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Abstract. We introduce a general framework for analyzing data modeled as parameterized families of net-
works. Building on a Gromov–Wasserstein variant of optimal transport, we define a family of parameterized
Gromov-Wasserstein distances for comparing such parametric data, including time-varying metric spaces
induced by collective motion, temporally evolving weighted social networks, and random graph models. We
establish foundational properties of these distances, showing that they subsume several existing metrics in
the literature, and derive theoretical approximation guarantees. In particular, we develop computationally
tractable lower bounds and relate them to graph statistics commonly used in random graph theory. Further-
more, we prove that our distances can be consistently approximated in random graph and random metric
space settings via empirical estimates from generative models. Finally, we demonstrate the practical utility
of our framework through a series of numerical experiments.

1. Introduction

Motivating examples. Consider the problem of mathematically modeling the collective spatial motion of
multiple agents over time, such as a group of animals [5, 20, 35, 46], a population of cells [7, 33], or a fleet
of vehicles [21]. It is desirable to adopt a representation that is invariant under ambient isometries when
only the intrinsic features of the motion are of interest, rather than the extrinsic position of the group in
ambient space. A natural choice in this setting is to record the pairwise distances between agents over time,
which leads to the notion of a time-varying metric space: a one-parameter family of metrics defined on a
common underlying set. A substantial body of work has developed methods for analyzing data in the form
of time-varying metric spaces [23,24,32,52].

While time-varying metric spaces offer a concrete and well-studied class of examples, they exemplify
a broader and increasingly common scenario in data science and network analysis: the need to analyze
parameterized families of complex structures. Additional examples include:
• Time-varying graphs. Applications in social network modeling [16,39] and neuroscience [6,53] often involve

weighted graphs whose edge weights evolve over time, giving rise to data in the form of a family of graphs
parameterized by real numbers, representing the time parameter.

• Heat kernels. The heat kernel on a Riemannian manifold M describes the diffusion of heat across the
manifold and is widely used in geometry processing [30,34,37]. In this setting, the data naturally take the
form of a family of maps M × M → R parameterized by the positive real numbers.

• Random graph models. Generative random graph models [18], such as the Erdős–Rényi model [12], can
be viewed as drawing graphs from a (typically unknown) distribution over the space of all graphs on a
fixed node set. Here, the data consist of a collection of graphs parameterized by this underlying state
space according to the (unknown) distribution.

In practice, a dataset may consist of an ensemble of parameterized objects, such as a collection of time-
varying fMRI brain connectivity graphs, in which case a metric is needed to compare elements within the
ensemble.

To this end, we introduce the notion of a parameterized measure network, a flexible model for representing
parameterized families of complex structures that encompasses the examples described above. We then define
a novel and highly general family of distances on the space of parameterized measure networks, establish
their metric, analytical, and statistical properties, and demonstrate their practical utility through a robust
numerical implementation.

Gromov-Wasserstein distance. To describe our contributions in more detail, we now briefly review a key
component of our approach, the Gromov-Wasserstein framework from optimal transport theory [27, 29].
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Recall that a metric measure space (mm-space) [17] is a triple X = (X, µX , dX)1, where X is a Polish space
(i.e., a separable completely metrizable topological space), dX : X × X → R≥0 is a metric on X, and µX is
a Borel probability measure on X. In other words, it is a metric space equipped with a probability measure.

Given another mm-space Y = (Y, µY , dY ), the associated order-p Gromov-Wasserstein (GW) distance
between mm-spaces X and Y [17, 29], for 1 ≤ p < ∞, is

(1) GWp(X , Y) := 1
2 inf

π

(∫
(X×Y )2

∫
(X×Y )2

|dX(x, x′) − dY (y, y′)|pπ(dx ⊗ dy)π(dx′ ⊗ dy′)
)1/p

,

where the infimum is over measure couplings (or joint measures) π on X × Y whose marginals agree with
µX and µY , respectively (see Sec. 2.2 for more details).

A general framework of comparing parameterized measure networks. Our proposed framework substan-
tially generalizes the GW distance, extending it to a family of metrics designed to compare general param-
eterized measure networks. As a concrete illustration, we next show how the GW framework described in
Eqn. (1) can be adapted to the setting of time-varying metric spaces.

Let X = (X, µX , (dt
X)t∈[0,1]), where (X, µX) is a Polish probability space as in the setting of metric

measure spaces, but the metric structure is replaced by a one-parameter family (dt
X)t∈[0,1] of metrics on X,

assumed to vary continuously in t. Given another such structure Y = (Y, µY , (dt
Y )t∈[0,1]), one can define a

notion of GW distance between X and Y by

(2) GWp(X , Y) := 1
2 inf

π

∫ 1

0

(∫
(X×Y )2

∫
(X×Y )2

|dt
X(x, x′) − dt

Y (y, y′)|pπ(dx ⊗ dy)π(dx′ ⊗ dy′)
)1/p

ν(dt),

where ν is a Lebesgue measure on [0, 1].
The structure of the metric in Eqn. (2) is quite natural, and related ideas have appeared in previous

work [32,42,52]. In contrast, our general framework encompasses a broader class of novel metrics that have
not yet been explored in the literature. In particular, it includes a variant that incorporates an additional
optimal transport–based alignment step for comparing parameterized measure networks defined over different
parameter spaces—an approach especially relevant for applications involving, for example, random graph
models.

Contributions. We now provide a more detailed account of our contributions.
(1) New model for parameterized data. We introduce the notion of a parameterized measure network (pm-

net) (Proposition 3.1), which unifies all of the data types described above. Analogous to a metric measure
space, a pm-net is defined as a tuple

X = (X, µX , ΩX , νX , ωX),

where (X, µX) is a Polish probability space, (ΩX , νX) is a measured parameter space, and ωX = (ωt
X)t∈ΩX

is a parameterized family of kernels ωt
X : X ×X → R. Examples of pm-nets, along with their connection

to the motivating examples discussed earlier, are given in Sec. 3.1.2.
(2) A general family of Gromov-Wasserstein-type distances. We define a new family of GW-type distances,

called parameterized Gromov–Wasserstein distances (Proposition 3.12). Members of this family are de-
noted GWC, where the subscript C specifies a chosen cost structure—that is, a rule for quantifying the
geometric distortion induced by a given probability coupling. The metric properties of GWC, which
depend on the choice of C, are established in Theorem 1 and Theorem 2. The first of these results
is stated at a high level of generality and provides a category-theoretic interpretation of GW-type dis-
tances, which may be of independent interest in optimal transport theory (see Proposition 3.22). The
second result is more specialized: its proof shares key ideas with standard arguments for existing GW
variants (see, e.g., [4,8,29]), but requires substantial work to extend them to the parameterized setting.
In particular, the proof relies on technical lemmas concerning the (lower semi-)continuity of a certain
distortion functional (Proposition 3.15 and Proposition 3.24), as well as on a novel and somewhat subtle
equivalence relation for parameterized networks (Proposition 3.26).

