u2) must be mapped by ¢ to a single branch going
down from uf = s(s(u1)), and assume it is the branch containing w} = s(s(wy)).
However, then 1 (v5) is also on the same branch and cannot lie on P¢(v}), as shown

in Figure 7. This is a contradiction. (]
T s T2
fluy)—242
i u)
! m Ui
I
I

vy

1
N RN [
f(f"l)*f(“2)>5 wy g /
I
I
I
|
f(uz2)

Fig. 7 An illustration for the proof of Proposition 1.

Remark 2 Observe that in the case of merge trees, we could replace the second
condition of the labeled interleaving distance for Reeb graphs (Definition 4) with the
following stronger condition that for all labels £ in L,

p(M(0)) € PE(A2(0)),

P(A2(4)) € P*(A1(0));
where ¢ and v are maps that realize an e-interleaving. However, we believe that with
this definition, the analogous Theorem 1 will not hold for Reeb graphs. Nevertheless,

we do not make a claim at this moment and leave this question open. Lemma 5 implies
that the above conditions are stronger than our label-preserving conditions (4).

Remark 3 The algorithm presented in this paper can be applied to the case of merge
trees. However, the algorithm of [43] is linear and therefore more efficient for merge
trees.

4 Algorithms

We first present a general framework (Section 4.1) for computing the labeled
interleaving distance between Reeb graphs. The framework consists of two
subproblems: the existence subproblem (Section 4.2) and the commutativity
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subproblem (Section 4.3). We solve the existence subproblem for the general
case of Reeb graphs. For the commutativity subproblem, we consider the simpler
case of contour trees and give a solution that depends on the existence of
unique paths between pairs of nodes. We prove that our specialized efficient
algorithm for contour trees has a run-time in O(n?).

a a
U U
v v
b b

Fig. 8 A spanning (left) and a non-spanning labeling (right). Labeled nodes are in blue.

When the label set L is empty, the labeled interleaving distance equals the
unlabeled one. Therefore, we impose a restriction on L to obtain a polynomial
algorithm in the case of contour trees. We say that a labeling X is spanning, if:

1. For any pair of labeled nodes u, v, there is at most a single path connecting
them without labeled nodes in the interior of the path;
2. All such paths cover the entire graph.

See Figure 8 for examples. By a path we mean a simple, possibly non-monotone
path in the graph. For instance, the labeling of a fully-labeled graph is span-
ning. Furthermore, if the labeling is surjective on all leaves of a contour tree,
the resulting labeling is spanning.

If the labelings A\; and Ay are arbitrary, it is often true that the labeled
interleaving distance is oco. For simplicity, we assume that the labelings are
consistent, meaning that two nodes with the same label move in the same
direction when smoothed. It is therefore not allowed that a minimum and a
maximum have the same label. See Appendix B for details.

4.1 Algorithmic Framework

In order to compute the labeled interleaving distance we need to define two
morphisms ¢ and ¢ satisfying the definition of labeled e-interleaving (Defini-
tion 4), such that € is smallest with this property. If for some ¢ there is a labeled
e-interleaving, then for any €’ > ¢, there is also a labeled &’-interleaving. Our
general approach is to start with a large enough e for which a labeled interleav-
ing exists, then to compute the infimum by a binary search over the possible
values. We explain in the following how we determine whether a labeled e-
interleaving exists for a fixed €. We break this into two subproblems. Let R; x,
and Ry 5, be the two input labeled Reeb graphs; let Ry and R, be their under-
lying unlabeled Reeb graphs. The first subproblem is to compute for a given
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e > 0 all morphisms ¢ : Ry — R3' and ¢ : Ry — R} satisfying (4). We
call this subproblem the ezistence subproblem. The second subproblem is to
decide if the relations in (2) are satisfied for maps computed in the existence
subproblem. We call this the commutativity subproblem.

