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a b s t r a c t

Dynamic probabilistic risk assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP
and MELCOR) with simulation controller codes (e.g., RAVEN and ADAPT). Whereas system simulator
codes model system dynamics deterministically, simulation controller codes introduce both determi-
nistic (e.g., system control logic and operating procedures) and stochastic (e.g., component failures and
parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by sampling
values of a set of parameters and simulating the system behavior for that specific set of parameter
values. For complex systems, a major challenge in using DPRA methodologies is to analyze the large
number of scenarios generated, where clustering techniques are typically employed to better organize
and interpret the data. In this paper, we focus on the analysis of two nuclear simulation datasets that are
part of the risk-informed safety margin characterization (RISMC) boiling water reactor (BWR) station
blackout (SBO) case study. We provide the domain experts a software tool that encodes traditional and
topological clustering techniques within an interactive analysis and visualization environment, for
understanding the structures of such high-dimensional nuclear simulation datasets. We demonstrate
through our case study that both types of clustering techniques complement each other for enhanced
structural understanding of the data.

Published by Elsevier Ltd.

1. Introduction

A recent trend in the nuclear engineering field is the imple-
mentation of computationally intensive codes to perform safety
analysis of nuclear power plants. In particular, the new generation
of system analysis codes aims to address thermohydraulic phe-
nomena, structural behaviors, system dynamics, etc. Often these
codes are coupled with stochastic analysis tools, such as dynamic
probabilistic risk assessment (DPRA) methodologies, to perform
probabilistic risk analysis, uncertainty quantification, and sensi-
tivity analysis.

DPRA methodologies account for possible coupling between
triggered or stochastic events through explicit consideration of the
time element in system evolution, for example through the use of
dynamic system simulators. Such methodologies are useful when
the system has multiple failure modes, control loops, processes,
software/hardware components, or human interactions. A DPRA is
typically performed by sampling values of a set of parameters
from the space of interest with uncertainty (using the simulation

controller codes) and then simulating the system behavior for that
specific set of parameter values (using the system simulator
codes). Due to the intrinsically high level of details within such a
process, large amounts of data are generated within the simulation
[18]. The main challenge in employing DPRA methodologies is
how to explore and understand such large amounts of data
through effective analysis and visualization.

Related work. A first approach towards understanding such data
follows fuzzy classification [11] and classic clustering algorithms
[18]. In particular, a clustering algorithm such as the mean-shift [6]
partitions the set of scenarios generated by DPRA based on their
similarities and the observation density and enables the organiza-
tion and interpretation of trends and risk contributors in scenario
evolution [18,20].

On the other hand, for effective analysis and visualization of
DPRA and nuclear datasets in general, we have been investigating
the use of topology-based clustering techniques to obtain local, in-
depth structural understanding of the data. The clustering techni-
que we utilize focuses on a domain-partitioning algorithm based
on a topological structure known as the Morse–Smale complex
[3,4], which partitions the data points into clusters based on their
uniform gradient flow behavior. In [14], we have built upon a
well-established framework that visualizes high-dimensional
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scalar functions through a topological segmentation of its input
domain [7,8]. The input of such a high-dimensional function arises
from the set of n uncertain parameters x1; x2;…; xn, whereas the
output originates from some safety-related outcomes, such as the
maximum core temperature of each simulation. Our topological
tools aim to reconstruct the topological structure of such a
function, i.e., the response surface, in the high-dimensional space.
We have demonstrated, for the first time, such a framework to
nuclear engineers by applying it to data extracted from a VRþ

2
nuclear reactor simulator where a SCRAM event occurs due to
system failure. We have further explored the topological cluster-
ings that lie beneath such a framework for DPRA datasets [13] in
terms of end-state analysis (which classifies the scenarios into
clusters based on their end state, e.g., final outcome, [21]) and
transient analysis (which considers the complete system
dynamics, e.g., time evolution of scenarios, and identifies clusters
having similar temporal behavior of the state variables [18]). The
tools we develop have been briefly described in surveys and
technical reports that summarize methodologies and algorithms
that are implemented within the RISMC project and are under
development for RAVEN [15,16].

Our contribution. This paper includes and extends our earlier
work in [12]. Compared to prior work mentioned above, our main
contributions are as follows : First, we present an in-depth
application discussion that focuses on the analysis of two parti-
cular nuclear simulation datasets that are part of the risk-informed
safety margin characterization (RISMC) boiling water reactor
(BWR) station blackout (SBO) case study [17]. Second, we enrich
our previously developed tool [13,14] by combining traditional
hierarchical clustering and topological clustering, as well as
dimensionality reduction (DR) techniques.

We demonstrate through our first data example that both types
of clustering techniques complement each other in enhancing
structural understanding of the data. In particular, the topological
clustering helps highlight key features of the data that are
otherwise hidden using traditional techniques. In the second
example, we explore new ways of thinking about risk-informed
data by incorporating probability information into the topological
analysis in order to characterize the most probable area of the
identified failure region, in addition to a well-established analysis
of the data's observed output, namely, the maximum temperature
reached by the cladding.

Compared to [12], this extended version includes one addi-
tional, more complex BWR SBO dataset in the analysis and
visualization, as well as provides a more complete exposition of
our enriched analysis and visualization toolset in understanding
such nuclear simulation datasets. In a nutshell, the power of
clustering comes from the notion that a large number of simula-
tions spanning a large input and potentially large output space can
be distilled into a few canonical or interesting cases. Agglomera-
tive hierarchical clustering and topological clustering provide two
very different views of the data, and in this work, we attempt to
highlight the advantages of each and demonstrate, through the
case study provided, when one method may be preferred over the
other depending on the user's needs. We also demonstrate that, in
some cases, the two methods can validate trends in the data in a
complementary fashion.

BWR system. The system considered in both simulation datasets
is a generic BWR power plant with a Mark I containment as shown
in Fig. 1. The three main structures are the reactor pressure vessel
(RPV), a pressurized vessel that contains the reactor core; the
primary containment including the drywell (DW) that houses the

Fig. 1. BWR system considered.
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RPV and circulation pumps; and the pressure suppression pool
(PSP), also known as the wetwell. The PSP is a large torus-shaped
container that contains a large amount of water (almost 1 million
gallons of fresh water) and is used in specific situations as an
ultimate heat sink. The BWR system includes a large number of
subsystems, but for the scope of this paper and for the case study
considered, we use a smaller subset of systems that includes the
RPV level control system, the RPV pressure control system, the
cooling water inventory, and the AC power system. The AC power
system consists of two power grids, emergency diesel generators
(DGs), and battery systems for the instrumentation and control
systems.