1The original definition uses the tuple (X, dX , µX); for convenience, we adopt the order (X, µX , dX) in this paper.
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(3) Generalizations of existing metrics. Certain instances of the parameterized GW framework recover met-
rics that have previously appeared in the literature. In particular, we show that for specific choices of C
under suitable technical assumptions, our metric coincides with:
• the temporal alignment–based GW distance of [10] (Proposition 3.20);
• certain instances of the Z-GW distances of [4] (Proposition 4.1);
• metrics for time-varying metric spaces from [42] (Proposition 4.2) and [23,24] (Proposition 4.4);
• GW-type distances for heat kernels from [30] (Proposition 4.5) and [9] (Proposition 4.6).

(4) Lower bounds and stability of invariants. It is shown in Theorem 3 that (for a particularly useful choice
of C), the distance GWC can be lower bounded by a Wasserstein distance (see Sec. 2.2) defined over the
(classical) GW space. It follows that the parameterized GW distance GWC is lower bounded by a
polynomial-time computable pseudometric, defined also in terms of Wasserstein distances (see Propo-
sition 4.10 and Proposition 4.12). On one hand, these lower bounds give computationally tractable
estimates of the parameterized GW distance. Alternatively, we interpret these lower bounds as proofs
that certain invariants of random graph and random metric space models are stable. For example,
Proposition 4.13 shows that the distribution of total edges in a random graph is a GW-stable invariant
of the model.

(5) Sampling convergence for random graphs and metric spaces. In the random graph model setting, one
does not typically have access to the full parameter space (ΩX , νX), but rather samples from it. In
Sec. 4.4, we study approximation of parameterized GW distances from random samples of the parameter
space; in particular, Theorem 4 shows that estimates from random samples converge to the true distance
as the number of samples goes to infinity.

(6) Numerical experiments. We describe our implementation of parametrized GW distances in Sec. 5.1. We
adapt components of the Python Optimal Transport (POT) library [13] (which implements algorithms
from [36, 45]) to approximate GWC using gradient descent for several choices of cost structure C. We
provide explicit formulas for the gradient of GWC and other auxiliary quantities.

We perform a number of numerical experiments, which illustrate the intuition that parametrized GW
distances integrate information from all parameters t ∈ Ω. We give qualitative examples which show
that parameterized GW distances are able to pick up subtle structures of data at multiple scales in
Sec. 5.2 and Sec. 5.4. In Sec. 5.3, we show that the parameterized GW distance serves as a meaningful
invariant for comparing two samples of random graphs. Finally, we incorporate our metrics into a
supervised learning framework: rather than fixing the measure ν on the parameter set Ω, we allow it to
vary as a mechanism for feature selection. We evaluate this idea by clustering dynamic metric spaces
(parameterized by time) that differ only at specific time intervals (Sec. 5.5).

Outline. We begin in Sec. 2 with a review of essential concepts from measure theory and optimal transport.
In Sec. 3, we formally define parameterized measure networks and introduce a family of GW distances for
comparing them, establishing their core metric properties. Sec. 4 presents our main theoretical results on the
equivalence and estimation of these distances, including their connections to existing metrics, lower bounds,
and sampling convergence guarantees. Finally, Sec. 5 details our computational framework for estimating
the proposed distances and demonstrates their practical utility through several numerical examples.

2. Preliminary Concepts and Notations

2.1. Basic Terminology from Measure Theory. In this subsection, we review basic terminology from
measure theory, which experts may safely skip. This also serves to standardize our notation for the rest of
the paper.

A measurable space is a pair (X, A), where X is a set and A is a σ-algebra on X (i.e., a collection of subsets
of X, called measurable sets, that is closed under complements, countable unions and intersections). Given
a measurable space (X, A), a measure µX is a function µX : A → [0, ∞] that assigns a non-negative value
to each measurable set such that it is countably additive and µX(∅) = 0. A measure space is a measurable
space together with a measure, denoted as a triple (X, A, µX); sometimes the σ-algebra A is omitted from
the notation when it is clear from the context—we generally assume that X is endowed with a topology and
that it is endowed with the Borel σ-algebra, generated by open sets. Let (X, A, µX) be a measure space; a
property is said to hold µX-almost everywhere (often written as µX -a.e.) on X if the set of points where
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the property does not hold has measure zero. Given a pair of measure spaces (X, A, µX) and (Y, B, µY ),
a product measure is a measure µX ⊗ µY : A ⊗ B → [0, ∞] satisfying (µX ⊗ µY )(A × B) = µX(A) µY (B),
∀A ∈ A, B ∈ B. For a measure space (X, µX) and p ∈ [1, ∞], we use ∥ · ∥Lp(X;µX ) to denote the standard
Lp-norm. We use Lp(X; µX) to denote the set of all measurable functions f : X → R with finite Lp-norm.
In particular L∞(X; µX) is the set of essentially bounded functions.

A Polish space is a topological space (X, τ) that is separable (i.e., it contains a countable dense subset) and
completely metrizable (i.e., there exists a metric dX on X such that dX induces the topology τ and (X, dX)
is complete). Here, the metric is not part of the structure; we only require that one exists. In contrast, a
Polish metric space is a metric space (X, dX) that is both complete (i.e., every Cauchy sequence converges)
and separable. In this case, the metric dX is part of the structure. Every Polish metric space gives rise to a
Polish space by forgetting the metric, and every Polish space admits some compatible metric that turns it
into a Polish metric space. A Polish probability space is a measure space (X, µX) where X is assumed to be
a Polish space and µX is a Borel probability measure, i.e., µX(X) = 1. We use P(X) to denote the set of
probability measures on X. Given a µX ∈ P(X), the support of µX , denoted supp(µX), is the set of x ∈ X
such that every open neighborhood of x has positive measure.

Let (X, µX) be a Polish probability space. Given another Polish space Y and a (Borel) measurable map
f : X → Y , the pushforward of µX to Y , denoted f#µX , is the measure on Y defined by (f#µX)(A) =
µX(f−1(A)) (for A being any Borel set). If µY is a probability measure on Y , the map f is measure-preserving
if f#µX = µY .

More generally, given two Polish probability spaces (X, µX) and (Y, µY ), a coupling of µX and µY is
a measure π ∈ P(X × Y ) whose left and right marginals are µX and µY , respectively; that is, using
pX : X×Y → X and pY : X×Y → Y to denote the coordinate projections, (pX)#π = µX and (pY )#π = µY .
We use C(µX , µY ) to denote the collection of all couplings of µX and µY .

2.2. Wasserstein Distances. The notion of measure coupling leads naturally to the Kantorovich formu-
lation of transport distance between measures, the core object of study in optimal transport theory [47].
Let (X, dX) be a Polish metric space and let µX , µ′

X ∈ P(X) be any two probability measures on X. For
p ∈ [1, ∞], the order-p Wasserstein distance [47, Definition 6.1] between µX and µ′

X is

(3) WdX
p (µX , µ′

X) := inf
π∈C(µX ,µ′

X
)
∥dX∥Lp(X×X;π) =

p<∞
inf

π∈C(µX ,µ′
X

)

(∫
X×X

dX(x, x′)pπ(dx ⊗ dx′)
)1/p

.

Here, and throughout the rest of the paper, we use the notation =
p<∞

to indicate that the integral formulation
is valid for p < ∞, whereas the Lp-norm definition holds for any p ∈ [1, ∞].

