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ABSTRACT

Atmospheric sciences is the study of physical and chemical phe-
nomena occurring within the Earth’s atmosphere. The study entails
understanding the state of the Earth’s atmosphere, how it is chang-
ing over time and why. Understanding how various weather events
develop and evolve is often conducted through retrospective analysis
of past atmospheric events. Atmospheric scientists can then utilize
tools to better predict potential hazards and provide earlier warnings
for events that may impact life and property. Several atmospheric
state variables can be measured to identify high-impact events, one
of which is surface atmospheric pressure. Many weather events
are characterized by variations in surface pressure from the mean
pressure value (i.e., pressure-perturbations). Accordingly, there is
significant interest in extracting and tracking pressure-perturbations
both spatially and temporally to better understand the evolution of
weather events.

Here, we present a visualization and analysis environment that
allows interactive exploration of pressure-perturbation data sets. Our
system, for the first time, enables atmospheric scientists to interac-
tively explore the spatiotemporal behaviors of pressure-perturbations
for a range of values and provides support to leverage other con-
ventional data sets such as radar imagery and wind observations. It
also allows atmospheric scientists to evaluate model and parameter
sensitivity, which is difficult if not impossible with conventional
visualization tools in atmospheric sciences. Finally, we demonstrate
the utility of our approach for retrospective analysis using different
case studies of recorded severe weather events.

Index Terms: E.1 [Data Structures]: Graphs and Networks—;
J.2 [Physical Sciences and Engineering]: Earth and Atmospheric
Sciences—

1 INTRODUCTION

Every day, a huge amount of data is collected with respect to surface
atmospheric observations, such as temperature, pressure, moisture,
and wind speed. There is a significant need to analyze and interpret
these data to better understand the temporal evolution and the present
state of the Earth’s atmosphere from both research and operational
(e.g., weather forecasting) perspectives. Atmospheric surface pres-
sure is one of many measurements atmospheric scientists utilize, as
it can be used to accurately characterize a wide variety of different
weather systems. There are several benefits to using surface pres-
sure over other atmospheric parameters. First, high-impact weather
phenomena such as individual thunderstorms, hurricanes, and snow-
storms all produce pressure-perturbations that vary in both magni-
tude and time. Second, pressure observations from non-conventional
resources are less sensitive to nearby obstacles compared to other
variables such as temperature (e.g., a temperature sensor located on
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the roof of a metal building) and wind (e.g., a wind sensor located
in a region surrounded by trees). Third, surface pressure also pro-
vides information on the vertical structure of the atmosphere. For
example, pressure-perturbations that occur above the surface may
still be sensed by recording the pressure, as opposed to recording
just temperature and wind speed. Fourth, pressure observations
can be more readily assimilated into operational numerical weather
prediction models with less concern for observation accuracy [15].

Therefore, it is beneficial to use surface pressure to characterize a
wide variety of weather events. The ability to interactively extract,
explore, and characterize pressure-perturbations both in space and
across time to better understand atmospheric phenomena has the
potential to greatly improve the understanding of past weather events
as well as provide forecasters the ability to “nowcast” (i.e., a short-
term forecast for 0-6 hrs) future events by assessing the pressure-
perturbations with respect to other data sets such as radar imagery
and wind observations on a single interactive interface.

Understanding these types of atmospheric phenomena requires
identifying and extracting the feature-of-interest (i.e., pressure-
perturbation event) within each time step of the data. Typically,
a pressure-perturbation event is defined to be a single region in the
domain where all the pressure-perturbation values are above/below a
given threshold value. Often, such events are referred to as positive-
or negative-pressure-perturbation events, respectively. Once features
are extracted, they need to be correlated across adjacent time steps.
Usually, feature correlations for atmospheric data are computed
based on spatial overlap or distance proximity. Then, the result-
ing feature tracks (i.e., trajectories taken by individual features) are
analyzed.

In this paper, we enable atmospheric scientists to extract pressure-
perturbation events across multiple parameter values and explore
their evolution with the aid of tracking graphs [25], where feature
evolution is displayed as a collection of feature tracks, see Figure 1.
Additionally, we provide scientists with a visualization and analysis
environment to allow interactive exploration of pressure-perturbation
data sets, see Figure 2. To better understand atmospheric phenom-
ena, our system provides support to leverage other conventional
data sets such as radar imagery and wind observations. Finally,
in collaboration with atmospheric scientists, we apply our visual-
ization and analysis environment to three case studies describing
real world, high-impact atmospheric phenomena. Specifically, these
case studies are extracted from pressure-perturbation data sets that

Figure 1: An example tracking graph showing the evolution of
features across time. Within the graph, each set of nodes in a vertical
column represents features in one time step and shows the “tracks”
of each feature as it evolves: splitting, merging, or disappearing.



are generated by combining high-resolution grids of numerical sim-
ulations [20] with high-frequency pressure observations [19, 27].
For all case studies, with the help of our visualization environment,
scientists are able to extract and explore the evolution of pressure-
perturbation events to better understand their characteristics, as well
as to evaluate their model and parameter sensitivity.

(a) Feature embedding view

(b) Feature hierarchy view (c) Feature tracking view

Figure 2: Our framework contains three views, using data from case
study III. (a) Shows the data embedding of features using two sub-
components: geometric embedding (left) and geospatial view (right).
The geospatial view displays geographical information of features
as well as various ancillary data such as radar and wind observations
whereas the geometric embedding view displays the geometric infor-
mation of the embedded features. (b) Visualizes the horizontal graph
layout of the feature hierarchy along with a histogram-based view
that summarizes the stability of features. Here, a zoomed-in view of
the feature hierarchy (red box top) and histogram (red box bottom)
is also displayed. Finally, (c) Shows the evolution of features using a
tracking graph for a user-selected focused time step (indicated with
a black arrow) and a time window.