The distance we are looking for depends on the function values. We follow
the convention that the complexity required to store the function values is
bounded by a fixed polynomial in the complexity of the graph. We also assume
that the nodes of our Reeb graphs have distinct function values, which can
be achieved by perturbation if necessary. In this section, n represents the
complexity of the input, which is the total number of nodes and edges in R;
and Ro.

4.2 Existence Subproblem

We focus on computing ¢ : R; — R5, and we compute 1 analogously. Let
Vi (R1) C V(R1) denote the set of nodes in R; with labels, i.e., the image of
A1. Consider v € Vi, (R1) and a label [ € L such that A;({) = v. Let v' = Ao(0).
Then for all labels [ € L, if v = A;(I) and v' = A\y(1), ¢° must satisfy,

F5(s(v) —e < f35(6°(s(v))) < f5(s(v)) + e (6)

Since the path-neighborhoods are strictly monotone sub-paths of the corre-
sponding Reeb graph, if (6) is satisfied for I, v, and v’, then the point ¢°(s(v))
is the point z € P5(s(v’)) such that f3°(z) = fi(s(v)). It follows that for
each labeled node v, the image of s(v) under ¢° is uniquely determined. Next,
we determine all the possible points for the image of v under ¢; there might
be more than one possibility. Recall that ¢° is the map induced on the Reeb
graphs by a map ®° : T¢(R;) — T°(R5) defined as ®°(x,t) = (¢(z),t). Also
recall that s(v) is the projection of the point (v, +¢) to the Reeb graph (sign of
e depends on the type of v). Let 73° : T¢(R5) — R3® and y = ¢°(s(v)) € R3°.
The pre-image of y in 7¢(R5), denoted (73°)~*(y), is a collection of horizontal
line segments that intersect with vertical line segments of the form z x [—¢, g],
where z € RS, see Figure 9. W.l.o.g., we assume v is a split node or a maximum.
From ®¢(v,e) = (¢(v),e), we know that the value of ¢(v) is the midpoint of
some vertical segment that intersects the pre-image of y at its highest point.
In brief, the set of possible values of ¢(v), denoted C(v), are determined by
the condition that ¢(v) x [—¢,e] € T°(R5) intersects the pre-image of y at
(¢(v), ). We say that a choice of value in C'(v) for each v result in a choice of
¢ |v, . Given any ¢, these collections can be obtained easily in the same run
time as computing a Reeb graph R, because we can compute a smoothing by
computing the Reeb graph of T¢(R).

In the next step, we need to decide if there is a choice of images in C'(v) such
that the resulting map can be extended to edges of R;. Since we assume that
the labeling \; is spanning, it follows that the graph Ry = Q1 U Q> ... U Qy,
where @; is a simple path that starts and ends with labeled nodes u; and w;.
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/O
choices of ¢(v)
R;
Fig. 9 An illustration of the choices of ¢(v).

2e
R

Moreover, for i # j, Q; and @; intersect at the endpoints, if at all. Our goal
now is to extend the morphism ¢ to these paths.

Lemma 2 For a given € > 0, a choice of ¢ |y, can be extended to a morphism
¢ : R — R5 if and only if for all i, Q; can be mapped into a path connecting ¢ (u;)
to ¢°(w;) by a continuous, function-preserving map.

We call the problem defined in the above lemma the path extension prob-
lem. Apart from choices of ¢ |y, , this path extension subproblem also becomes
harder or easier depending on the restrictions we impose on the structure of the
Reeb graphs and on the labelings. Let us denote the computational complexity
of the path extension problem by ¢(n).

Proposition 2 Let Ry ), and Ra ), be labeled Reeb graphs such that the labelings
are spanning. Let p(n) be an upper bound on the number of choices for ¢ |y, for all
€. There is an algorithm that computes the smallest € for which the existence problem
has a solution in time O(n c(n) p(n) logn), assuming c(n) = Q(logn); and in time
O(np(n)log®n), otherwise.