2.3. Measure Networks and Gromov-Wasserstein Distances. The Wasserstein distance described
above is able to compare measures defined over the same (Polish) metric space, whereas this paper is
primarily interested in comparing distributions defined over distinct spaces. This is handled with the Gromov-
Wasserstein (GW) framework Eqn. (1), whose purview is extended beyond metric measure spaces, following
the work of Chowdhury and Mémoli [8].

In order to handle kernel structures which are more general than metrics, Chowdhury and Mémoli intro-
duced the following concept.

Definition 2.1 (Measure Network [8, Definition 2.1]). A measure network is a triple X = (X, µX , ωX) such
that X is a compact Polish space, µX is a fully supported Borel probability measure, and ωX is a bounded
measurable function on X × X. In other words, (X, µX) is a Polish probability space and ωX : X × X → R
is a kernel belonging to L∞(X × X, µX ⊗ µX).

Example 2.2. If ωX is a distance metric (inducing the given Polish space a topology τ on X), then
X = (X, µX , ωX) is a metric measure space (mm-space). However, the measure network formalism allows
much more general structures than an mm-space. Of particular interest is the case where X is a finite set
of nodes for a graph structure, and ωX is a kernel encoding node interactions. For example, ωX could be
an adjacency function (possibly including edge weights), that is, ωX : X × X → R≥0, where ωX(u, v) = we

if nodes u and v are connected by an edge e with a weight we; otherwise ωX(u, v) = 0. ωX could also be a
graph Laplacian or a graph heat kernel (see Proposition 3.7).
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In [8], the GW distance (1) was extended to a pseudometric which is able to compare general measure
networks. A similar idea was considered by Sturm [43], where some different regularity and symmetry
assumptions on the kernels were imposed. To streamline notation for the rest of the paper, we define a
preliminary concept (which goes back at least to Mémoli [27]).
Definition 2.3 (Distortion). Fix 1 ≤ p < ∞. Let (X, µX) and (Y, µY ) be probability spaces, and let
fX : X × X → R and fY : Y × Y → R be essentially bounded, measurable functions. Given a coupling
π ∈ C(µX , µY ), define the p-distortion as

disp(π, fX , fY ) :=
(∫

(X×Y )2
|fX(x, x′) − fY (y, y′)|p π(dx ⊗ dy) π(dx′ ⊗ dy′)

)1/p

.

For p = ∞, define
dis∞(π, fX , fY ) := sup

(x,y),(x′,y′)∈supp(π)
|fX(x, x′) − fY (y, y′)|,

where supp(π) denotes the support of π. In other words, we have the general definition
disp(π, fX , fY ) := ∥fX ◦ (pX , pX) − fY ◦ (pY , pY )∥Lp((X×Y )2;π⊗π),

where pX and pY are the coordinate projections from X × Y to X and Y , respectively.
For p ∈ [1, ∞], the associated Gromov-Wasserstein (GW) distance between measure networks X and Y

is given by

GWp(X , Y) := 1
2 inf

π∈C(µX ,µY )
disp(π, ωX , ωY )

=
p<∞

1
2 inf

π∈C(µX ,µY )

(∫
(X×Y )2

|ωX(x, x′) − ωY (y, y′)|pπ(dx ⊗ dy)π(dx′ ⊗ dy′)
)1/p

.

(4)

It was shown in [8] that GWp defines a pseudometric on the space of measure networks, with GWp(X , Y) = 0
if and only if X and Y are weakly isomorphic, defined as follows [31, Definition 2.4].
Definition 2.4 (Weakly Isomorphic). Let X and Y be measure networks. A measure network Z is called
a stabilization of X and Y if there exist maps φX : Z → X and φY : Z → Y such that (i) φX and φY are
measure-preserving, and (ii) ωZ(z, z′) := ωX(φX(z), φX(z′)) = ωY (φY (z), φY (z′)) holds for (µZ ⊗µZ)-almost
every (z, z′) ∈ Z × Z. If a stabilization exists, we say that X and Y are weakly isomorphic.

3. Parameterized Gromov-Wasserstein Distances

3.1. Parameterized Measure Networks. Motivated by the examples described in Sec. 1, we now intro-
duce a general framework for encoding objects consisting of a parameterized family of kernels over a fixed
set.

3.1.1. Main Definition. The primary objects of interest in this paper are defined as follows.
Definition 3.1 (Parameterized Measure Network). A parameterized measure network (abbreviated as
pm-net) is a 5-tuple of the form X = (X, µX , ΩX , νX , ωX), where:
• X is a Polish space endowed with a Borel probability measure µX ∈ P(X), referred to as the underlying

measure space,
• ΩX is a compact Polish space endowed with a Borel probability measure νX , referred to as the parameter

space, and
• ωX is a function

ωX : ΩX → L∞(X × X; µX ⊗ µX)
t 7→ ωt

X

which is continuous with respect to the L∞ norm, referred to as a parameterized network kernel.
Remark 3.2. Various technical conditions in Proposition 3.1 could be relaxed—for example, one could
assume each ωt

X lies in Lp rather than L∞, or weaken the compactness requirement on ΩX—but we impose
these conditions for convenience. They provide a sufficiently flexible framework while sparing us from having
to verify an excess of intricate technical details in the proofs.
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3.1.2. Examples of Parameterized Measure Networks. We now present several examples of parameterized
measure networks, starting with the simple observation that this framework generalizes the standard measure
network as a special case.

Example 3.3 (Measure Networks). Let (X, µX , ωX) be a measure network, in the sense of [8] (see Sec. 2.3).
This gives a trivial example of a parameterized measure network: let (ΩX , νX) be a space consisting of a
single point, ΩX = {t}, and define X = (X, µX , ΩX , νX , ωX), where (by a slight abuse of notation) ωt

X = ωX .

The next few examples take (a subset of) R as the parameter space. In these cases, a parameter t
intuitively represents a notion of “time” or “scale”. These examples formalize concepts which were described
informally in the introduction.

Example 3.4 (Time-Varying Metric Spaces). A time-varying metric space or dynamic metric space consists
of a (finite) set X endowed with a collection (dt

X)t∈ΩX
of (pseudo-)metrics, parameterized by some compact

subset ΩX of R. Such objects were studied as models for flocking behavior in [44] and metrics on the space
of these objects were studied in [23–25, 52], using constructions similar to Gromov-Hausdorff and Gromov-
Wasserstein distances, as well as ideas from topological data analysis. Setting ωt

X = dt
X and imposing the

mild assumption that t 7→ ωt
X is L∞-continuous, one obtains a representation of a dynamic metric space as

a parameterized measure network for any choices of νX ∈ P(ΩX) and µX ∈ P(X).

Example 3.5 (Time-Varying Networks). Similar to the above, one can consider data consisting of a weighted
graph whose edge weights vary in time t, defined over some compact subset of real numbers (e.g., [6, 16,
25, 39, 53]). Taking ωt

X to be a graph kernel for each t (e.g., the weighted adjacency matrix), and choosing
necessary distributions, leads to a pm-network representation of this time-varying network structure.

Example 3.6 (Riemannian Heat Kernels). Let X be a (say, compact) Riemannian manifold with associated
Laplacian operator ∆. A solution ω : (0, ∞) × X × X → R of the heat equation

∂

∂t
ω(t, x, x′) = ∆xω(t, x, x′),

which limits to the delta distribution at x as t → 0+, is called a heat kernel for X. Let ΩX be a compact
subset of R>0, endowed with some measure νX , let µX denote the normalized Riemannian volume measure
on X, and let ωt

X(x, x′) = ω(t, x, x′) for a heat kernel ω. This data then defines a parameterized measure
network.