2 RELATED WORK

In this section, we present some relevant work to provide context
and background for our research.
Atmospheric Sciences. Many prior studies analyze various atmo-
spheric events associated with pressure-perturbations. These ap-
proaches attempt to analyze various atmospheric case studies with
respect to such factors as types of atmospheric environment that
lead to the formation of pressure-perturbation events [16]; compar-
isons across various atmospheric events [21]; and insights that can
be gained from a specific pressure-perturbation event [13]. How-
ever, the ability to interactively visualize such events without drastic
customization remains difficult. With our work, scientists have the
flexibility to explore pressure-perturbation events and their evolution
for the entire parameter space, which allows them to effectively
analyze a wide range of atmospheric phenomena.

In a prior work, Jacques et al. [11] visualized and analyzed the
frequency and amplitude of pressure-perturbations as a function of
location and season at individual observing sites from the USArray

Transportable Array (TA) surface station network (further described
in Section 5). However, when visualizing pressure observations
over time, they consider one single observing site at a time without
considering other nearby stations that may be experiencing the same
pressure-perturbation from the same weather phenomenon. Thus,
spatial properties for the sensed pressure-perturbations were not
initially assessed. Additional work has been conducted to assess
spatial properties (e.g., size, magnitude, speed, and direction of
movement) of prominent mesoscale features over extended monthly
periods, but only by setting specific pressure-perturbation thresholds
a priori [10]. In this work, we expand the work described in [10], and
enable the atmospheric scientists to interactively vary the thresholds
to understand parameter sensitivity, to evaluate feature extraction
and movement without restrictive assumptions, and to leverage the
extracted features with conventional data sets in a simple and concise
manner.

Feature Extraction and Tracking. When analyzing time-varying
data sets, feature extraction and tracking are usually employed to
better understand their spatiotemporal behaviors. Among the many
feature definitions existing in the literature, for the scope of this work,
we are interested only in threshold-based features of a scalar field.
Traditionally, isosurfaces [14] and interval volumes [6] are used to
extract such threshold-based features. However, these approaches
require repeated processing whenever a change is made for the
parameter values. In contrast, techniques such as Morse-Smale
complex [7], contour trees [4], and merge trees [3] extract features
across a large range of threshold values in a single pass. Therefore,
these approaches have gained more research interest in recent years.

Existing feature tracking techniques can be broadly classified into
two categories: region-based and attribute-based correlations. With
sufficient temporal resolution in the source data, region-based tech-
niques determine the feature correlations by their spatial overlap [23],
sometimes under affine transformations [12]. In attribute-based tech-
niques, various feature-based attributes (e.g., centroid, mass, and
volume) are used as a simplified model to characterize features and
identify their correlations across time [22].

Our framework supports arbitrary feature definitions and cor-
relation metrics. Specifically, we allow any of the standard clus-
tering algorithms to define hierarchical features and any existing
feature correlation criteria to define correlations. In the setting of
atmospheric sciences, our collaborating scientists have very specific
metrics in mind (i.e., spatial overlap and distance proximity-based
metrics), and our framework is general enough to be successfully
adapted to suit their needs.

Time-varying Data Visualization. Due to the dynamic behaviors
within time-varying data sets and the large and diverse volumes
of data available, visualizing time-varying data is considered to
be a very challenging problem. Very different techniques have
been developed depending on the subject area for understanding
the evolution of time-varying features. Even so, they all focus on
constructing effective data representations to convey the dynamic
nature of these data. Illustration, abstraction, art, morphing, and
animation are some of the traditional techniques for visualizing
time-varying data sets [17]. Unfortunately, they often fail to scale
to larger data sets and tend to be highly specialized to particular
use cases. Tracking graphs [22, 25], where feature evolution is
displayed as a collection of feature tracks, is considered to be a
more effective method for visually summarizing feature evolution
over time. As data become increasingly large and complex, tracking
graphs can also become incomprehensibly large. However, various
filtering, compression, and summarization techniques can be applied
to produce high-level overviews. In this work, we combine tracking
graphs with progressive filtering, simplification, and graph layouts
to visualize the evolution of pressure-perturbation events.



3 APPLICATION CHALLENGES

Surface pressure observations have been used to identify and track
a variety of atmospheric systems. Many techniques have been uti-
lized to help isolate atmospheric phenomena on time scales known
in the discipline as synoptic (lasting 1-5 days), sub-synoptic (last-
ing several hours up to 1 day), and mesoscale (lasting minutes to
several hours), as described in [11]. For the scope of this paper,
we are predominantly concerned with events that are defined as
mesoscale (lasting 10 mins to 12 hrs), although all techniques pre-
sented here can be applied to other timescales as well. High-impact
atmospheric events at shorter scales, such as mesoscale convective
systems that can contain severe thunderstorms, are often associ-
ated with large, quick (10 mins - 12 hrs) pressure-perturbations in
the surface pressure field. It has been observed that gradients of
these pressure-perturbations can result in strong, damaging winds.
Consequently, although occurring fairly infrequently, these types of
events have the capability to produce extensive property damage and
can threaten human life. Therefore, understanding these short-term
but high-impact events is of great value to atmospheric scientists.
However, a number of practical challenges exist when analyzing
pressure-perturbation data sets.