Proof We perform a binary search on the values of . First we choose € to be large
enough such that the existence of the morphism ¢ is guaranteed. Using (6), we can
compute a value for € such that the morphism ¢ is defined on nodes. It is not difficult
to determine here whether the distance is co. Next we increase this € to a value &’
such that every split node in R5 is above the maximum value of f1, denoted max(f1),
and every join node is below the minimum value of f1, denoted min(f1). For such
an &, (f5)~!([min(f1), max(f1)]) is a monotonic arc. It is then possible to extend ¢
to all paths connecting labeled nodes.

Starting from ¢’ we execute a binary search starting from the interval [0,¢’].
During each iteration, let [, 8] be the interval at hand. We compute the midpoint
e = (a+f3)/2 of the interval. Theoretically, we can compute the Reeb graph R5 using
the algorithm of [49] on the space T¢(R2) = G2 X [—¢,¢] in O(nlogn) time, since
this latter space can be turned into a simplicial complex with O(n) simplices. After
computing the smoothed Reeb graph R5 we use the path extension subroutine and
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spend O(np(n)) time to check if each choice of the morphism ¢ defined on labeled
nodes can be extended to all paths connecting labeled nodes. If the extension is
possible for all paths for some choice, we set 5 = ¢; otherwise, we set o = . This
step takes O(nc(n)p(n) + nlogn) time to execute.

To finish the proof, we need to argue that the binary search stops after O(logn)
iterations. Observe that as we smooth the Reeb graphs, the merge and split nodes
of both input graphs move down and up, respectively. Therefore, we need to take
careful consideration when the function values of the two sets of nodes cross each
other. Then the value of ¢ we are looking for has the same asymptotic complexity
as the input function values, which is at most O(n) by our assumptions. Hence, we
need at most O(logn) steps in the binary search. O

4.3 Commutativity Subproblem

In Section 4.2, we have computed ¢ such that certain morphisms ¢ and
exist. However, there might not be a unique way of mapping a path and the
choice might be important for satisfying the commutativity requirement. If the
first Betti numbers 51 (G;), for i = 1,2, is O(logn), then there are polynomi-
ally many paths to choose from. We consider a simpler setting when the Reeb
graphs are trees, i.e., contour trees. In this case, there is a unique path connect-
ing any two vertices. Using this property we can prove that for a given ¢ there
is at most a single label-preserving morphism. We then check this morphism if
it satisfies the commutativity relations. We thus have the following theorem.

Theorem 3 Let Ry ), and Ry ), be contour trees. Assume A1,z are consistent
labelings that cover the leaves of the contour trees. Then there is an algorithm for
computing the labeled interleaving distance in time O(n2 log2 n).

Proof First, we claim that if the Reeb graph is a tree then p(n) = 1, and thus there
is at most one choice for ¢ |, . Let w be the global maximum of Ry. Since w is
a labeled node, some node v € R; has the same label as w. We know the point
¢°(s(v)) and the point ¢(v) is one of the points in C(v). These choices are caused by
the existence of a join node below s(w) as shown in Figure 9, where s(w) could be
the maximum of R§. Since a join node moves down during smoothing, it can only
have moved down from above w, which is not possible. Hence, there must be a single
choice in C'(v). We thus defined ¢ on a single node uniquely. We show now that this
morphism extends uniquely to all of Ry, if at all.

We define ¢ on the sub-tree T rooted at v that consists only of join nodes. We
move down from v inductively, and at each step, we add a monotone path P that has
either only split nodes in the interior, or no node at all. Assume that we have already
extended our map to some sub-tree of T. Let P connect nodes v; and vg such that
the morphism is uniquely defined on v1. We want to extend the map uniquely to P
or deduce that such an extension is not possible. There could be multiple choices for
vz in C(v2). Since v2 moves down when smoothed, these choices must be caused by
some split node in R5. For the sake of contradiction, suppose there are two points
q1,q2 € C(v2) such that there is a monotone path from ¢(v1) to ¢;, ¢ = 1,2. These
paths have higher function values than C'(v1), i.e, ¢(v1). There is also a split node
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that connects ¢; and g2 and has function value less than C(vz). This is however
impossible, since R5 is a tree. Therefore, there is at most one point in C'(ve) that we
can connect to. It follows that we can extend to T" uniquely, if at all.