Example 3.7 (Graph Heat Kernels). The heat kernels described in Proposition 3.6 have a discrete coun-
terpart in graph theory. Let G be a finite graph with node set X. The natural discrete version of the
Riemannian Laplacian operator is the graph Laplacian. We formulate it in matrix notation as follows.
Choosing an enumeration of X = (x1, . . . , xn), let A denote the associated n × n adjacency matrix, and D
the n × n degree matrix (the diagonal matrix whose i-th diagonal entry is the degree of node xi in G). Then
the graph Laplacian is the matrix ∆ = D − A. The graph heat equation is typically written as

d

dt
B(t) = −∆B(t),

and a solution B, understood to be a time-varying n × n matrix, is given by the graph heat kernel
B(t) = exp(−t∆).

One thus obtains a parameterized measure network by taking µX to be some measure over X, νX to be
some measure over a compact parameter space ΩX ⊂ R>0, and by setting

ωt
X(xi, xj) = B(t)i,j ,

where B(t)i,j denotes the (i, j)-entry of the matrix B(t).

The following examples have a different flavor than those above, in that the parameter space is treated as
a state space, so that the parameterized network kernel is naturally considered as a random variable (valued
in a function space).

Example 3.8 (Random Graphs). Let X be a finite set and let ΩX be the set of all (say, simple) graphs
with node set X. This is a finite set, which we endow with the discrete topology. A distribution νX over ΩX

can then be understood as a random graph model; for example, the Erdős-Rényi model [12], the stochastic
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block model [19], or the Watts-Strogatz model [50] (see [18] for a survey on the topic). We construct a pm-net
X by choosing a measure µX on X (e.g., the uniform measure), and taking ωt

X to be the adjacency kernel
associated to the graph t ∈ ΩX (i.e., ωt

X(x, x′) = 1 if the nodes x, x′ ∈ X are connected by an edge in the
graph at time t, and ωt

X(x, x′) = 0 otherwise).
We make the observation here that one typically does not have access to the full distribution νX in

practice. Rather, the standard examples described above are generative models; one generally has access
to iid samples t1, . . . , tN from ΩX , and hence to samples ωt1

X , . . . , ωtN

X of the the kernel defining the pm-net
structure. This motivates the statistical questions that we consider in Sec. 4.4.

Example 3.9 (Random Metric Spaces). This example is similar to the random graph example above,
extending it to consider random metric structures. Towards this end, let (X, µX) be a compact Polish
probability space and let ΩX be a compact collection of metrics inducing the given topology on X, endowed
with the subspace topology coming from the inclusion ΩX ⊂ L∞(X × X; µX ⊗ µX). A distribution νX on
ΩX defines a random metric space model over X. There is an associated pm-net X given by taking ωt

X to
be equal to the metric t ∈ ΩX .

As in Proposition 3.8, one typically only has access to samples of metrics distributed according to νX ,
and statistical inferences come into play (see Sec. 4.4). In practice, these samples could arise from noisy
measurements of some metric structure; to give a concrete example, the nuclear magnetic resonance problem
in structural biology represents molecular conformation via many noisy measurements of pairwise distances
between its atoms [11].

We conclude our list of examples by describing a situation where the parameter space consists of a set of
modalities for representing a given dataset.

Example 3.10 (Graph Representations). Given a graph G with a node set X, there are many choices of
kernels X ×X → R for representing the structure of G, including: the adjacency kernel, the graph Laplacian,
the graph heat kernel for various choices of t, the shortest path distance function, or other kernels induced by
node features (if they exist). One can consider a multimodal representation of G by setting ΩX to be a (say,
finite) set of representation modalities t and defining ωt

X to be the kernel for G under the given modality.
For any choices of distributions νX and µX , this data determines a parameterized measure network.

3.2. Distances Between Parameterized Measure Networks. Our next objective is to define a suitable
notion of distance between parameterized measure networks. Rather than tailoring a distinct distance for
each specific class of objects, we adopt a unified and general framework that accommodates a wide range
of structures, including those introduced in Proposition 3.3 through Proposition 3.10. This generality is
essential, as the objects we seek to analyze are inherently diverse. By formulating a family of distances
at this level of abstraction, we are able to derive theoretical guarantees applicable across multiple settings,
specializing only when necessary to address particular cases.

3.2.1. Classes of Parameterized Measure Networks. Throughout the rest of the section, let N denote some
fixed but arbitrary class of parameterized measure networks. The family of distances introduced below will
be defined with respect to the class N.

Example 3.11 (Classes of Parameterized Measure Networks). We will return frequently to the following
important classes N of pm-nets:

(1) the class containing all pm-nets, which we denote as Nall;
(2) for a fixed parameter space (Ω, ν), the class of pm-nets of the form X = (X, µX , Ω, ν, ωX), which we

denote as Nν ;
(3) one of the more specific classes consisting of the objects described in Proposition 3.3–Proposition 3.9,

for which we do not currently introduce any specialized notation.

3.2.2. General Family of Distances. Our general family of distances on a fixed class N is defined as follows.

Definition 3.12 (Parameterized Gromov-Wasserstein Distance). A cost structure on N is an assignment
C taking a pair of pm-nets X , Y ∈ N to a function

CX ,Y : C(µX , µY ) → R≥0.
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Given a cost structure C, the parameterized Gromov-Wasserstein distance induced by C is
GWC : N × N → R≥0

(X , Y) 7→ GWC(X , Y) := inf
π∈C(µX ,µY )

CX ,Y(π).(5)

Remark 3.13. We refer to GWC as a “distance” only in a colloquial sense, as we do not assert that it
satisfies the axioms of a metric in general. However, we show below that under suitable assumptions on the
cost function C, GWC does indeed exhibit metric properties.

Remark 3.14. An optimization problem similar to Eqn. (5) was studied in a recent paper by Sebbouh,
Cuturi, and Peyré [38], with a view toward generalizing duality properties in optimal transport-type prob-
lems. There, the additional assumption that CX ,Y is always a concave function was imposed for analytical
purposes, but we make no such restriction.

3.2.3. Continuity of Distortion. Before providing examples of interesting cost structures C, we establish a
useful property of the distortion function, introduced in Proposition 2.3.

Lemma 3.15. Let X and Y be pm-nets and fix 1 ≤ p ≤ ∞. For all s ∈ ΩX and t ∈ ΩY , the quantity
disp(π, ωs

X , ωt
Y ) is well-defined; in particular, it is finite. Moreover, if p < ∞, the function

disp : C(µX , µY ) × ΩX × ΩY → R
(π, s, t) 7→ disp(π, ωs

X , ωt
Y )

is continuous. If p = ∞, dis∞ is lower semicontinuous.

Proof. The finiteness claim is straightforward, due to our regularity assumptions in Proposition 3.1:

disp(π, ωs
X , ωt

Y ) ≤ ∥ωs
X∥Lp(µX ⊗µX ) + ∥ωt

Y ∥Lp(µY ⊗µY ) ≤ ∥ωs
X∥L∞(µX ⊗µX ) + ∥ωt

Y ∥L∞(µY ⊗µY ) < ∞.