The RPV level control system provides manual and automatic
control of the water level within the RPV and consists of two
components, the reactor core isolation cooling (RCIC) and the high
pressure core injection (HPCI). The RCIC provides high-pressure
injection of water from the condensate storage tank (CST) to the
RPV. Water flow is provided by a turbine-driven pump that takes
steam from the main steam line and discharges it to the suppres-
sion pool. The HPCI functions similarly but allows a much greater
water flow rate.

The RPV pressure control system provides manual and auto-
matic control of the RPV internal pressure and consists of a set of
safety relief valves (SRVs), safety valves, and the automatic
depressurization system (ADS). The SRVs are DC-powered valves
that control and limit the RPV pressure, and the ADS is a separate
set of relief valves that are employed in order to depressurize
the RPV.

The cooling water inventory includes the CST, the PSP, and the
fire water system. The CST in the considered plant is a 375 kgal
fresh water reservoir that can be used to cool the reactor. The PSP
contains a large amount of fresh water that is relied upon as an
ultimate heat sink when AC power is lost. Water from the fire
water system can be injected into the RPV when other water
injection systems are disabled and when the RPV is depressurized.

SBO scenario.The scenario considered in this paper is the loss of
offsite power (LOOP) event followed by the loss of the diesel
generators (DGs), i.e., the station blackout (SBO) initiating event. In
particular, at time t ¼ 0, a LOOP condition occurs due to an
external event. Therefore, the LOOP alarm triggers the following
events:

1. A successful scram of the reactor is performed by the operators.
2. Main steam isolation valves are successfully closed, isolating

the primary containment from the turbine building.
3. Emergency DGs start successfully to keep the AC power buses

energized.

It is assumed that the DC systems (i.e., batteries) are functional,
and the decay heat generated by the core is successfully removed
from the RPV through the residual heat removal system.

At some point, an SBO condition may occur due to some
internal failure, where the set of DGs fails, thus impeding the
removal of decay heat. Reactor operators then start the SBO
emergency procedures and perform RPV level control using RCIC
or HPCI, RPV pressure control using SRVs, and containment
monitoring (both drywell and PSP). At this point, plant staff
members start to bring the DGs back online while recovering the
off-site power grid. Due to heavy usage, battery power can be
depleted. When this happens, all remaining control systems
become off-line, causing the reactor core to heat until the max-
imum temperature limit for the clad is reached, where a core
damage (CD) condition occurs.

If DC power is still available and one of three conditions is met
(i.e., failure of both RCIC and HPCI, HCTL limits have been reached,
or RPV water level becomes too low), then the reactor operators

activate the ADS in order to depressurize the RPV and allow fire
water injection when available. As an emergency action, when RPV
pressure is below 100 psi, plant staff can connect the fire water
system to the RPV in order to cool the core and maintain an
adequate water level. Such a task is, however, hard to complete
since physical connection between the fire water system and the
RPV inlet has to be made manually. When AC power is recovered,
through successful restart/repair of DGs or off-site power, the
residual heat removal system can be employed to keep the reactor
core cool.

Overview. In our case study, we investigate datasets that model
the maximum temperature reached by the reactor cladding and
the overall system success or failure in terms of recovering from an
SBO event, while varying the timings of failure or recovery of the
various subsystems described above. We therefore model the data
as a high-dimensional function of these timing parameters, whose
real-valued output corresponds to the maximum temperature of
the reactor cladding, the time it takes for a failure to occur (i.e.,
when the cladding breaches a preset maximum temperature), or
the overall simulation success or failure. Our objective is to
summarize a large amount of scenarios into a manageable number
of meaningful categories by performing traditional and topological
clusterings. We describe these methods and the subsequent
visualizations of their results in detail.

2. Technical background

Dimensionality reduction (DR) and traditional hierarchical
clustering are widely used techniques for high-dimensional data
analysis. To extend the existing framework we have developed in
[13,14], we employ a visualization system that utilizes more
standard clustering and DR techniques in addition to the topolo-
gical methods. The topological methods require a slightly different
treatment of the data, yet follow the same basic principle as using
DR to construct a mapping of the clustering results for intuitive
visual analysis. We begin with a brief description of DR and
traditional hierarchical clustering techniques, and then focus on
the topological clustering, which may be unfamiliar to non-
specialists. We include some technical details in our system which
are most relevant to the related work reviewed here.

Dimensionality reduction (DR) and traditional hierarchical
clustering are widely used techniques for high-dimensional data
analysis. To extend the existing framework we have developed in
[13,14], we employ a visualization system that utilizes more
standard clustering and DR techniques in addition to the topolo-
gical methods. The topological methods require a slightly different
treatment of the data, yet follow the same basic principle as using
DR to construct a mapping of the clustering results for intuitive
visual analysis. We begin with a brief description of DR and
traditional hierarchical clustering techniques and then focus on
the topological clustering, which may be unfamiliar to non-
specialists. We include some technical details in our system that
are most relevant to the related work reviewed here.

Dimensionality reduction. DR techniques [1], such as principal
component analysis (PCA) [9], multi-dimensional scaling (MDS)
[10], and Isomap [19], are common tools for analyzing high-
dimensional data by constructing its low-dimensional representa-
tion. Since direct visualization of high-dimensional data is extre-
mely challenging, we would like to obtain some intuition
regarding the structure of the data through its low-dimensional
embedding. Such embeddings are typically constructed in 2D or
3D spaces for visualization purposes. We have integrated a
number of DR techniques into our system. For the purpose of
our study, we use primarily PCA, a linear DR technique, due to its
simplicity and computational efficiency. Using DR alone as a black
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box solution in the analysis suffers a major limitation, that is, the
results could be hard to interpret as a certain amount of structural
information could be lost during the DR process. Therefore, we try
to impose structural context for the embeddings by combining DR
results with clusterings obtained from the original high-
dimensional data.

The projection offered by PCA is not axis-aligned, which makes
interpreting the horizontal and vertical axes somewhat difficult in
the context of the original input parameters. We can retain some
of this information by either showing the projected axes or by
employing a colormap to show how well a particular parameter
aligns with one or more of the principal components. The latter
method is used during our initial analysis, as it helps highlight
which parameters most strongly influence the global structure of
the data.