First, atmospheric scientists wish to explore pressure-perturbation
events across multiple pressure-perturbation thresholds automati-
cally and effortlessly. Existing approaches focus on only a few
known pressure-perturbation thresholds (e.g., +1.0 and -1.0 hPa) and
lack the ability to evaluate those parameter choices in an efficient
manner. Exploring the full range of parameter values (i.e., pressure-
perturbation thresholds) allows scientists to understand how an
event’s behavior and attributes change as the pressure-perturbation
value varies, and thus, they are able to better characterize that event.

Second, when exploring the evolution of pressure-perturbation
events, scientists also wish to compare an event’s evolution with
respect to different feature correlation metrics. Almost all existing
atmospheric tools consider a single, distance-based correlation met-
ric. However, depending on the temporal resolution of the source
data and the feature mobility across time, feature evolution results
for the same data set can differ drastically based on the correlation
metric used.

Third, the evolution of pressure-perturbation events needs to be
visualized in a concise manner. When data sets with high spatial and
temporal resolutions become available, the description of feature
evolution becomes large and complex as well. In such a setting, it is
often difficult to grasp the evolution of certain features at first glance,
let alone identify salient ones, with conventional visualization tools.
Here, a concise representation not only presents a global view of the
feature evolution but also supports interactive parameter selection,
feature extraction, and simplifications.

Fourth, exploring the coupling between positive- and negative-
pressure-perturbation events is also of importance to the atmospheric
scientists. A positive-pressure-perturbation event is often either fol-
lowed or preceded by a propagating negative-pressure-perturbation
event. The spatial gradients produced by these couplets are often
physically related to a region of enhanced surface winds, further
adding to the importance of these events. Therefore, exploring these
events simultaneously in space and time allows for further physical
understanding of global atmospheric phenomena.

Finally, leveraging additional atmospheric, geographic, and spa-
tial data sets adds detailed explanations of the atmospheric phe-
nomena responsible for pressure-perturbations. For example, radar
imagery, which is an indication of precipitation intensity, can pro-
vide further information on the physical causes of these pressure-
perturbations. Other observational resources such as temperature,
wind, and moisture can provide further details on explaining why
the pressure-perturbations are present.

4 APPLICATION SOLUTIONS

We focus on addressing the aforementioned challenges by extracting
and tracking pressure-perturbation events in both space and time.
First, by making use of advance data structures such as merge/split
trees [3] and meta-graphs [25], we enable interactive exploration
of features and their evolution for the entire parameter range. Next,
we use tracking graphs to present a global, concise view of feature
evolution over time. These tracking graphs can be simplified based
on various feature attributes and correlations encoded in the above
data structures. Also, as tracking graphs can be dynamically gener-
ated, they have the flexibility to be created with different correlation
metrics; and the feature tracks can be filtered at run-time based on
various feature attributes. Finally, we allow simultaneous explo-
ration of both positive- and negative-pressure-perturbation events
by making concurrent adjustments to multiple pressure-perturbation
thresholds.

In this work, we enhance and extend a prior system [25, 26] that
relies on dynamically constructed tracking graphs to enable feature
extraction, tracking, and simplification. Specifically, several new
functionalities have been developed to fit the needs of atmospheric
scientists, such as run-time filtering of feature tracks based on event
characterizations; simultaneous exploration of multiple feature hier-
archies and visualization of feature evolution over time; histogram
views that summarize the stability of features within each time step;
and geospatial views that display each feature’s geographic location
and trajectory information. Furthermore, to better understand the
global atmospheric phenomena, we visualize pressure-perturbation
events alongside other ancillary data sets such as radar imagery and
wind observations. We now highlight our contributions.
From an atmospheric sciences point of view, our work not only
improves existing analysis tasks, but also inspires several new ones:

• Exploring pressure-perturbation events within the full range of
parameter values;

• Interactively visualizing the evolution of pressure-perturbation
events using dynamically constructed tracking graphs;

• Extracting, filtering, and simplifying tracking graphs based
on various attributes related to feature description, correlation,
and characterization; and

• Leveraging additional atmospheric, geographic, and spatial
data sets to further the understanding of global atmospheric
phenomena.

From a visualization point of view, our work extends and enhances
a prior system [25, 26] by adding new functionalities, including:

• Run-time computation of attributes related to event characteri-
zation and filtering of feature tracks;

• Simultaneous exploration of multiple feature hierarchies and
visualization of feature evolution;

• Integration of histogram and geospatial-based visualizations
geared toward atmospheric scientists; and

• Incorporation of ancillary data sets to enhance the data analysis
process.

5 ATMOSPHERIC SCIENCES DATA SETS

In this work, we make use of the same data sets generated for the
atmospheric research initiatives addressed in [10]. The atmospheric
pressure observations used arise from a unique field campaign within
the geosciences called the USArray Transportable Array (TA) [19,
27]. The TA, as part of the National Science Foundation sponsored
EarthScope program, contained a set of pressure sensors separated
by ≈80 km and deployed in a pseudo-grid fashion across a portion
of the United States for a 1- to 2-yr period. Sensors were then
retrieved and deployed further east, resulting in what appeared to be
a “discrete eastward movement” of the array over time as shown in
Figure 3. As a result, very high temporal resolution (1Hz observed)



surface pressure observations for a roughly 2-yr period are available
from each location in the figure. However, the spatial resolution
of the USArray TA data set is not adequate on its own to represent
some of the mesoscale pressure-perturbations of interest.