We proceed with the continuity claim. Suppose p < ∞. Let ϵ > 0 and fix π0 ∈ C(µX , µY ), s0 ∈ ΩX , and
t0 ∈ ΩY . By [8, Lemma 2.3], for any fixed s and t, the function

disp(•, ωs
X , ωt

Y ) : C(µX , µY ) → R
π 7→ disp(π, ωs

X , ωt
Y )

is continuous. Thus there exists V ⊂ C(µX , µY ) neighborhood of π0 such that for all π ∈ V ,

| disp(π, ωs0
X , ωt0

Y ) − disp(π0, ωs0
X , ωt0

Y )| < ϵ.

Similarly, since ωX : ΩX → L∞(X × X, µX ⊗ µX) is continuous, there exists UX ⊂ ΩX neighborhood of s0
such that

∥ωs
X − ωs0

X ∥Lp(X2,µX ⊗µX ) ≤ ∥ωs
X − ωs0

X ∥L∞(X2,µX ⊗µX ) < ϵ

for all s ∈ UX . We define UY analogously.
Let pX and pY be the standard projections from X × Y . For convenience, write ωs

X = ωs
X ◦ (pX , pX) and

ωt
Y = ωt

Y ◦ (pY , pY ). By the triangle inequality of the Lp norm,

disp(π, ωs0
X , ωt0

Y ) = ∥ωs0
X − ωt0

Y ∥Lp((X×Y )2;π⊗π)

≤ ∥ωs0
X − ωs

X∥Lp((X×Y )2;π⊗π) + ∥ωs
X − ωt

Y ∥Lp((X×Y )2;π⊗π) + ∥ωt
Y − ωt0

Y ∥Lp((X×Y )2;π⊗π)

= ∥ωs0
X − ωs

X∥Lp(X2;µX ⊗µX ) + ∥ωs
X − ωt

Y ∥Lp((X×Y )2;π⊗π) + ∥ωt
Y − ωt0

Y ∥Lp(Y 2;µY ⊗µY )

< disp(π, ωs
X , ωt

Y ) + 2ϵ.

With a symmetric argument we obtain | disp(π, ωs
X , ωt

Y )−disp(π, ωs0
X , ωt0

Y )| < 2ϵ. Then for all π ∈ V , s ∈ UX ,
and t ∈ UY ,

| disp(π, ωs
X , ωt

Y ) − disp(π0, ωs0
X , ωt0

Y )|
≤ | disp(π, ωs

X , ωt
Y ) − disp(π, ωs0

X , ωt0
Y )| + | disp(π, ωs0

X , ωt0
Y ) − disp(π0, ωs0

X , ωt0
Y )| < 3ϵ.

This proves that disp is continuous for p < ∞. Since dis∞ is the supremum over p ≥ 1 of the family of
continuous functions disp, it is lower semicontinuous. □
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3.2.4. Examples of Parameterized Gromov-Wasserstein Distances. The following examples of cost structures
C, along with their associated parameterized Gromov–Wasserstein distances, will be referenced frequently
throughout the paper.

Example 3.16 (Main Example: Fixed Parameter Space). Fix a parameter space (Ω, ν) and let Nν be the
class of pm-nets with this parameter space, that is, of the form X = (X, µX , Ω, ν, ωX); see Proposition 3.11.
A natural cost structure is given by

(6) CX ,Y(π) = 1
2∥disp(π, ωX , ωY )∥Lq(Ω;ν) =

q<∞

1
2

(∫
Ω

disp(π, ωt
X , ωt

Y )qν(dt)
)1/q

.

We record the full expression for GWC in this case, for later reference:

GWC(X , Y) = 1
2 inf

π∈C(µX ,µY )
∥disp(π, ωX , ωY )∥Lq(Ω;ν)

=
p,q<∞

1
2 inf

π∈C(µX ,µY )

∫
Ω

(∫
(X×Y )2

|ωX(x, x′) − ωY (y, y′)|pπ(dx × dy)π(dx′ × dy′)
)q/p

ν(dt)

1/q

.

(7)

Observe that the cost structure is well-defined (i.e., finite). Indeed, Proposition 3.15 implies that, for fixed
π ∈ C(µX , µY ), the map Ω → R : t 7→ disp(π, ωt

X , ωt
Y ) is continuous. By compactness of Ω, it is therefore

q-integrable.

Remark 3.17. Suppose that (Ω, ν) is a one-point space, Ω = {t}. Let X = (X, µX , ωX) be a measure
network; as was observed in Proposition 3.3, X is naturally represented as an element of the class Nν ,
which we denote in this remark as X = (X, µX , Ω, ν, ωX). With the cost structure C from Proposition 3.16,
the parameterized GW distance is equivalent to the standard GW distance for measure networks, as was
described in Sec. 2.3. Indeed,

GWC(X , Y) = 1
2 inf

π∈C(µX ,µY )
∥disp(π, ωX , ωY )∥Lq(Ω;ν)

= 1
2 inf

π∈C(µX ,µY )
disp(π, ωt

X , ωt
Y ) = GWp(X , Y).

Remark 3.18. For any parameter space, GWC is related to a Z-Gromov-Wasserstein distance, in the sense
of [4]. This is explained in detail below, in Sec. 4.1.

Example 3.19 (Main Example: General Parameter Spaces). Let Nall denote the class of all pm-nets, and
let X , Y ∈ Nall. For p, q ∈ [1, ∞], we have the cost structure

CX ,Y(π) = 1
2 inf

ξ∈C(νX ,νY )
∥disp(π, ωX , ωY )∥Lq(ΩX ×ΩY ,ξ)

=
q<∞

1
2 inf

ξ∈C(νX ,νY )

(∫
ΩX ×ΩY

disp(π, ωt
X , ωs

Y )qξ(dt ⊗ ds)
)1/q

,

(8)

in which case GWC becomes

(9) GWC(X , Y) = 1
2 inf

π∈C(µX ,µY )
inf

ξ∈C(νX ,νY )
∥disp(π, ωX , ωY )∥Lq(ΩX ×ΩY ,ξ).

By arguments similar to the above, Proposition 3.15 implies that the cost structure is well-defined (i.e., finite).

Although our analysis and experiments in the remainder of the paper primarily focus on the cost structures
presented in Proposition 3.16 and Proposition 3.19, a wide range of alternative cost structures can be
constructed to suit specific applications. We largely leave detailed exploration of these possibilities for
future work, but describe one such potential idea below. We also note that a discrete analogue of this
construction was previously introduced in [10], motivated by the problem of aligning time series valued in
different spaces.
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Example 3.20 (Optimization Over Reparameterizations). Consider the class N consisting of pm-nets whose
parameter space is ΩX = [0, 1], endowed with Lebesgue measure νX ; for example, this class contains versions
of the pm-nets described in Proposition 3.6, Proposition 3.7, and Proposition 3.4, when the parameter space
is restricted to the interval (extending definitions to the parameter t = 0, as necessary). Let Diff+([0, 1])
denote the group of orientation-preserving diffeomorphisms of [0, 1]. The cost structure

CX ,Y(π) = inf
α∈Diff+([0,1])

(∫ 1

0
disp(π, ωt

X , ω
α(t)
Y )qν(dt)

)1/q

leads to a distance GWC involving a “temporal alignment” of the pm-nets. In particular, if X and Y only
differ by an orientation-preserving reparameterization of their parameter spaces, then one has GWC(X , Y) = 0
under this cost structure. The associated optimization problem has connections to ideas from the field of
statistical shape analysis [3, 40], which we plan to explore in future work.