Traditional Hierarchical Clustering. A clustering groups the data
in such a way that points are more similar to those in the same
cluster than to those outside the cluster. There are numerous
criteria (based on density, distribution, distance, or connectivity,
etc.) for defining what constitutes a cluster. In our current analysis,
we choose average-linkage hierarchical clustering [2] (among
others available in the system). Such a clustering technique is
based on point-wise connectivity where points are considered
more related to nearby points than points that are farther away.
Starting from individual points as their own clusters, this techni-
que builds a dendrogram from the bottom up, merging nearby
clusters. In our system, the number of clusters does not need to be
specified a priori; instead, the user interactively expands or
collapses different levels of clustering in the hierarchy during the
analysis.

Visualizing high-dimensional clusters. We visualize high-
dimensional clusters obtained by hierarchical clustering using
their PCA projections. An example is shown in Fig. 2 (left) where
sampled points from a 3D paraboloid (defined by the function
f ðx; yÞ ¼ x2þy2) are visualized by combining their hierarchical
clustering results with PCA. The data is normalized using z-score
standardization to ensure each dimension has a mean of zero and
a standard deviation of one. After clustering, the points are
projected onto their first two principal components and colored
according to their cluster labels. We see that the five clusters
correspond to the four corners as well as the area surrounding the
global minimum of the paraboloid. In our visualization toolset, we
utilize various visualization techniques to understand the relative
size of the clusters, detect outliers, and identify key parameters

that characterize each cluster. In particular, we enhance the
comparison of clusters by providing the ability to interactively
drag the clusters apart on the 2D canvas (Fig. 2, bottom right) to
prevent occlusion and to help us understand the relative size of
the clusters and the dispersions of points within. Furthermore, we
include statistical summaries of the individual clusters (Fig. 2, top
right), enabling us to characterize the key contributors of their
distinct behaviors.

Approximated Morse–Smale complex and topological clustering.
We consider an alternative method for clustering high-
dimensional data based on the concept of the Morse–Smale
complex (MSC). We give a brief overview of these concepts; see
[13,14] for details. The MSC is a type of topological structure that
serves as a structural summary of a given scalar function. We
consider a scalar function f : X-R defined over a finite set of
pointsX in Rn. The approximated MSC, at its finest level, partitions
the points in X based on their uniform gradient behavior. First,
points in X are connected with a neighborhood graph (e.g., k-
nearest-neighbor (KNN) graph). Second, the steepest ascending
edge adjacent to a given point is used to estimate the gradient flow
at the point. All points with no neighbors of higher/lower values
are considered local maxima/minima. Finally, points are clustered
based on the unique minimum-maximum pair from which their
gradient flows start and end. A topological clustering at the finest
level for a height function defined on a 2D domain is illustrated in
Fig. 3(a) and (b). We can then merge clusters based on persistence
simplification [5], where less (topologically) significant clusters are
merged into more significant ones. We avoid the technical details
here but simply illustrate such a process in Fig. 3(d) and (e).

Topological skeleton obtained through DR. Given a topological
clustering at a fixed scale, we further our analysis by computing a
collection of summary curves that serves as the topological
skeleton of the data in the visual space. We follow a three-step
process, as detailed in [7]: 1) perform inverse linear regression
with data in each cluster and obtain a 1D curve embedded in Rn, 2)
project the curves in Rn to a curve in the visual space using PCA
[9], and 3) align the curves in the visual space to meet at their
shared extrema to maintain the coherency of the extracted
structure. The resulting topological skeleton serves as a structural
summary of the data, and it is visualized to encode structural
information, as illustrated in Fig. 4. Finally, the topological skeleton
can also be visualized based on the cluster labels. In addition, we
distinguish the clusters based on configurations of their input
dimensions through a collection of inverse coordinate plots.

Fig. 2. Left: Points sampled from a 3D paraboloid dataset are projected by PCA and colored according to their cluster labels. Top right: Cluster summaries demonstrate the
mean and range of each dimension within a cluster. Bottom right: The clusters are manually rearranged on the 2D canvas for comparison. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)
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Suppose we employ a point sampling of the same 2D height
function in Fig. 4. The above process is illustrated in Fig. 5. For
more details of the visualization pipeline, see [7,13,14].

3. Case study dataset 1: 7d simulation ensemble

3.1. Data description

An ensemble of 4997 transient simulations has been generated
using classical Monte-Carlo sampling of seven input parameters.
Among these simulations, 833 scenarios resulted in system failure
(where the core temperature reached the clad failure temperature
threshold of 22001F� 1477 K), whereas the rest of the 4164
scenarios ended in system success (where AC power is recovered

or the fire water becomes available when the RPV is depressurized
early enough to prevent the cladding from reaching a dangerous
temperature). Each simulation includes information regarding the
timing of various recovery attempts (e.g., cooling recovery, fire
water, etc.) and component failures (e.g., battery life is exhausted
or a safety relief valve gets stuck open, etc.). The seven input
parameters are listed below, as they are the only uncertain
parameters under consideration.

1. FailureTimeDG: Failure time of the DGs corresponding to the
time of the SBO event.

2. ACPowerRecoveryTime: The minimum between the recovery
time of DGs and the off-site power recovery time. The mini-
mum of these two will determine when the AC power is
considered recovered.

Fig. 3. For a height function defined on a 2D domain (where maxima, minima, and saddles are colored red, blue, and green, respectively): (a) For each point in the brown
region, the gradient flow (white arrow) ends at the same maxima x. (b) For each point in the green region, the gradient flow starts at the same minimum y. (c) For each point
in the blue region (i.e., a cluster based on the MSC), the gradient flow begins and ends at the same maximum–minimum (i.e., (x,y)) pair. To illustrate merging of clusters
based on persistence simplification, in (d), the left peak at the local maximum x is considered less topologically important than its nearby peak at the local maximum z, since
x is lower. Therefore, at a certain scale, we would like to represent this feature as a single peak instead of two separate peaks, as shown in (e), by redirecting gradient flow
(white arrow) that originally terminates at x to terminate at z. In this way, we simplify the function by removing (canceling) the local maximum xwith its nearby saddle y. On
the cluster level, the clusters (i.e., decompositions of the domain separated by edges connecting the saddles and extrema) surrounding the left peak x are merged into
clusters surrounding the right peak z. Figures are reproduced from [13]. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)

Fig. 4. An illustrative example of our visualization of a topological skeleton extracted from a 2D height function: (a) the surface is first segmented into clusters of uniform
gradient flow; (b) then each level set (white line) is averaged to a single point, and consecutive level sets are connected to form a curve per cluster (orange curves); and
(c) finally the resulting topological skeleton is visualized. Each summary curve in the visual space corresponds to a cluster of the original high-dimensional data. In the
visualization, the color of each curve signifies the average value of each level set, and a transparent region encloses a given curve, where its width represents a direction-
independent estimate of the spread of data and the luminance of its boundary edges signifies the sampling density. Figures are reproduced from [13]. (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this paper.)
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3. SRVStuckOpenTime: The time when an SRV is stuck in the open
position.