Figure 3: A set of seismic stations are deployed as a part of the
National Science Foundation sponsored EarthScope USArray TA
project [19, 27]. Here, the seismic station locations from January
1, 2010 to February 29, 2016 are displayed. For each station, the
marker colors denote the first (top) and last (bottom) date of its
pressure observations. Figure is adapted from [11].

For that reason, the data set we utilize here incorporates an addi-
tional resource. This resource contains information at a higher spa-
tial resolution than the TA observations. Described further by [10],
surface pressure grids produced by the National Centers for Envi-
ronmental Prediction Real Time Mesoscale Analysis (RTMA) [20]
were acquired with a horizontal spacing of 5 km. The acquired
grids (TA observations) were interpolated (sub-sampled) to 5 min
data intervals to align temporal frequency. Using the University
of Utah Two-Dimensional Variational Analysis (UU2DVAR) tech-
nique [24], [10] blended the TA observations and RTMA grids
together to produce a set of 5 km surface pressure analysis grids at 5
min intervals. These grids were then temporally band-pass filtered
to isolate mesoscale pressure-perturbations of interest. The filtered
gridded data set provided by [10], available for March 1 - August
31, 2011 over the central US, serves as the primary data set used in
this work to identify and extract mesoscale pressure-perturbations.

In order to better identify and collocate pressure-perturbation
events with atmospheric phenomena that might be causing them,
additional data sets are required. Conventional radar reflectivity
imagery is heavily used by atmospheric scientists to identify regions
of precipitation often associated with thunderstorms and other high-
impact weather systems. The Iowa Environmental Mesonet (IEM)
provides an open-source web mapping service to leverage current
and archived radar images, and is utilized as an additional data set
in this work [8]. Additionally, surface wind observations can also
be utilized to identify pressure-perturbation events with damaging
winds. The wind observations for this work are acquired via MesoW-
est [9] for incorporation with the radar and pressure feature data sets
through the utilization of MesoWest API services [1]. Here, wind
observations from the standardized National Weather Service and
Bureau of Land Management weather station networks are used to
ensure stations with representative wind data.

6 SYSTEM

We believe a system for visually exploring feature evolution should
typically require three major capabilities: first, to construct a hier-
archical representation of features within a time step; second, to
correlate features over time; and third, to enable visual exploration
of feature evolution across different scales spatially and temporally.

In this work, we refine a prior system with the above capabilities
that serves as an interactive exploration platform for dynamically
constructed tracking graphs [25, 26]. This system is designed to
study general time-varying features; however, so far it has been
applied only to combustion data sets. We enhance and extend it to
be successfully applied to atmospheric data sets. In doing so, we not
only utilize existing functionalities but also introduce several new
capabilities specifically tailored for the atmospheric scientists.

Hierarchical Feature Representation and Correlation. To store
feature details, as in [25, 26], we enable a collection of standard
clustering algorithms to be applied for obtaining hierarchical rep-
resentations of features within a time step. Such a process encom-
passes feature segmentation and feature characterization. The pre-
computation of a hierarchical representation together with feature
attributes allows quick feature extraction for any parameter value.

We also allow a collection of metrics to be applied during the fea-
ture correlation process (e.g., region overlap and distance proximity).
Along with feature correlations details, various correlation-based
attributes are also precomputed and stored, using the meta-graph
structure [25, 26].

Data Visualization. Our visualization and analysis environment
contains three views, see Figure 2: (a) feature embedding view,
(b) feature hierarchy view, and (c) feature tracking view. The first
presents a focused view for feature embeddings, whereas the last two
present general conceptual views of the time-dependent features.

The feature embedding view uses two sub-views (geometric em-
bedding and the geospatial) to present the data embedding of features
within a focused time step, see Figure 2a. The geometric embedding
sub-view displays features using a user-defined geometric embed-
ding method (Figure 2a left), and the geospatial sub-view displays
each feature’s geographic location and trajectory information along
with their radar imagery and wind observations (Figure 2a right).
Combined, these sub-views enable scientists to explore regions of
interest in both local and global contexts.

The feature hierarchy view visualizes the feature hierarchy within
a focused time step, see Figure 2b. Here, a histogram-based sub-view
that summarizes the stability of features for their entire parameter
range is also included. Users have the flexibility to define the number
of bins within the histogram. Figure 2b’s histogram contains 56000
bins for the pressure-perturbation range −2.8 - +2.8 hPa. This
histogram sub-view provides a quick overview of how the number
of features changes as the threshold value is varied within a time
step. Consequently, the feature hierarchy view enables scientists to
understand the validity of the pressure-perturbation thresholds used
within their analysis and also provides them the knowledge to vary
the pressure-perturbation thresholds across time to obtain temporally
cohesive tracking results.

Finally, within the feature tracking view, the evolution of features
is visualized using tracking graphs, see Figure 2c. Starting from a
focused time step, nodes and edges are iteratively added forward and
backward in time up to a user-defined time window. For interactive
exploration of tracking graphs, the same progressive graph layout
techniques used in [25] are employed within this work. Specifically,
a fast initial graph layout is used to quickly visualize the graph,
and then the graph is updated using a slow greedy layout that uses
a median heuristic to reduce the edge intersections. Within the
tracking graph, nodes are colored by their size/volume, and for
visual clarity the set of nodes in the focused time step is always
displayed in prominent colors (for which a user-selected color map
is used) whereas other nodes use a gray-scale color map. As shown
in Figure 2c, users also have the option to scale the nodes based on
their size/volume.