3.3. General metric properties. We now formally study metric-like structures arising from parameterized
GW distances. Predictably, these depend on properties of the cost structure C. For the rest of this subsection,
fix a class N of pm-nets and a cost structure C on N.

3.3.1. Preliminary Concepts. To state the main theorem, we need some additional terminology and notation.
Recall the Gluing Lemma [43, Lemma 1.4], a standard result in optimal transport theory which says that,
given couplings πXY ∈ C(µX , µY ) and πY Z ∈ C(µY , µZ), there exists a unique probability measure π̃ on
X × Y × Z whose (X, Y )- and (Y, Z)-marginals are πXY and πY Z , respectively. We use the notation
πXY • πY Z for the (X × Z)-marginal of π̃; that is, letting pA : X × Y × Z → A denote the coordinate
projection for A ∈ {X, Y, Z}, we define

πXY • πY Z := (pX × pZ)#π̃ ∈ C(µX , µZ).

We now introduce several useful properties of a cost structure.

Definition 3.21 (Properties of Cost Structures). Let C be a cost structure on a class of pm-nets N.
(1) The cost structure C respects gluing if, for any πXY ∈ C(µX , µY ) and πY Z ∈ C(µY , µZ), it holds

that
CX ,Z(πXY • πY Z) ≤ CX ,Y(πXY ) + CY,Z(πY Z).

(2) Recall that a map φ : X → Y that is measure-preserving with respect to µX and µY induces a
coupling via (idX × φ)#µX ∈ C(µX , µY ). Given a cost structure, we abuse notation and write

CX ,Y(φ) := CX ,Y

(
(idX × φ)# µX

)
.

The cost structure respects identities if CX ,X (idX) = 0 for all X ∈ N.
(3) If C respects gluing and respects identities, we call it a lax homomorphism.
(4) Given a coupling π ∈ C(µX , µY ), there is a corresponding adjoint coupling π∗ ∈ C(µY , µX), given

by π∗ = swap#π, where swap : X × Y → Y × X is the map swap(x, y) = (y, x). We say that the
cost structure C is symmetric if

CX ,Y(π) = CY,X (π∗) ∀ π ∈ C(µX , µY ).

Remark 3.22 (Categorical Interpretation). The lax homomorphism terminology is inspired by its connection
to category theory: C can be viewed as a lax 2-functor between a certain 2-category of pm-nets and a 2-
category constructed via the monoidal structure of the non-negative real numbers (see, e.g., [22, 26] for
general background on 2-categories). Intuitively, the idea is that the cost structure translates between the
gluing composition of couplings and addition on R, both considered as algebraic operations (hence it behaves
like a homomorphism), but it only preserves the structure up to an inequality (this is the “lax-ness” of the
homomorphism). As fully developing this perspective would require substantial effort and is not essential
for the remainder of the paper, we defer its detailed treatment to future work.
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3.3.2. Parameterized Gromov-Wasserstein Distances as Pseudometrics. We are now ready to state our result.
Its proof is straightforward, owing to the careful design of our definitions. However, demonstrating that this
general theorem applies to specific examples of interest requires additional work, which we present later.

Theorem 1. If C is a symmetric lax homomorphism, then the parameterized Gromov-Wasserstein distance
GWC defines a pseudometric on N.

Proof. Non-negativity and symmetry of GWC are obvious and CX ,X (idX) = 0 implies that GWC(X , X ) = 0.
Finally, triangle inequality follows immediately from the assumption that C respects gluings. □

3.4. Specialized metric properties. In this subsection, we examine special cases of the parameterized
GW framework to which Theorem 1 can be applied.

3.4.1. Standard Examples of Parameterized Measure Networks and Cost Structures. Throughout this sub-
section, we consider the following pairs (N, C) of classes of pm-nets and cost structures, which we refer to as
the standard examples:

(1) N = Nν is the class of pm-nets over a fixed parameter space (Ω, ν), and C is the cost structure from
Proposition 3.16, for some choices of p, q ∈ [1, ∞].

(2) N = Nall is the class of pm-nets whose parameter spaces are endowed with probability measures
(i.e., X ∈ N has νX(ΩX) = 1), and C is the cost structure from Proposition 3.19, for some choice of
p, q ∈ [1, ∞].

Proposition 3.23. For the standard examples (N, C), optimal couplings exist. That is, the infimum of the
associated parameterized GW distance GWC is realized.

The proof uses the following extension of Proposition 3.15.

Lemma 3.24. Let X and Y be pm-nets, and let p, q ∈ [1, ∞]. The function

Gp,q : C(νX , νY ) × C(µX , µY ) → R

(ξ, π) 7→
(∫

ΩX ×ΩY

disp(π, ωs
X , ωt

Y )q ξ(ds ⊗ dt)
)1/q

is lower semicontinuous for 1 ≤ p, q ≤ ∞ and continuous if p, q < ∞.

Proof. Suppose p < ∞ and fix ϵ > 0, ξ0 ∈ C(νX , νY ) and π0 ∈ C(µX , µY ). The function

Gp,q(•, π0) : C(νX , νY ) → R

ξ 7→
(∫

ΩX ×ΩY

disp(π0, ωs
X , ωt

Y )q ξ(ds ⊗ dt)
)1/q

is continuous in the topology of weak convergence because the cost function (s, t) 7→ disp(π0, ωs
X , ωt

Y )q is
continuous, by Proposition 3.15, and bounded, by compactness of ΩX × ΩY . Hence, there exists V1 ⊂
C(ΩX , ΩY ) neighborhood of ξ0 such that for all ξ ∈ V1, |Gp,q(ξ, π0) − Gp,q(ξ0, π0)| < ϵ.

For the second component of Gp,q, we claim that there exists V2 ⊂ C(µX , µY ), a neighborhood of π0, such
that

(10) | disp(π, ωs
X , ωt

Y ) − disp(π0, ωs
X , ωt

Y )| < 2ϵ

for all π ∈ V2 and any s ∈ ΩX and t ∈ ΩY . Since π 7→ disp(π, ωs
X , ωt

Y ) is continuous by [8, Lemma 2.3], we
can find Vs,t ⊂ C(µX , µY ) and Us,t ⊂ ΩX × ΩY neighborhoods of π0 and (s, t) ∈ ΩX × ΩY , respectively, such
that for all π ∈ Vs,t and (s′, t′) ∈ Us,t,

(11) | disp(π, ωs′

X , ωt′

Y ) − disp(π0, ωs
X , ωt

Y )| < ϵ.