4. CoolingFailtoRunTime: The maximum between the HPCI failure
time and the RCIC failure time. As long as one of the two high
pressure cooling systems (i.e., HPCI and RCIC) is functioning,
the reactor is being actively cooled, so it is important to
understand when both systems have failed.

5. ADSActivationTimeDelay: The time when the operator manually
depressurizes the RPV by activating the ADS system. This
parameter measures the time delay from when the PSP heat
capacity limits are reached.

6. FirewaterTime: As an emergency action, when RPV pressure is
below 150 psi (E1.03�106 Pa)150 psið � 1:03� 106 PaÞ, plant
staff can connect the fire water system to the RPV to cool the
core and maintain an adequate water level. This parameter
indicates the time needed to connect the fire water system for
injection.

7. ExtendedECCSOperation: Battery life combined with extended
ECCS operation. That is, operators may extend RCIC/HPCI and
SRV control even after the batteries have been depleted. They
manually control RCIC/HPCI by acting on the steam inlet valve
of the turbine and/or supply DC power to the SRVs through
spare batteries.

All the above time-related parameters are measured from the time
of the SBO event (in seconds), which is the FailureTimeDG, with
the exception of FailureTimeDG, which is measured from the LOOP
event, and the ADSactivationTimeDelay, which is measured from
the time the PSP reaches its heat capacity limits. The output

parameters obtained from the simulations are:

1. MaxCladTemp, which is the maximum temperature attained
anywhere on the cladding during the entire course of the
simulation;

2. SimulationEndTime, which for failure cases represents the time
to reach the failure temperature of 2200 1Fð � 1477 KÞ.

We study the topology of scalar functions with each of these
outputs as the scalar value in isolation. The above data is pre-
processed with a Z-score standardization, whereby values V of
each dimension are recomputed as ðV�meanðVÞÞ=stdðVÞ; there-
fore all input parameters have the same mean (0) and standard
deviation (1) but may vary in their ranges.

In this study, we are interested in what combination of
conditions (in the form of input simulation parameters) can cause
potential reactor failure.

3.2. Results

We provide analysis under both traditional (Section 3.2.1) and
topological clustering (Section 3.2.2) using the 7D input data. For
each subsection, we consider two separate cases. In the first case,
referred to as the All scenarios case, we analyze all 4997 simula-
tions, using maximum clad temperature (maxCladTemp) as the
observed output parameter. Note that in this case, all failure cases
have the same output parameter of 22001F (E1477 K)
2200 1Fð � 1477 KÞ. In the second case, referred to as the Failure
scenarios case, we focus on clustering of the 833 failure scenarios.

Fig. 5. Left: topological skeleton colored by cluster labels. Right: inverse coordinate plots. Data points are visualized by their cluster labels, and summary curves are
projected. For the inverse coordinate plots, the horizontal axis represents the output dimension (e.g., height values), and each vertical axis represents an input dimension
(e.g., x or y coordinates of the domain). The projected summary curve in each inverse coordinate plot gives the average value (of the input dimension of interest) at each level
set and uses a dimension-specific standard deviation for the width of the transparent region. Visualizations of the data points, summary curves, and their associated standard
deviations could be enabled/disabled based on user specifications. (For interpretation of the references to color in this figure caption, the reader is referred to the web version
of this paper.)

Fig. 6. PCA embedding for the 8D dataset under the All scenarios case. The dimensions shown exhibit relatively strong correlation patterns within the embedding. We use a
spectral colormap (color bar on the left) where red/blue represents low/high value. (a) ACPowerRecoveryTime, (b) MaxCladTemp, (c) CoolingFailToRunTime,
(d) FirewaterTime, (e) SRVStuckOpenTime, and (f) ExtendedECCSOperation. (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)
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Since the maximum clad temperature does not vary for these
cases, we treat the time of the failure (SimulationEndTime) as the
output parameter. We give a comprehensive picture by comparing
between the two clustering techniques and discussing the benefits
and limitations of each approach.

3.2.1. Traditional clustering
For traditional hierarchical clustering, we map the data into an

8D space by considering the seven input parameters and the
output parameter, maximum clad temperature (MaxCladTemp).
We start our analysis by applying PCA to reduce the 8D data to its
2D embedding for direct visual analysis.

All scenarios case. To study the distribution/variation of each
dimension with respect to the embedding, we first color the points
according to each dimension, as illustrated in Fig. 6. All the
dimensions shown exhibit a certain amount of visual correlation
within the embedding. The two omitted dimensions, ADSActiva-
tionTimeDelay and FailureTimeDG, on the other hand, show little
to no visual correlation, indicating they account for the least
amount of variability in the data.

It is important to note that a vertical or horizontal pattern of
variation corresponds to the variance of the dimension. That is, a
larger variance corresponds to a more noticeable pattern, which is
likely because PCA is inherently optimized for capturing dominant
directions of maximum variance.

In Fig. 6(b), there appear to be only a few data points with a
moderate MaxCladTemp as the top portion of the embedding is
dominated by success scenarios characterized by low MaxClad-
Temp values (in red), and the bottom portion of the data consists
of mostly failure scenarios characterized by high (constant)
MaxCladTemp (in blue). It is therefore obvious that MaxCladTemp

separates the success from failure scenarios in the embedding.
This claim can be further validated by coloring the points with
known labels of success/failure.