We now have nodes in 7' with ¢ defined on them. We can now start moving
up from these nodes and define the function using a similar argument as above.
These are split nodes in the interior of the path P and can possibly include v itself.
We continue extending the function ¢ as long as there are split and join sub-trees
remaining whose roots have been already uniquely mapped. This completes the proof
of our claim that p(n) = 1.

Since the labelings are spanning, we can solve the existence subproblem as
in Proposition 2. To solve the path extension subproblem, we only need to check
the possibility of mapping a path to another unique path, which takes O(n) time
per edge. As there is a unique way of mapping any edge, we need to perform a
binary search as in Proposition 2 to find the smallest € such that the commutativity
relations hold for the same maps found from existence subproblem. We can do this
simultaneously as we solve the existence problem. Checking the commutativity can
be done in linear time per edge, and therefore in time O(n2) for every step of the
binary search. The entire algorithm takes O(n?logn) = O(n?) time. O

5 Nonexistence of Geodesics

As explained in Section 1, it is important to know whether a given metric
on Reeb graphs (or contour trees) is intrinsic, i.e., whether the metric space
has geodesics. In [21], the labeled interleaving distance between merge trees is
used to argue that the (ordinary) interleaving distance between merge trees
is strictly intrinsic. Therefore, the space of merge trees under this metric is
intrinsic. Here, we continue our discussion in Section 3.2 on generalizing labeled
interleaving between merge trees to Reeb graphs. Specifically, we consider this
intrinsic property for the interleaving distance for Reeb graphs and contour
trees. We show that the (ordinary) interleaving distance is not strictly intrinsic
in these more general settings. Therefore, the labeled interleaving distance
must not be strictly intrinsic as well. Our counterexamples are simple, however,
the fact that they are counterexamples is not immediate.

If a space is intrinsic, there is an “average” for any two objects in the space.
That is, for all pairs of Reeb graphs R; and Rs, there exists an average Reeb
graph M = M(Rl, Rg) such that d](]\47 Rl) = d[(M, RQ) = d](Rl, RQ)/Q ‘We
show below that the statement is not true for Reeb graphs or contour trees.

5.1 Counterexample for Reeb Graphs

Let Ry be a line segment of height a and let R be a simple loop of height a.
The morphisms drawn in Figure 10 show that d;(R1, Re) = a/4, because of
the loop of height a in Ra.

We assume for the sake of contradiction that there is a Reeb graph M such
that dy (M, Ry) = dj(M, Ry) = /8 = e. We have the following commutative
diagram,
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R T4 (Ry) Ry Ry

i
a a/4 _a/d a/4
| B /A <
|
Ry T (Ry) Ry /R

Fig. 10 A counterexample for Reeb graphs.

M Ma/8 Ma/4

AN N

~
Ry Ry/® Ry

Since Ry and R;‘/ * each contains a loop of height «v and /2, respectively,
and the above diagram is commutative, M®/® must contain a loop of height
at least /2. Then by Lemma 3, M must have a loop of height at least o/2 +
a/4 = 3a/4. Now consider the relationship between Rq and M. Since R; is
a line segment and M has a loop of height at least 3« /4, the interleaving
distance dy(M, R;) is at least (3a/4)/4 = 3a/16. This is because that the
loop in M must disappear after smoothing by 2e, similar to the example in
Figure 10. However, 3a/16 > «/8 = ¢, contradicting our assumption that
d[(M, Rl) = d](M, RQ) = a/8.

Lemma 3 Let R be a Reeb graph. If R® has a loop of height a, then R must contain
a loop of height a + 2¢.