Data Exploration. Through a linked-view interface, users can ex-
plore data by changing the focused time step and time window.
The parameters that define the feature hierarchies, correlations,



and attributes can all be explored via the tracking graph. As a
result, tracking graphs can be filtered based on various attributes
related to feature description and correlation. In the case of pressure-
perturbation data, scientists are particularly interested in filtering
tracking graphs based on attributes related to event characterization
(e.g., total time of a feature existence, total distance a feature prop-
agated, and maximum feature volume over its existence). So, our
system also provides run-time computation of attributes related to
event characterization and filtering of feature tracks. Specifically, for
each feature track in the tracking graph, total time of existence, total
propagation distance, and the average, standard deviation, median,
maximum, and minimum of the following properties are computed
over time: maximum/minimum magnitude value, long axis distance,
short axis distance, eccentricity, area, propagation speed, and propa-
gation direction.

Moreover, using the adaptive thresholding algorithm presented
in [26], our system provides the capability to adaptively change fea-
ture threshold values over time to simplify tracking graphs. Specif-
ically, for a tracking graph and a user-specified threshold range,
feature thresholds within the graph are locally adapted to produce a
more temporally cohesive graph.

Scientists are also interested in exploring both positive- and
negative-pressure-perturbation events simultaneously in space and
time. In this work, we allow changes to be made to two threshold
values (i.e., positive- and negative-pressure-perturbation thresholds)
simultaneously, thus enabling the extraction of feature and correla-
tion details for both thresholds. This capability enables scientists to
further explore the coupling structure within pressure-perturbation
events and obtain a better understanding of global atmospheric phe-
nomena.

7 RESULTS

For the scope of this paper, we focus on three case studies from
the data set provided by [10] for the March 1 - August 31, 2011
period. These case studies demonstrate the utility of visualizing
short-term pressure-perturbations with respect to other conventional
atmospheric science data sets such as radar imagery and surface
wind observations to assess high-impact phenomena such as thun-
derstorms. The first two case studies contain discrete thunderstorm
complexes and are used to demonstrate our system’s ability to ac-
curately assess pressure-perturbation events. The third case study
provides a more complex meteorological situation and highlights
the need for the flexible, interactive platform our system provides.

For each case study, an offline preprocessing step is used to com-
pute the relevant feature hierarchies and their correlations. Here,
scientists need to simultaneously explore both positive- and negative-
pressure-perturbations events. They also wish to compare feature
correlation results with respect to metrics based on spatial overlap
and distance proximity. Therefore, for every time step in each case
study, both merge tree and split tree structures are computed to
enable simultaneous exploration of positive- and negative- pressure-
perturbation events, respectively. During construction, various
feature-based attributes such as centroid, area, median magnitude
value, maximum/minimum magnitude value, position of the maxi-
mum/minimum magnitude value, long axis distance, short axis dis-
tance, long axis orientation, eccentricity, propagation distance, and
propagation speed are also computed and stored within the feature
hierarchies. Next, for exploring the feature evolution with respect
to both correlation metrics, we compute the necessary correlation
details for each metric and store them within separate meta-graph
structures. Here, the correlation amount (i.e., the amount of spatial
overlap or the length of Euclidean distance between features) is
stored as a correlation-based attribute within each meta-graph. Since
the relevant feature hierarchies and correlation details are precom-
puted in this manner, our system provides the flexibility to perform
real-time feature extraction and rendering.

In each case study, by exploring tracking graph results, scien-
tists are able to gain quick insights into their underlying structure.
Furthermore, with the use of our system, scientists are able to ob-
tain additional insights for each of these case studies. In the first
case study, several insights into an appropriate pressure-perturbation
threshold range for the event with a bow-like structure are obtained.
For the second case study, tracking graphs for +1.0 hPa reveal an
inconsistent evolution of one of its complexes. This insight inspired
our scientists to use adaptive thresholds to allow for further detec-
tion of that event. Moreover, use of ancillary data sets within our
system facilitated important insights into the coupling of positive-
and negative- pressure-perturbation events within this second case
study. For the final case study, exploration using our system reveals
the existence of stationary noise within the data set. This insight
inspired our collaborating scientists to improve their existing work
flow to remove background noise more effectively, thus producing
better preprocessed data sets.

7.1 Case Study I: Thunderstorm Complexes 08/2011
The first case study involves the development and movement of
several distinct mesoscale thunderstorm complexes over the Great
Plains. These events took place from 2100 Universal Coordinated
Time (UTC) on August 11, 2011 through 0000 UTC on August 13,
2011. Several complexes produced wind damage, large hail, and
tornado reports across South Dakota and northern Nebraska during
the overnight period of August 11 (0000-1200 UTC August 12).
Figure 4 displays radar imagery along with pressure-perturbations
from the USArray TA stations courtesy of web products [2] devel-
oped as a part of research by the University of Utah Department
of Atmospheric Sciences. Here, a bow-like structure is evident
when viewing the weather radar imagery, leading to this type of
convective complex being commonly referred to as a “bow echo”.
The markers denote the pressure-perturbation magnitudes recorded
at several of the USArray TA stations, with red (blue) indicating
positive- (negative-) pressure-perturbations.

Figure 4: Case study I - Data : USArray mesoscale-filtered pressure-
perturbations (hPa) are overlaid on composite radar reflectivity at
0000, 0300, 0800, and 1500 UTC August 12, 2011. Here, red
circles indicate positive-pressure-perturbations and blue the negative-
pressure-perturbations. The composite radar imagery is provided by
the Iowa Environmental Mesonet web services.