By compactness of ΩX and ΩY , there exists a finite cover {Usi,ti
}1≤i≤n of ΩX × ΩY . We claim that the

neighborhood of π0 defined by V2 =
⋂

1≤i≤n Vsi,ti is the desired set. Fix π ∈ V2. For any (s, t) ∈ ΩX × ΩY ,
there exists 1 ≤ k ≤ n such that (s, t) ∈ Usk,tk

. Since π ∈ V2 ⊂ Vsk,tk
and (s, t) ∈ Usk,tk

, inequality Eqn. (11)
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gives | disp(π, ωs
X , ωt

Y ) − disp(π0, ωsk

X , ωtk

Y )| < ϵ. By the same reasoning, π0 ∈ V2 ⊂ Vsk,tk
and (s, t) ∈ Usk,tk

imply | disp(π0, ωs
X , ωt

Y ) − disp(π0, ωsk

X , ωtk

Y )| < ϵ. Hence,

| disp(π, ωs
X , ωt

Y ) − disp(π0, ωs
X , ωt

Y )|
< | disp(π, ωs

X , ωt
Y ) − disp(π0, ωsk

X , ωtk

Y )| + | disp(π0, ωs
X , ωt

Y ) − disp(π0, ωsk

X , ωtk

Y )| < 2ϵ.

Now we finish the proof of the continuity of Gp,q. If ξ ∈ V1 and π ∈ V2, the reverse triangle inequality of
the Lq norm gives

|Gp,q(ξ, π) − Gp,q(ξ0, π0)| ≤ |Gp,q(ξ, π) − Gp,q(ξ, π0)| + |Gp,q(ξ, π0) − Gp,q(ξ0, π0)|
< ∥ disp(π, ωs

X , ωt
Y ) − disp(π0, ωs

X , ωt
Y )∥Lq(ΩX ×ΩY ,ξ) + ϵ

< ∥2ϵ∥Lq(ΩX ×ΩY ,ξ) + ϵ = 3ϵ.

Finally, we establish lower semicontinuity in the case that p or q is ∞. For fixed p < ∞, standard
properties of Lq-norms imply

Gp,∞(ξ, π) = sup
1≤q<∞

Gp,q(ξ, π),

so that Gp,∞ is a supremum of a family of continuous functions, hence lower semicontinuous. Now fix
q ∈ [1, ∞] and (ξ, π). Observe that, by Hölder’s inequality, disp(π, ωs

X , ωt
Y ) is an increasing function of

p ∈ [1, ∞), with limit equal to dis∞(π, ωs
X , ωt

Y ). By the Monotone Convergence Theorem,
G∞,q(ξ, π) = ∥ dis∞(π, ω•

X , ω•
Y )∥Lq(ΩX ⊗ΩY ;ξ) = sup

1≤p<∞
∥ disp(π, ω•

X , ω•
Y )∥Lq(ΩX ⊗ΩY ;ξ) = sup

1≤p<∞
Gp,q(ξ, π),

so that lower semicontinuity follows. □

We will also use the following general result.

Lemma 3.25. Suppose that, for all X , Y ∈ N, CX ,Y : C(µX , µY ) → R≥0 is lower semicontinuous in the
topology of weak convergence. Then the infimum in the definition of GWC is always realized.

Proof. By Prokhorov’s theorem, the space C(µX , µY ) is compact (see [43, Lemma 1.2] for details). The lower
semicontinuous function CX ,Y must therefore achieve its minimum over this set. □

Proof of Proposition 3.23. By Proposition 3.25, it suffices to show that C is lower semicontinuous. The
conclusion follows immediately from Proposition 3.24 in the setting of Nall, whereas Nν requires a bit more
work. Indeed, in the latter case, the associated cost structure C is obtained by restricting the first coordinate
of Gp,q (as defined in Proposition 3.24) to be the identity coupling in C(ν, ν). Lower semicontinuity of Gp,q

then implies lower semicontinuity of its restriction. □

3.4.2. Metric Structure for the Standard Examples. Finally, we show that the standard examples fall under
the purview of Theorem 1, so that the associated distances GWC define pseudometrics. Moreover, in these
settings, we can completely characterize the distance zero equivalence classes, using the following definition.

Definition 3.26 (Isomorphisms for Parameterized Measure Networks). Let X and Z be pm-nets. A pair
of maps (Φ, φ), with Φ : ΩZ → ΩX and φ : Z → X, is called structure-preserving if

(1) Φ and φ are both measure-preserving maps, and
(2) the pair (Φ, φ) preserves parameterized network kernels, in the sense that

ωt
Z(z, z′) = ω

Φ(t)
X (φ(z), φ(z′))

holds almost everywhere, with respect to νZ ⊗ µZ ⊗ µZ .
Let Y be another pm-net. We say that Z is a stabilization of X and Y if there exist structure-preserving

maps ΦA : ΩZ → ΩA and φA : Z → A for A ∈ {X, Y }. If a stabilization exists, we say that X and Y are
isomorphic. In the case that X and Y have the same parameter space (Ω, ν), we say that X and Y are
fixed-parameter isomorphic if there is a stabilization Z with parameter space (Ω, ν) such that the maps ΦA

are identity maps.

Remark 3.27 (Weak Isomorphism for Measure Networks). Let X = (X, µX , ωX) and Y = (Y, µY , ωY ) be
measure networks and let X and Y denote their representations as pm-nets parameterized over the one point
space (Ω, ν) (cf. Proposition 3.17). Then X and Y are weakly isomorphic (Proposition 2.4) if and only if
their pm-net representations X and Y are fixed-parameter isomorphic.



METRICS FOR PARAMETRIC FAMILIES OF NETWORKS 13

In light of Proposition 3.27, the following generalizes [8, Theorems 2.3 and 2.4], which characterize the
pseudometric structure of GWp on the space of measure networks.

Theorem 2. For the standard examples (N, C), the associated parameterized GW distance GWC defines a
pseudometric. Moreover, GWC(X , Y) = 0 if and only if:

(1) X and Y are isomorphic, in the case N = Nall;
(2) X and Y are fixed-parameter isomorphic, in the case N = Nν .

Proof. By Theorem 1, to show that GWC is a pseudometric, we need to show that C is symmetric, respects
identities, and respects gluings. The first two properties are obvious, so we focus on the last.

Let X , Y, Z ∈ N. For ease of notation, let ωt
A := ωt

A ◦ (pA, pA) for t ∈ ΩA and A ∈ {X, Y, Z}, with
pA denoting projection onto the A factor of any product of spaces including A. Let πXY ∈ C(µX , µY ),
πY Z ∈ C(µY , µZ), πXY • πY Z ∈ C(µX , µY ) and π̃ as in Proposition 3.21. Then for all r ∈ ΩX , s ∈ ΩY and
t ∈ ΩZ , the triangle inequality of the Lp norm gives

disp(πXY • πY Z , ωr
X , ωt

Z) = ∥ωr
X − ωt

Z∥Lp(X×Z;πXY •πY Z)(12)
= ∥ωr

X − ωt
Z∥Lp(X×Y ×Z;π̃)

≤ ∥ωr
X − ωs

Y ∥Lp(X×Y ×Z;π̃) + ∥ωs
Y − ωt

Z∥Lp(X×Y ×Z;π̃)

= ∥ωr
X − ωs

Y ∥Lp(X×Y ;πXY ) + ∥ωs
Y − ωt

Z∥Lp(Y ×Z;πY Z)

= disp(πXY , ωr
X , ωs

Y ) + disp(πY Z , ωs
Y , ωt

Z).
Analogously, given ξXY ∈ C(νX , νY ) and ξY Z ∈ C(νY , νZ), we get

(13) ∥ disp(πXY • πY Z , ωX , ωZ)∥Lq(ΩX ×ΩZ ;ξXY •ξY Z)

≤ ∥ disp(πXY , ωX , ωY )∥Lq(ΩX ×ΩY ;ξXY ) + ∥ disp(πY Z , ωY , ωZ)∥Lq(ΩY ×ΩZ ;ξY Z).