Proof Let r be an injective, function-preserving map r : R — T¢(R). r exists by our
assumption that nodes have distinct function values. Let O be the loop of R with
height a, and let * € R® be a point of O. Let y = r(z) and J = z x [—¢,¢] C T°(R)
be the vertical interval containing y. We move y up or down until it coincides with
2z x {0} € R x {0}. We perform this move for all x € O such that x is a vertex of R®
or z is a vertex of R.

The highest point of O, max(0), is a join node and its image must move € up to
lie in R x {0}. Similarly, the lowest point of O, min(O), is a split node and its image
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must move down ¢ to lie in R x {0}. Other nodes move at most €. Now, max(O) and
min(O) are the highest and lowest nodes of a new loop with height a + 2¢. O
5.2 Counterexample for Contour Trees

Since the loop in Section 5.1 is essential, one might conjecture that when there
is no loop in a Reeb graph (i.e., for a contour tree), the geodesic property
holds. In this section, we present a counterexample to this conjecture.

R T (Ry) Ry Ry

P /
dr(R1, Rz) = a/4 \
¥ 1/)‘/ /
: /
T /
/4 a/4 a/4
@ ) o P
Emm— I —_—>
i //
R, whmy T omr S we

Fig. 11 A counterexample for contour trees.

Let Ry be an X-shaped contour tree in Figure 11 (top), where we consider
the crossing point to be the superposition of a join node and a split node that
are arbitrarily close. Let Ry be a line segment in Figure 11 (bottom). The total
height of the Reeb graphs are equal and we denote it by «. Let the lowest point
of these graphs be the origin of the height function and let the line segment be
centered at a/2. Observe that d;(Ri, Rz) = /4. The maps ¢ : Ry — R§ and
¥ : Ry — R defining an «/4-interleaving are drawn in Figure 11. We again
consider the following commutative diagram:

M Ma/S Ma/4

> >
Ry R

a/8 a/4
1/ Rl/

For the sake of contradiction, we assume there is a contour tree M such that
dr(M, Ry) = di(M, Ry) = /8. We call a (part of a) contour tree a join-split
structure, or JS-structure 2, if it consists of a split and a join node connected
by a connecting arc, see Figure 12 (left). We call the function (height) value
difference between the split and the join node the spread of the JS-structure.

2This term is not intended to be related to the one in [50].
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Note that the spread can be negative. For instance, R; in Figure 11 is a
JS-structure where the connecting arc is trivial and the spread is 0.

;onn;zting \ / \ /

|

spread

|

Fig. 12 Left: A joint-split structure. Right: additional illustration for the counterexample
involving contour trees.

As illustrated in Figure 12 (right), the tree R(ll/4 is a JS-structure with

spread «/2. Let j and s denote the join and split nodes in R‘f‘/ % Since the
above diagram commutes, there must be a split node s’ in M/® lying at or
below s and a join node j’ lying at or above j. Then, there is a JS-structure
in M2/8 of spread at most a/2. Since there are corresponding join and split
nodes jo, so € M with function values «/8 above j' and below s, respectively,
there must be a JS-structure in M of spread at most /4. Since Ry is a line
segment, if d;j(M, Ry) = a/8 = ¢, then after moving 2¢ down, the join node
Jjo must have a function value of at most 0; and after moving 2¢ up, the split
node sgp must have a function value of at least «. Then sy must lie at most
a/4 below a and jp must lie at most /4 above 0. It follows that the spread
is at least «/2, which contradicts our earlier assumption.

Remark 4 In the above example, the join and split nodes in R; coincide. However,
this is not essential and they can be separated by § where § is sufficiently small but
positive. For example, it may be a Reeb graph of a Morse function defined on a
2-manifold.

5.3 More on Metric Properties of the Space of Reeb
Graphs

The counterexamples above show that the spaces of Reeb graphs and contour
trees are not geodesic w.r.t. dy, implying that d; is not strictly intrinsic. We
can also deduce the following,

Proposition 3 The interleaving distance dy is not intrinsic.