In Fig. 6(a), ACPowerRecoveryTime varies smoothly within both
the success and failure scenarios, but it does not serve as a
differentiating factor between the successes and failures. Further-
more, in Fig. 6(f), relatively high ExtendedECCSOperation time can
be observed among all the success scenarios, so we suspect that a
long extended ECCS operation time is a main contributing factor
for stable system recovery. However, ExtendedECCSOperation is
likely not a sufficient condition to separate successes from failures
as there are a few points with high ExtendedECCSOperation values
within the lower half of the embedding (i.e., failures scenarios). In
Fig. 6(c)–(e), the remaining three dimensions vary orthogonally
with respect to maxCladTemp. This observation implies that these
dimensions have less impact on the outcomes of the simulation,
which are characterized by variations in maxCladTemp.

In addition, combined with traditional hierarchical clustering,
our analysis framework enables us to color the points in the
embedding based on cluster labels. Furthermore, the tool also
visualizes the statistical summary of each dimension for points
within each cluster (bottom of Fig. 7). In the statistical summary of
a given cluster, each row represents a dimension of the data,
where the yellow bar corresponds to its min–max range, and the
red marker indicates its mean value across all points in the cluster.
The span of the horizontal bars signifies the total range of values
for each dimension. With these summaries across all clusters, we
can quickly compare and investigate the defining characteristics of
each cluster at a glance (see Fig. 7).

During the interactive exploration of the embedding, we apply
cluster expansions recursively to study the data from coarse to fine
resolutions. At the coarsest level, the data is split into two clusters,

Fig. 7. (a) 2D embedding of the data colored by cluster labels. (b) In order to provide a more clear view for the clusters, we provide a separate illustration of each individual
cluster and (c) its summary statistics. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

D. Maljovec et al. / Reliability Engineering and System Safety 145 (2016) 262–276268



where the upper cluster contains exclusively success scenarios,
and the lower cluster contains all failure scenarios and a small
number of successes (verified via known labels of success/failure
cases). We subdivide these clusters by applying a few steps of
cluster expansion. We then arrive at a level in the clustering
hierarchy that consists of seven clusters, as shown in Fig. 7.

The four top clusters decompose all of the success scenarios
(top half of the embedding). The single point purple cluster (#4)
likely consists of an outlier in the data, since it exhibits extremely
low ACPowerRecoverTime and MaxCladTemp. This point corre-
sponds to a success scenario where AC power is recovered very
quickly and the clad temperature never increases drastically.
Although the blue (#2) and cyan (#1) clusters share similar
statistical summaries across most dimensions, ACPowerRecover-
yTime seems to be the most likely factor that differentiates these
two clusters. The fact that the cyan (#1) cluster has a late
ACPowerRecoveryTime but still records success scenarios suggests
that this factor is not important for successful system recovery for
this cluster, but may be more involved in the blue (#2) cluster. The
differentiating factor between the red (#3) cluster and the blue
(#2) and cyan (#1) clusters is its late SRVStuckOpenTime.

The three bottom clusters partition primarily the failure cases.
The dark green cluster (#7) again contains an outlier exhibiting
extremely late SRVStuckOpenTime and FirewaterTime. These clus-
ters correspond to the failure scenarios where all SRVs operate
correctly for a long time, and the fire water is injected very late,
not in time to avoid the core damage from overheating. The light
green (#5) and pink (#6) clusters differ mostly in ExtendedECC-
SOperation and CoolingFailToRunTime. The light green (#5) cluster
is concentrated with data points exhibiting lower ExtendedECC-
SOperation and higher CoolingFailToRunTime compared to the
pink (#6) cluster. In this analysis, we demonstrate that differen-
tiating clusters based on variations across different dimensions
allows the user to organize and interpret the trends in scenario
evolution and risk contributors for each scenario.

Failure scenarios case. Once again, we color the points in the
PCA embedding for all failure scenarios, as illustrated in Fig. 8.
There are clear variations among points in the embedding under
ExtendedECCSOperation, FirewaterTime, and SRVStuckOpenTime.
FirewaterTime and SRVstuckOpenTime vary along the horizontal
direction, whereas ExtendedECCSOperation varies vertically. We
also notice that very few points exist with a high SimulationEnd-
Time among all the failure scenarios. Comparing this case with the
All scenarios case, it is much more difficult to obtain insights from
the original data based on this visualization alone.

Using clustering expansion, we arrive at a level of the hierarchy
where five clusters are presented in the data (Fig. 9). In this
focused analysis of all the failure scenarios (without the

interference from the dominating dimension MaxCladTemp), we
obtain various insights regarding the separation of clusters that
can be used to identify the significant failure modes.

For example, the purple (#1) cluster contains an outlier with a
late ACPowerRecoveryTime and CoolingFailToRunTime. Both the
green (#2) and red (#3) clusters consist of early failure scenarios,
but their reasons for failing early are evident in their correspond-
ing parameter settings. In particular, the differentiating factors
here are the CoolingFaillToRunTime and ExtendedECCSOperation.
In the green cluster (#2), we see that the cooling system fails early
and leads to an early set of failure cases; whereas in the red cluster
(#3), the cooling system is available for longer, and instead the
extended ECCS operation time is very short. Both conditions lead
to similar rates of failure; thus loss of either system will yield
similar performance.

3.2.2. Topological clustering
For topological clustering, we map the data into a 7D scalar

function, where its input includes the seven input parameters of
the simulation, and its output corresponds to MaxCladTemp for
the All scenarios case and EndSimulationTime for the Failure
scenarios case.

All scenarios case. We investigate several levels of the topolo-
gical hierarchy before arriving at the clustering shown in Figs. 10
and 11. Beginning at the coarsest level, we continually refine the
clustering looking for a stable persistence level, indicated by a
wide red bar in the persistence chart (Fig. 10, bottom left), while
avoiding over-segmentation involving small or uninformative
clusters. A small cluster in the Morse–Smale complex approxima-
tion often indicates noise in the data and is typically considered
unstable. If adding a new cluster does not significantly change the
segmentation, such an addition is considered uninformative. In
this example, we arrive at a level with four clusters.

In Fig. 10, three of the clusters share a common global
maximum, whereas the remaining cyan cluster (#2) consists of
points exhibiting low MaxCladTemp values, which correspond to
success scenarios. Here we study the conditions that lead to
distinct local minima, that is, the different parameter settings that
yield stable success scenarios, by focusing on the behavior of the
projected summary curves in the inverse coordinate plots of
Fig. 10.

Recall the vertical axis of each inverse coordinate plot is labeled
by one input parameter, and the horizontal axis corresponds to
MaxCladTemp. Since we study conditions that lead to minimal
values of MaxCladTemp, we focus on the left side of the horizontal
axis of each plot, which corresponds to low values of
MaxCladTemp.