The original data for this case study consists of 468 time steps
and totals about 850MB. Once its feature hierarchies and correlation
details are stored in our data format, the total data size is reduced
to ≈70MB. It is important to note that a vast majority of this data is
used for storing the list of feature and correlation-based attributes



(a) +0.75 hPa (b) +1 hPa (c) +1.25 hPa

Figure 5: Case study I - Visualization : Effects of varying the pressure-perturbation threshold to explore the entire feature space. Here,
pressure-perturbation events and a portion of their corresponding tracking graphs are shown at (a) +0.75 hPa, (b) +1.0 hPa, and (c) +1.25 hPa
thresholds. In each case, the focused time step of the tracking graph is indicated with a black arrow.

Figure 6: Case study I - Visualization : A longer tracking graph showing the evolution of pressure-perturbation events at +1.0 hPa. Here, the
evolution of a feature with a bow-like structure is highlighted in red.

(a) Tracking graph at +1.0 hPa

(b) Same tracking graph using adaptive thresholds

Figure 7: Case study I - Visualization : (a) A tracking graph at +1.0 hPa showing the sudden disappearance and reappearance of a feature
with a bow-like structure (in yellow). Here, this feature disappears at t = 165 and then reappears at t = 170. Exploring the feature hierarchies
reveals that this is likely due to variations in pressure-perturbation in-between time steps. (b) Therefore, by locally modifying the feature
threshold values for those time steps (from t = 165 to t = 170), a much simpler graph where this feature is stably evolving can be obtained. In
both cases, features at several time steps are visualized.

required for feature extraction and tracking, and spatial information
needed for rendering. Here, we describe several key aspects of our
framework that assist scientists explore and analyze this case study.

First, scientists are able to interactively explore the entire fea-
ture space by varying the pressure-perturbation threshold. Such
exploration allows scientists to gain insights into which pressure-
perturbation threshold range is reasonable for exploring a particular
pressure-perturbation event. Figure 5 provides an example where
pressure-perturbation events near the commonly used +1.0 hPa
threshold are explored. Here, several positive-pressure-perturbation
events in the spatial domain and a portion of their corresponding
tracking graphs across pressure-perturbation thresholds of +0.75
hPa, +1.0 hPa, and +1.25 hPa are displayed. It is apparent that as
the pressure-perturbation threshold increases, pressure-perturbation
events decrease in both number and size (with only stable pressure-
perturbation events remaining), and the resulting tracking graph
reduces its complexity.

Second, the use of tracking graphs allows scientists to gain a
global, concise view of the case study. They provide insights into

the underlying structure of a particular pressure-perturbation event
(its complexity, duration, and other trends). As shown in Figure 6,
the resulting graphs indicate that several different weather systems
existing within this case study and that they evolve (for the most
part) distinctly over time.

Third, the adaptive thresholding component within our frame-
work allows scientists to adaptively change the pressure-perturbation
threshold over time to produce better, more consistent tracking re-
sults. For this case study, scientists are particularly interested in
analyzing the evolution of the feature with a bow-like structure
(yellow feature in Figure 7a). According to the tracking graph in Fig-
ure 7a, this feature exists for a long period of time, from t = 100 to
t = 145 to t = 165, and disappears suddenly at t = 165 (i.e., t = 100
to t = 165 is 325 mins or 5.4 hrs). It then appears again at t = 170
and evolves from that point on. Further investigation reveals that this
sudden disappearance and reappearance of the feature is due to vari-
ations in the pressure-perturbation between t = 165 and t = 170 and
the chosen positive-pressure-perturbation threshold. Here, slightly
reducing the pressure-perturbation threshold value for all time steps



Figure 8: Case study I - Visualization : For the same tracking
graph as in Figure 7b, the horizontal graph layout of the feature
hierarchy (top) and the histogram sub-view (bottom) at t = 168, as
shown within the feature hierarchy view. For this particular time
step, the feature hierarchy is a forest with a pressure-perturbation
range +0.9 - +1.1 hPa (increasing from left-to-right). Here, the
histogram contains 3000 bins. The localized, per-feature thresholds
are obtained by creating an arbitrary cut (indicated by the black
vertical curve) within a user-defined threshold range (indicated by
the red square).

166 ≤ t ≤ 169 (e.g., 0.88 hPa at t = 168) allows scientists to ob-
tain a more temporally cohesive and easily comprehensible tracking
graph, where this bow-like feature appears consistently across con-
secutive time steps between 165 ≤ t ≤ 170, see Figure 7b. This
adaptive thresholding component provides scientists insights into
features-of-interest, in this case the bow-like structure. For a small
pressure-perturbation threshold range around 1.0 hPa, this particular
feature exists continuously for a longer period of time than at a fixed
threshold value (i.e., 1.0 hPa).

Fourth, our framework’s feature hierarchy view offers a detailed
overview of the distribution and lifetime of features across multiple
pressure-perturbation values within a given time step. Its histogram
sub-view shows the number of pressure-perturbation events as a
function of increasing the pressure-perturbation threshold, providing
a quick overview of the feature variation across multiple pressure
values, see Figure 8. The feature hierarchy view helps scientists
choose an appropriate threshold range to obtain temporally cohesive
tracking results. For the scenario described in Figure 7b, for one
particular time step t ∈ (165,170), say, t = 168, an arbitrary cut (as
indicated by the black vertical curve in Figure 8), for example, can
be obtained within the feature hierarchy for a user-defined threshold
range (as indicated by the red square in Figure 8). As a result
of this arbitrary cut, in the final graph the number of features at
t = 168 is more consistent with the number of features at t = 165
for threshold +1 hPa. This ability to define a reasonable threshold
range by looking at the histogram sub-view helps generate more
consistent tracking results.