Proof If the interleaving distance was intrinsic, then there would exist paths connect-
ing the two Reeb graphs R; and Rs whose lengths, computed using the metric dy,
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approach the interleaving distance arbitrarily closely. Then there would exist Reeb
graphs which are arbitrarily close to a midpoint of R; and R w.r.t. d;j. However,
this cannot be true by the above example. |

In the examples presented above, the parameter « is arbitrary. It follows
that there are counterexamples that are arbitrarily close to each other w.r.t. d;.
In [21], the authors asked if d; (and other intrinsic versions of distances on
Reeb graphs) is strictly intrinsic. We conjecture that dr is not strictly intrinsic,
and more generally we conjecture the following,

Conjecture 1 The space of isomorphism classes of Reeb graphs with any metric d
is not a geodesic space.

6 Conclusion and Discussion

In this paper, we define a labeled interleaving distance for Reeb graphs and
prove its properties. The labeled interleaving distance does not approximate
the ordinary interleaving distance, nor does it help with its computation.
Rather, the labeled interleaving distance may be a substitute for the ordinary
interleaving distance in some applications. We also show that the ordinary
interleaving distance between Reeb graphs is not intrinsic. Therefore, there is
no interpolation or average Reeb graph w.r.t. this distance between two close
enough Reeb graphs. There are at least two ways to tackle this issue. First,
we could try to find a Reeb graph which approximates an average. This would
require a careful determination of the criteria for this average, and whether we
should give more importance to one Reeb graph compared to the other one.
Second, we could try to come up with distances with intrinsic properties. Even
if Conjecture 1 is true, there might be useful pseudo-metrics.

We present a first algorithm for computing the labeled interleaving distance
between contour trees in polynomial time. We do not know whether a more
efficient algorithm exists. It would also be useful to know if a polynomial
algorithm exists for labeled Reeb graphs. Chambers et al. [24] recently defined a
family of metrics related to the interleaving distance on Reeb graphs, using the
concept of smoothing and truncation. Our current labeled interleaving distance
only uses the concept of smoothing. Understanding the intrinsic properties of
these truncated interleaving distances could also be an interesting continuation
of the present work.
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Appendix A An Observation on Path
Neighborhoods

The following is an observation which we do not use but it might find
application elsewhere.

Lemma 4 Let u be a node in a Reeb graph R and let Ne(u) be the union of all points
that are connected to u by a path @ of height at most € and such that f(q) > f(u)

forall g € Q, or f(q) < f(u) for all g € Q. Then n(Ne(u)) C PE(u).

RE
P (u)

A/ 1
, 1(Ne(w) ]

Fig. A1 An illustration for the proof of Lemma 4.

Proof Take © € N¢(u). By assumption, the point z is connected by some path
Qz C Q to u such that @z lies completely above or below u in the function values.
This is because for a path to attain the value f(u), it must be crossing f(u) or be
incident to u. Consider the thickening 7°(R) and the function f¢ : T°(R) — R.
Since Qg < ¢, there is a point ugz € u X [—¢, €] such that f*(uz) = f°((z,0)) = f(z),
see Figure A1. We claim that z and uy are connected in the pre-image (f¢) ™ (f(x)).
Consider the strip Qz X [—¢,¢]. The range [f(u), f(uz)] is always covered by lines
q X [—&,¢], for q € Q. O

Appendix B Metric Properties of the Labeled
Interleaving Distance

It is easy to see that the labeled interleaving distance is not necessarily finite.
This happens when the nodes that are labeled by the same label are originally
apart and also move in opposite directions when smoothed, see Figure B2 for
an example. Consequently, it could potentially only be an extended metric on
the isomorphism class of labeled Reeb graphs, with the same label set L.

a b

b a
Fig. B2 A pair of inconsistently labeled Reeb graphs
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In this section, we first put a condition on possible labelings and show that
under this condition the labeled interleaving distance becomes a metric. Since
the label set L is arbitrary, this provides a large number of metrics on large
subsets of Reeb graphs that could be of interest in many applications, both in
theory and in practice.