Fig. 8. PCA embedding for the 8D dataset under the All scenarios case. The dimensions shown exhibit relatively strong correlation patterns within the embedding.
(a) CoolingFailToRunTime, (b) ExtendedECCSOperation, (c) FirewaterTime, (d) SimulationEndTime, and (e) SRVStuckOpenTime.
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Fig. 10. (a) The topological skeleton of all 4997 scenarios. Inverse coordinate plots with (b) and without (c) points projected. Points and summary curves are colored by
cluster labels. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 9. (a) 2D embedding of the data colored by cluster labels. (b) A separate illustration of individual clusters and (c) their summary statistics. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

D. Maljovec et al. / Reliability Engineering and System Safety 145 (2016) 262–276270



In Fig. 10 (right) the local minimum that belongs to the pink cluster
(#3) exhibits a short ACPowerRecoveryTime, a long FirewaterTime,
and a short ExtendedECCSOperation time. The local minimum of the
blue cluster (#4), on the other hand, has a late ACPowerRecoveryTime,
a very short FirewaterTime, a short ADSActivationTimeDelay, and a
long ExtendedECCSOperation time. The third local minimum, shared
by the green (#1) and cyan (#2) clusters, has a moderate Fire-
waterTime paired with a short ACPowerRecoveryTime and a long
ExtendedECCSOperation time.

The input parameters that seem to be irrelevant in differentiat-
ing these clusters are the FailureTimeDG, the CoolingFailToRun-
Time, and the SRVStuckOpenTime. This last observation seems to
be well aligned with the observations made in the beginning of
Section 3.2.1, where we see no visual correlation between the
MaxCladTemp and the FailureTimeDG (therefore we omitted the
plot for FailureTimeDG in Fig. 6), and that the CoolingFailToRun-
Time and SRVStuckOpenTime are orthogonal in variation direction
to the maxCladTemp in the PCA embeddings.

The new information we obtain from topological clustering is
that the FirewaterTime does play a role in differentiating the pink
(#3), green (#1), and blue (#4) clusters, as we see clear separation
among the left end points of all three summary curves in the
inverse coordinate plot (Fig. 10, right). Therefore, from a safety

analysis perspective, we observe that, in order to assure a low
value of maximum clad temperature, the high pressure injection
system needs to be available for a long time for scenarios to
remain system successes. On the other hand, the failure time of
the diesel generators (FailureTimeDG, initial time of the SBO
condition) does not play a relevant role in guaranteeing a low
value of maximum cladding temperature.

For the pink cluster (#3) in (Fig. 10, right), an early AC recovery
time guarantees system success even for early failures of two
subsystems (low SRVstuckOpenTime and ExtendedECCSoperation)
and late availability of the fire water (high FirewaterTime). This
means, even in the case of an early RPV depressurization (i.e., SRV
stuck open), the core heating rate is slow enough that an early AC
recovery time guarantees low values of MaxCladTemp.

Failure scenarios case. In this case, we consider only failure
scenarios and use SimulationEndTime, that is, the time to reach
the failure temperature of 2200 1Fð � 1477 KÞ, as the output para-
meter. We obtain a topological clustering that consists of four
clusters. Results are shown in Figs. 12 and 13.

In Fig. 12 (left) four clusters share a global minimum, characterized
by a SimulationEndTime of 434.82 s. There are four distinct local
maxima. One interpretation is to look at the local maxima as
independent, near-success scenarios, as they represent, within their

Fig. 11. (a) 2D embedding of the data colored by topological clustering labels. (b) A separate illustration of individual clusters and (c) their summary statistics with respect to
the input dimensions.

Fig. 12. (a) Topological skeleton of all failure scenarios. Inverse coordinate plots with (b) and without (c) points projected. Points and summary curves are colored by cluster
labels.
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own cluster, the latest time to reach the failure state (e.g., when the
simulations terminate). In other words, the temperature for each of
these local maxima scenarios grows slowly during the simulation,
thereby allowing a longer simulation time.

From a safety analysis perspective, we are interested in under-
standing the conditions under which we have a late core damage
event. Recall in the inverse coordinate plots of Fig. 12 (right) that
the horizontal axis corresponds to the SimulationEndTime. There-
fore, we focus our analysis on the right side of the horizontal axis,
where a long simulation corresponds to a late core damage event.

For the green cluster (#1) in Fig. 12 (right), as expected, a
driving factor to reach a late core damage is a high value of ECCS
operation. This observation implies that it is preferable to keep the
RPV pressurized as long as possible and maintain high pressure
cooling, instead of activating the ADS system and obtaining cool-
ing through the fire water system. Also note for this same cluster
that a late core damage is also correlated with a late
ACPowerRecoveryTime.

For all scenarios contained in the purple cluster (#4), we notice
that the latest core damage within the cluster is reached for high
values of FailureTimeDG, since a large quantity of heat has been
discharged before reaching the SBO condition. On the contrary, for
the red cluster (#3), the latest core damage within the cluster
occurs when a small quantity of heat has been rejected from the
core following reactor scram (i.e., low value of FailureTimeDG) and
late failure of the high pressure core cooling system (i.e., high
value of CoolingFailToRunTime).

In summary, for all clusters, a late failure of the high pressure
core cooling system and a late ACPowerRecoveryTime are always
needed in order to guarantee a late core damage condition. The
latter should be an obvious observation as an early recovery of the
AC power system will restore normal function before a large
amount of heat is able to accumulate in the core. The more useful
information is the importance of maintaining the high-pressure
cooling system in order to delay core damage. In addition, Fail-
ureTimeDG when coupled with the FirewaterTime also plays a
relevant role in understanding the conditions for reaching late
core damage.

For comparison, as before, we color points in their 2D embed-
ding based on the topological clustering results, as shown in
Fig. 13. We are able to see how the clusters differ in terms of the
statistical summaries of the input dimensions. However, the

information regarding how the output parameter varies among
the clusters remains hidden. For example in Fig. 13, ACPowerRe-
coveryTime varies in its range and mean value across the four
clusters; however, the inverse coordinate plot in Fig. 12 reveals
that such an input parameter is not a differentiating factor across
the four clusters at the local maxima. As a matter of fact, the
summary curves of this parameter overlap significantly in its
inverse coordinate plot.