7.2 Case Study II: Thunderstorm Complexes 06/2011
The second case study also provides a demonstration of our tool
for discrete thunderstorm complexes. The first complex could be
seen moving east across eastern Kansas into Missouri from 0300-
0900 UTC June 18, while a second complex developed behind the
first at 0600 UTC June 18 and moved east-northeast from 0600-
1200 UTC June 18. Both thunderstorm complexes produced reports
of wind damage, but the pressure-perturbations produced by these
complexes varied in strength, highlighting the complexity of the
physical processes associated with predicting and analyzing these
events. The most pronounced pressure features were the negative-
pressure-perturbation feature known as a “wake low” with the first
complex, and the positive feature known as a “mesohigh” with the
second complex [10]. The strength and proximity of these negative
and positive features result in strong surface winds, which likely
contributed to additional wind damage associated with the second
complex. Figure 9 displays radar imagery along with the USArray
TA pressure-perturbations for this case study.

The original data for this case study contains 192 time steps

Figure 9: Case study II - Data : USArray mesoscale-filtered pressure-
perturbations (hPa) are overlaid on composite radar reflectivity for
0300, 0600, 0900, and 1200 UTC June 18, 2011.

and totals ≈350MB of raw data. Once the feature hierarchies and
correlation details are stored in our data format, the total data size is
reduced to around 10MB. Several key aspects of our framework that
assist in exploring this particular case study are described here.

First, scientists are able to explore the evolution of the pressure-
perturbation events with the use of tracking graphs. As shown in
Figure 10a, our system identifies the existing thunderstorms and
visualizes their evolution over time.

As previously mentioned for the first case study, tracking graph
results provide insights into the underlying structure of the pressure-
perturbation event. For this case study, the tracking graph results
indicate that the temporal evolution of one of the complexes (the
one existing over eastern Kansas) is not very consistent across time.
Further exploration reveals that this is due to the parameter choices
and the complexity of this phenomenon. At the initial time steps, the
thunderstorm complex is strong enough to be detected at the selected
thresholds, but it loses its pressure magnitude over time. Here, the
adaptive thresholding capability within our system is helpful in
dynamically adapting the parameter choices within the tracking
graph to allow for further detection of the pressure-perturbation
event, see Figure 10b.

Next, our framework enables scientists to perform simultaneous
exploration of multiple pressure-perturbation events across time.
Such a capability enables scientists to simultaneously explore both
positive- and negative- pressure-perturbation events and study their
coupling structure, see Figure 11. In this case, the results provide
insights into the strength of the coupling between the positive- and
negative- pressure-perturbation events.

Finally, the ancillary information (i.e., radar and wind data)
provided within our framework is particularly useful in gaining
new insights into the atmospheric phenomena. For a specific time
step, scientists can compare pressure-perturbation events (at varying
thresholds) with the relevant radar imagery and also explore the rela-
tionships of these events with wind observations. Figure 12 shows
an instance where the strong coupling of positive- and negative-
pressure-perturbation events appears to be collocated well with very
strong recorded wind speeds, which is to be expected physically
due to the high pressure-perturbation gradients. Upon further ex-
ploration, these strong winds are not always perfectly collocated
with radar observations, but rather they are located closer to the
leading edge of the high-pressure-perturbation event. This insight
is of significant interest to scientists as conventional meteorological
tools are not be able to detect and assess such a phenomenon.



(a) Tracking graph for +1.0 hPa

(b) Same tracking graph using adaptive thresholds

Figure 10: Case study II - Visualization : (a) A tracking graph showing the evolution of pressure-perturbation events for 113 time steps at +1.0
hPa. Here, one of the thunderstorm complexes (in green) is not consistent across time. This feature disappears at t = 136 and then reappears
and dies at t = 138. Again, it reappears at t = 140 and later at t = 146. (b) The resulting tracking graph after adaptive feature thresholding is
used to locally modify the features (in green) to allow continuous feature tracking.

Figure 11: Case study II - Visualization : Simultaneously exploring both positive- and negative-pressure-perturbation events for multiple time
steps. The graph on top shows the tracking graph at +1.0 hPa and the bottom at -1.0 hPa. Here, positive- (outlined in solid black line) and
negative- (outlined in dashed black line) pressure-perturbation events existing at t = 86,100,120, and 150 time steps are also visualized.

Figure 12: Case study II - Visualization : Both positive- (outlined
in solid black line) and negative- (outlined in dashed black line)
pressure-perturbation events are visualized alongside their radar im-
agery and wind observations (in black arrows). Here, the size and
direction of winds are indicated by the arrow length and orienta-
tion. The image shows a strong coupling of positive- and negative-
pressure-perturbation events. Such events are also collocated with
strong winds going from the high- to low-pressure regions.

7.3 Case Study III: Severe Weather Outbreak 05/2011

The final case study demonstrates a very complex but fairly frequent
meteorological situation. Severe weather and tornado outbreaks
often occur when meteorological phenomena at various spatial and
temporal scales interact with one another under the right atmospheric
conditions. Due to these complex interactions, our tool provides a
critical capability that allows the integration and variation of various
data sets in real time. The case study described here took place from

0000 UTC May 24, 2011 to 0000 UTC May 26, 2011. The beginning
of this period behaved similarly to the first case study with a discrete
propagating mesoscale convective system moving southeast through
Oklahoma and Arkansas. Another propagating system then formed
and moved through northern Kansas from 1000-1700 UTC May
24. Beyond 2100 UTC May 24, a large-scale low-pressure system
that formed over Eastern Colorado resulted in the development
of several individual thunderstorms and mesoscale gravity waves.
These individual thunderstorms then began to congeal into many
linear segments as they propagated northeast from Oklahoma and
Kansas and into Missouri. This event resulted in an extensive tornado
and severe wind outbreak across Oklahoma and Kansas, with 11
deaths and over 290 injuries reported. Figure 13 displays radar
imagery along with the USArray TA pressure-perturbations for this
case study.