For a label set L, we denote the set of all L-labeled Reeb graphs by RE.
We say that two labelled Reeb graphs Ri x,, Ra , are consistently labeled if
for each label ¢ € L, the nodes v1 = A1(¢) and va = A2(¢) move in the same
direction when smoothed. In other words, if v; is a maximum or split, then vy
is also a maximum or a split, and if v; is a minimum or a join, then vs is a
minimum or a join. A set of labeled Reeb graph R C R” is called consistently
labeled if each pair of labeled Reeb graphs in it are consistently labeled.

The following lemma will be used in the proof of Theorem 2.

Lemma 5 Let R; and Ry be two Reeb graphs, and vi € R1, vo € Ra be two nodes
such that they move in the same direction when smoothed. Let ¢ : Ry — RS be a
morphism satisfying ¢(v1) € P (ve). Then, for any 6 > 0,

§
¢°(ss(v1)) € P°(s5(v2)),
where s denotes the correspondence ss : V(R) — V(Ré) for any pair of Reeb graphs.

Proof Without loss of generality, assume that both v; and vy are maxima or split
nodes. The condition ¢(v1) € P®(v2) implies that |f1(v1) — f2(v2)| < e. Since the
nodes move in the same direction we have |f{ (s5(v1)) — f9 (s5(v2))] < e.

On the other hand, we know that y = ¢°(s(v1)) € Pt(vg), and y is at the
function distance at most € from sg(v2). Hence, y has to be in P®(sg(v2)), since this
path neighborhood is the upper part of P5+6(U2). See Figure B3 for an example.

|

Proof of Theorem 2 All conditions of Rg‘ being a metric are trivial to check except
for the triangle inequality, for which we provide a proof. Let Ry, Ro, R3 € RE be
Reeb graphs such that d%(Rl, R3) = €1 and d%(Rz, R3) = 2. We need to prove that
d% (R1, R3) < &1 + e2. For this purpose, it is enough to show that there is a labeled
€1 + eg-interleaving between R; and Rs. Let ¢1,11 define a labeled e-interleaving
between R; and Ro, and ¢2,2 be analogous for Ry and R3. We need to define
¢: R — R§1+52, and ¥ : Ry — Ril"'gz. We take ¢ = ¢Sl o¢ and ¥ = w? o P2
to be the compositions. As in [21], Proposition 4.5, this pair of morphisms define
an €1 + eo-interleaving. Here we show that these morphisms satisfy the additional
labeling requirement, namely,

¢=1 2 (s(v1)) € P72 (s(v3))

when v1 and vs have the same label, and analogously for ¢. We focus on ¢.
Let v1 € R, vo2 € Ro and v3 € R3 be nodes with the same label. First, note that

¢€1+€2 _ (¢;1¢1)€1+62 _ ¢§€1+€2 o¢§1+€2.

Second, using Lemma 5 with § = g9,
(ﬁl (5¢,(v1)) € P! (8¢, (v2))
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R, T3(R,) RS R

s5(v2)

\I 55 v1))

Pe+5 (1)2

R2 TE(RZ) Rg Ts+6 RZ Re+6
Fig. B3 An illustration for the proof of Lemma 5.

implies
Y= ¢61+82 (5€1+82 (Ul)) e p* (S€1+82 (UQ))'
Similarly, ¢52(se,(v2)) € P2 (se,(v3)) implies
¢§1+82 (881+€2 (UQ)) S (551+52 (1)3)).

By ”thickening” the two sides of the above we obtain,

¢§El+82 (PEI (Sey+ea (v2))) C pertez (581+52 (v3))'

Putting these together,

¢61+62 (Se14ez(v1)) = 361+E2 (y) € ¢’§€1+€2 (Pf(ssl te,(v2))) C pertes (Se1+e2(v3)),

which is what we wanted to prove. O
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