4. Case study dataset 2: 10d simulation ensemble

4.1. Data description

A second dataset consisting of 10 000 station blackout simula-
tion trials using a Monte Carlo sampling of ten input parameters
has also been investigated. These input parameters are similar to
the first dataset and are explained below:

1. RCIC_failTime: the time when the RCIC system fails to run.
2. HPCI_failTime: the time when the HPCI system fails to run.
3. SRV_soTime: the time when a Safety Relief Valve (SRV) gets

stuck in the open position.

Fig. 13. (a) 2D embedding of the data colored by topological clustering labels. (b) A separate illustration of individual clusters and (c) their summary statistics.

Table 1
The 10 input parameters from our simulation ensemble and their PDFs with
associated parameters. For the SRV_soTime, the probability is p if SRV_soTime o
ADS_actTime - DG_failTime; otherwise the probability is 1�p.

Input name (units) Range Dist. type Parameters

RCIC_failTime (h) (0,8) Exponential λ¼ 4:43n10�3

HPCI_failTime (h) (0,8) Exponential λ¼ 4:43n10�3

SRV_soTime (h) (0,8) Bernoulli p¼ 8:56n10�4

FW_availTime (m) (0,480) Lognormal μ¼ 45; σ ¼ 30
DG_failTime (h) (0,8) Exponential λ¼ 1:09n10�3

DG_recTime (h) (0,8) Weibull α¼ 0:745; β¼ 6:14
PG_recTime (h) (0,8) Lognormal μ¼ 0:793; σ ¼ 1:982
BATT_recTime (m) (0,480) Lognormal μ¼ 45; σ ¼ 15
BATT_life (h) (4,6) Triangular (4,5,6)
BATT_failTime (h) (0,8) Exponential λ¼ 3:5n10�6
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4. FW_availTime: the time when the fire water is available for
injection into the RPV.

5. DG_failTime: the time when the diesel generators (DGs) stop
providing power to the plant (i.e., the time when the SBO
condition starts).

6. DG_recTime: the time when the power provided by the DGs is
restored to the plant.

7. PG_recTime: the time when the AC power provided by the
external power grid is restored to the plant.

8. BATT_failTime: the time when the battery system fails and
must be repaired.

9. BATT_recTime: the time when the battery system is recovered.
10. BATT_life: the total uptime provided by the batteries before

they become expended.

In addition, each parameter comes with a pre-defined prob-
ability density function (PDF), given in Table 1. This information
can be used to compute the probability of occurrence for each
simulation trial. We assume that all 10 parameters are indepen-
dent of one another, and the probability associated with a given
sample x!¼ ðx1;…; x10Þ is given by the equation below:

Pð x!Þ¼ ∏
10

i ¼ 1
piðxiÞ; ð1Þ

where pi is the one-dimensional PDF associated with the i-th input
parameter. Therefore, for this dataset, the output parameters of
interest are:

1. MaxCladTemp: the maximum temperature attained anywhere
on the cladding during the entire course of the simulation;

2. OccurenceProb: the probability of occurrence associated with
each point in the domain, as computed from Eq. (1).

In this dataset, we set the clad failure temperature at
1800 1Fð � 1255 KÞ, and we have recorded 1243 (out of the
10 000) sampled trials correspond to failure scenarios. Unlike in
the first dataset, the simulations are not terminated when they
reach the threshold temperature; therefore, we see more varia-
tions in the range space for MaxCladTemp. The data is again pre-
processed with a Z-score standardization.

4.2. Results

We now apply traditional clustering to the above dataset
followed by topological clustering. Recall the failure region is
defined as all parameter settings in the input domain whose
corresponding clad temperature reached or exceeded
1800 1Fð � 1255 KÞ. We identify the failure region of the input
domain and further analyze this region in detail. In particular, we
study the topology of the probability landscape over the failure
region (i.e., Failure scenarios case). That is, we construct a 10D
scalar function based on the 10 simulation input parameters based
on the failure scenarios and use occurenceProb as its scalar output.
We aim to characterize the failure region according to areas of
high probabilities, whereupon further efforts could be made to
reduce the risks associated with these areas.

4.2.1. Traditional clustering
We map the data into a 11D space by considering the 10 input

parameters and the output parameter MaxCladTemp. Similar to
Section 3.2.1, we perform agglomerative hierarchical clustering
using average linkage on this 11D data and then apply PCA to
project the points into a 2D domain.

All scenarios case. We illustrate the results for the hierarchical
clustering of the dataset into 14 clusters in Fig. 14. We show PCA

projections of the data points colored by both cluster labels (Fig. 14,
top left) as well as their success/failure conditions (Fig. 14, top right).
From a safety perspective, the interesting cases occur near the failure
region of the input domain, namely, the regions that contain failure or
near-failure cases. Therefore, we remove the clusters that contain only
success scenarios, and focus our statistical analysis on the remaining
eight clusters (Fig. 14, bottom), for which we analyze the mean and
range of each input parameter.

In Fig. 14 (bottom), two data points (#4 and #8, respectively),
both corresponding to failure scenarios, exist as their own clusters.
The purple outlier (#8) exhibits late failure times for the RCIC,
HPCI, DG, and battery systems (i.e., high values of RCIC_failtime,
HPCI_failTime, DG_failTime and BATT_failTime), as well as late
recovery times for DG and PG systems (i.e., high DG_recTime and
PG_recTime), leading to overheating of the cladding due to a
prolonged exposure to the heat in the system as there is not
sufficient time for recovery. The red outlier (#4) characterizes a
scenario with early failures of the HPCI, SRV, DG, and battery
systems (i.e., low values of HPCI_failTime, SRV_soTime, DG_fail-
Time, and BATT_failTime) as well as a short battery life even with a
fast recovery of the battery system (i.e., low BATT_life and
BATT_recTime). Even though such a scenario has access to the fire
water early, loss of the battery system impedes adequate cooling of
the core. In addition, an early SRV failure allows an RPV depres-
surization but not fast enough to be able to use the fire water
injection before the maximum temperature of the cladding
reaches its threshold. Further analysis of these two scenarios could
be conducted to verify these hypotheses.