The original data contains 576 time steps and totals ≈ 670MB
of raw data. Again, once its feature hierarchies and correlation
details are stored in our data format, the total data size is reduced to
around 400MB. Here, several key aspects of our framework assist in
exploring this particular case study.

First, by exploring the feature evolution using tracking graphs,
scientists are able to obtain a global overview of the weather system.
The graphs reveal that this case study is more complex than the pre-
vious one, with large and complex graph structures, see Figure 14a.

Second, the ancillary data sets available within our system are
able to provide additional information about the case study. As
illustrated in Figure 15a, comparing features extracted from the
pressure-perturbation data set against the radar imagery indicates
the existence of noise. Our collaborating scientists found this insight



Figure 13: Case study III - Data : USArray mesoscale-filtered
pressure-perturbations (hPa) are overlaid on composite radar reflec-
tivity for 0400 UTC 24 May 2011, 1800 UTC 24 May 2011, 0000
UTC 25 May 2011, and 0600 UTC 25 May 2011.

(a) Tracking graph for the original data set

(b) Graph in (a) filtered by total propagation distance of a feature

(c) Tracking graph for the cleaner, better preprocessed data set

Figure 14: Case study III - Visualization : (a) Tracking graph con-
structed from the original data set. (b) Tracking graph after filtering
the graph in (a) by total propagation distance of a feature (≥10). (c)
For the same focused time window, its equivalent tracking graph for
the better preprocessed data set. In each graph, the focused time step
is indicated with a black arrow, and the features at the focused time
step are visualized along each graph.

about the existence of noise is particularly useful as it provides
means to validate their data sets.

Third, the ability to filter tracking graphs based on various feature-
and correlation-based attributes enables scientists to separate true
features from noise. Specifically, scientists are able to use total
propagation distance of a feature to filter the tracking graphs and
retain those features that are nonstationary, see Figure 14b. Those
filtered, stationary features are considered to be background noise
and are ignored in the analysis.

(a) Original data set (b) Cleaner, better preprocessed
data set

Figure 15: Case study III - Visualization : Features existing at +1.0
hPa for the same time step (at t = 326) in both (a) the original data
set and (b) the cleaner, better preprocessed data set are visualized
alongside their radar imagery. As indicated in the images, the pre-
processed data set (b) contains less noise than the original data set
(a).

This new insight regarding “stationary” noise within the data has
inspired scientists to improve their preprocessing process, specifi-
cally the bandpass filtering step, to remove such background noise
more effectively. Consequently, using their improved bandpass filter,
a cleaner data set totaling ≈ 1.1GB is also generated for the same
case study (Figure 15b). For this new data set, the total data size for
the feature hierarchies and correlation details was around 80MB.

Figure 14c shows an equivalent but cleaner tracking graph of
Figure 14a for this new data set. Again, for the new data set scientists
are able to vary the pressure-perturbation threshold to explore the
entire feature space and use tracking graphs to study the evolution
of features. These tracking graphs highlight the complexity that
takes place within this event, with several thunderstorm complexes
merging, splitting, forming, and dissipating as shown in Figure 16.

8 CONCLUSION

In addition to the case studies presented here, several other case stud-
ies have also been analyzed using our framework and provided to
atmospheric scientists for evaluation and feedback. According to the
collaborating scientists, our system has been proven to be a powerful
platform for conducting retrospective analysis to better understand
different atmospheric phenomena. Specifically, the capability to ex-
plore features across multiple pressure-perturbation thresholds and
the interactive abilities to thoroughly explore the tracking graphs
are a distinct advantage over conventional techniques used in the
field. As demonstrated by the three case studies, the visualizations
provided by our interactive platform allow scientists to perform
sensitivity analysis and to determine what pressure-perturbation
thresholds appear valid for more accurate representations of the phe-
nomena, as these thresholds are highly dependent on the concurrent
atmospheric situation. Also, interactive assessment and filtering of
feature properties, such as total feature area, feature lifetime, and
feature movement (speed and direction), is also extremely useful for
assessing which features are more prominent in the data sets of inter-
est. Our collaborating scientists have indicated that our system could
also have potential use for “nowcasting”, which is short-term (0-6
hrs) forecasting of potential weather events. The system’s interactive
capabilities to extract, filter, and study certain pressure-perturbation
events are appreciated in this kind of real-time setting. In terms of
future improvements, we would like to use our system for short-term
forecasting of certain weather events. We also aspire to include
additional visual analytic tools such as [5, 18] within our system. A
long-term goal is to leverage larger, more diverse data sets to broaden
its use beyond identification and tracking of pressure-perturbation
events.



Figure 16: Case study III - Visualization : A longer tracking graph showing the evolution of pressure-perturbation events for 49 time steps at
+1.0 hPa. For the two selected feature tracks in red, the features existing at t = 307, t = 315, t = 316, and t = 318 time steps are visualized.
The graph clearly shows the complexity within this case study. Specifically, several thunderstorm complexes appear to merge, split, form, and
dissipate.
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