The next smallest cluster in light green (#7) consists exclusively
of failure scenarios. In these cases, the fire water is available early;
however, this set of cases exhibit early failures of other subsys-
tems: RCIC, HPCI, DG and battery systems, thus impeding an
adequate rate of heat removal. Among the larger clusters, the blue
cluster (#6) consists mainly of failure scenarios most likely due to
the late recovery times of both the DG and PG systems. The cyan
cluster (#5) also consists mainly of failure cases. Analysis of the
mean values of all input parameters shows mostly moderate
values except for a late recovery time of the PG system and an
early failure time of the battery system. Meanwhile, the brown
(#1), orange (#2), and dark green (#3) clusters contain mainly
success scenarios, where the failure scenarios within these clusters
typically have low MaxCladTemp, making them less interesting for
further analysis, but they can be used to contrast the behaviors of
the mostly or exclusively failure scenarios.

4.2.2. Topological clustering
We map the data into a 10D scalar function, where its input

includes the 10 input parameters of the simulation, and its output
corresponds to MaxCladTemp for the case where all scenarios are
considered and OccurenceProb for the case where only the failure
scenarios are considered.

All scenarios case. At an appropriately chosen scale, topological
clustering of the data results in a clustering consisting of three
clusters whose topology is characterized by a shared global
minimum and three distinct local maxima within its topological
skeleton (Fig. 15, left). As illustrated in Fig. 15 (middle), the data
points are sampled at varying densities within the range space.
That is, relatively dense samples are obtained within the range
½750 1F;1000 1F�ð � ½672 K;811 K�Þ of the MaxCladTemp (which
corresponds to a large number of success scenarios that have been
safely recovered) and within the failure region, that is, on or above
1800 1Fð � 1255 KÞ. Data points within the green cluster (#1)
represent the smallest span of the range space, between
585 1Fð � 580 KÞ and 2378 1Fð � 1576 KÞ.
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Within the failure region, the blue (#2) and green (#1) clusters
combined account for less than 1% of the observed failure
scenarios, whereas the red cluster (#3) contains the majority of
the failure scenarios. Two input parameters stand out in the
inverse coordinate plot. As shown in Fig. 15 (middle), an early
PG_recTime is the most likely parameter setting to avoid reaching
failure conditions, as evidenced by an area with low sample
density within the failure region. Meanwhile, a large number of

failure cases share an early BATT_failTime, as witnessed by an area
with high sample density within the failure region.

We focus our visual sensitivity analysis surrounding the failure
region to understand how different input parameters influence the
observed output parameter, MaxCladTemp, by further exploration
of the inverse coordinate plots highlighting the summary curves in
Fig. 15 (right). Within the failure region in Fig. 15 (right), the
defining characteristics of the green cluster (#1) are its distinctly

Fig. 14. Results of traditional clustering of the 11D SBO data for all scenarios. The top row shows the PCA projections of the 11D point cloud, colored by cluster labels (a) and
success (red) or failure (blue) conditions (b), respectively. (c) The subset of clusters containing failure scenarios. (d) Detailed statistical analysis of the clusters containing
failure scenarios. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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late FW_availTime, late DG_recTime, and late BATT_failTime. The
blue cluster (#2) shares several similar behaviors with the green
cluster (#1) within the failure region, namely, a late HPCI_failTime,
an early SRV_soTime, a late DG_failTime, and an early BATT_rec-
Time. However, it differentiates itself from the green cluster (#1) by
having an early RCIC_failTime, an early FW_availTime, an early
PG_recTime, an early DG_recTime, and an early BATT_failTime. The
DG_recTime and BATT_failTime are the most relevant input para-
meters that distinguish all three clusters in the failure region.

In this example, we are able to gain insight by evaluating the
sampling density within various projections, as well as by obser-
ving the summary trend information given by the inverse regres-
sion plots. Decomposing the data by topological clustering allows
us to separate the different trends occurring locally within the
high-dimensional space and to compare and contrast them with
one another.

Failure scenarios case. We focus on studying areas within the failure
region that have a high probability of occurrence (i.e., high values of

Fig. 15. (a) The topological skeleton of all scenarios. (b) Inverse coordinate plots highlighting the point samples colored by cluster labels. (c) Inverse coordinate plots showing only the
summary curves associated with each cluster. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 16. (a) The topological skeleton of the failure scenarios. (b) Inverse coordinate plots that highlight the point samples colored by cluster labels. (c) Inverse coordinate plots that
highlight the summary curves associated with each cluster. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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occurenceProb). Based on a topological clustering Fig. 16 (left), we obtain
three clusters that have a shared global minimum and three distinct
local maxima valued at 7:39� 10�5;2:79� 10�5; and 9:75� 10�4

for the red (#1), blue (#3), and green (#2) clusters, respectively. Fig. 16
(middle) illustrates a very sparse sampling within the range space as
most samples are concentrated towards the low probability regions. The
green cluster (#2) contains the most interesting failure scenario, that is,
the global maximum, which corresponds to the data point with the
highest probability of occurrence. Such a global maximum corresponds
to a FW_availTime valued at 22.9 s (near its lower bound of 0, see
Table 1) and a BATT_recTime valued at 2:82� 104 sð � 470 m, near its
upper bound of 480m; see Table 1). Further sampling of the input
parameter space surrounding such a global maxima could reveal more
structures associated with the failure region in highly probable areas. In
addition, sampling could be extended towards regions surrounding
minor local maxima to identify yet unwitnessed, distinct, high probable
areas of the failure region.

5. Conclusion

We apply both traditional and topological clusterings in con-
junction with dimensionality reduction techniques on DPRA data-
sets. We provide the domain scientist with an analysis and
visualization tool for obtaining insights with respect to system
responses under the simulated accident scenarios. We focus on
two datasets simulating the response of a BWR system during an
SBO accident scenario. We obtain such datasets by performing a
series of simulations where, for each simulation run, we randomly
change timing and sequencing of a specified set of events. We aim
to identify how timing or sequencing of these events affects the
maximum core temperature.

Clustering is a powerful tool that can be used to summarize
large amounts of scenarios into digestible pieces for effective
analysis and visualization. As the two clustering algorithms
considered take very different approaches, they offer different
insights regarding the data. We have observed that a traditional
clustering combined with dimensionality reduction is adequate to
distinguish failure scenarios and success scenarios and to group
points with similar parameter settings. On the other hand,
topological clustering captures information regarding how input
parameters are correlated with the output and how input para-
meter settings help differentiate local extrema of the output.
Topological clustering takes the dependencies among the input
and output parameters into consideration and performs global
analysis that highlights topological structures encoded within
these dependencies. In addition, topological clustering leads to
novel visualizations. We believe that pairwise comparisons and
validations of both types of clustering techniques complement
each other in enhancing structural understanding of the data.
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