Recall that in the case of Nν , we have a common parameter space (Ω, ν). If we set r = s = t and
ξXY = ξY Z = (idΩ × idΩ)#ν, Eqn. (13) becomes

CX Z(πXY • πY Z) = ∥ disp(πXY • πY Z , ωt
X , ωt

Z)∥Lq(Ω;ν)

≤ ∥ disp(πXY , ωt
X , ωt

Y )∥Lq(Ω;ν) + ∥ disp(πY Z , ωt
Y , ωt

Z)∥Lq(Ω;ν)

= CX Y(πXY ) + CYZ(πY Z).
In the case of Nall, we infimize the right side of Eqn. (13) over ξXY ∈ C(νX , νY ) and ξY Z ∈ C(νY , νZ) to
obtain

CX Z(πXY • πY Z) = inf
ξ∈C(νX ,νZ)

∥ disp(πXY • πY Z , ωX , ωZ)∥Lq(ΩX ×ΩZ ;ξ)

≤ ∥ disp(πXY • πY Z , ωX , ωZ)∥Lq(ΩX ×ΩZ ;ξXY •ξY Z)

≤ CX Y(πXY ) + CYZ(πY Z).
Hence, both cost structures in the standard examples respect gluings.

It remains to characterize the distance zero conditions. First consider the case of Nall. For X , Z ∈ Nall,
suppose that there exist a structure-preserving pair of maps Φ : ΩZ → ΩX and φ : Z → X. We use these to
construct couplings as pushforwards:

ξ = (idΩZ
× Φ)#νZ and π = (idZ × φ)#µZ .

It is then straightforward to verify, via the change-of-variables formula, that
CX ,Z(π) ≤ ∥disp(π, ωZ , ωX)∥Lq(ΩZ ×ΩX ;νZ ⊗νX ) = 0,

so that GWC(Z, X ) = 0. Thus, if X and Y are isomorphic pm-nets, it follows by the triangle inequality
of GWC that GWC(X , Y) = 0. Conversely, suppose that GWC(X , Y) = 0. By Proposition 3.23, there exist
couplings ξ ∈ C(νX , νY ) and π ∈ C(µX , µY ) such that
(14) ∥ disp(π, ωs

X , ωt
Y )∥Lq(ΩX ×ΩY ;ξ) = 0.

Define Z := X × Y , µZ := π, ΩZ := ΩX × ΩY , and νZ := ξ. Let φA : Z → A and ΦA : ΩZ → ΩA be the
standard projections for A ∈ {X, Y }, and define ωt

Z as the pullback φ∗
Xω

Φ(t)
X for every t ∈ ΩZ . We claim

that Z := (Z, µZ , ΩZ , νZ , ωZ) is a stabilization of X and Y. The maps φA and ΦA are measure-preserving
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for both A ∈ {X, Y } because of the marginal constraints of π and ξ, respectively. In addition, (ΦX , φX)
satisfies condition (Item 2) of Proposition 3.26 for every (t, z, z′) ∈ ΩZ × Z × Z by definition of ωZ . Hence,
(ΦX , φX) is structure-preserving. The fact that (ΦY , φY ) is structure-preserving follows from Eqn. (14), as∫

ΩZ

(∫
Z2

|φ∗
Xω

ΦX (t)
X (z, z′) − φ∗

Y ω
ΦY (t)
Y (z, z′)|pµZ(dz)µZ(dz′)

)q/p

νZ(dt)

=
∫

ΩX ×ΩY

(∫
(X×Y )2

|ωr
X(x, x′) − ωs

Y (y, y′)|pπ(dx ⊗ dy)π(dx′ ⊗ dy′)
)q/p

ξ(dr ⊗ ds)

= 0.

The above implies ωt
Z(z, z′) = φ∗

Xω
ΦX (t)
X (z, z′) = φ∗

Y ω
ΦY (t)
Y (z, z′) for (νZ ⊗ µZ ⊗ µZ)-almost every (t, z, z′).

Hence, Z is a stabilization of X and Y, so X and Y are isomorphic.
Now consider the case of Nν . If X and Y are fixed-parameter isomorphic, then constructions similar to

those that were used above can be used to show that GWC(X , Y) = 0. On the other hand, suppose that
GWC(X , Y) = 0. The proof that X and Y are fixed-parameter isomorphic is similar to the proof above,
except that we have ΩX = ΩY = Ω and νX = νY = ν, so we define ΩZ = Ω, νZ = ν, and ΦX = ΦY = idΩ.
Proposition 3.23 yields the existence of a coupling π such that ∥ disp(π, ωt

X , ωt
Y )∥Lq(Ω;ν) = 0, and the above

equation becomes∫
Ω

(∫
Z2

|φ∗
Xω

ΦX (t)
X (z, z′) − φ∗

Y ω
ΦY (t)
Y (z, z′)|pµZ(dz)µZ(dz′)

)q/p

ν(dt)

=
∫

Ω

(∫
(X×Y )2

|ωt
X(x, x′) − ωt

Y (y, y′)|pπ(dx ⊗ dy)π(dx′ ⊗ dy′)
)q/p

ν(dt) = 0,

so that Z gives the desired stabilization. □

4. Comparisons and Approximations for Parametric Gromov-Wasserstein Distances

This section compares our parameterized GW distances for general pm-nets with existing distances pro-
posed in the literature for specific classes of pm-nets. We also examine several approximation strategies for
parameterized GW distances.

4.1. Realization as a Z-Gromov-Wasserstein Distance. In this subsection, we fix a parameter space
(Ω, ν) and consider the class of pm-nets Nν from Proposition 3.11. We also fix the cost structure C from
Proposition 3.16, for some choices of p, q ∈ [1, ∞]. As noted in Proposition 3.18, the associated parameterized
GW distance is related to the Z-Gromov–Wasserstein distance [4], and we now make this connection precise.

4.1.1. Z-Gromov-Wasserstein Distances. We take a brief detour to recall the notion of Z-GW distance. Fix
a complete metric space (Z, dZ) and consider a structure of the form X = (X, µX , ωX), where (X, µX) is
a (say, compact) Polish measure space and ωX : X × X → Z is a Z-valued kernel, which we assume to be
bounded (more generally, [4] allows p-integrable kernels, for a given p). Such a structure is referred to in [4]
as a Z-network. For p ∈ [1, ∞], the p-Gromov Wasserstein distance between two Z-networks X and Y is

GWZ
p (X , Y) := 1

2 inf
π∈C(µX ,µY )

∥dZ ◦ (ωX , ωY )∥Lp((X×Y )2;π⊗π),

where the function in the norm is given by

dZ ◦ (ωX , ωY ) : X × Y × X × Y → R
(x, y, x′, y′) 7→ dZ

(
ωX(x, x), ωY (y, y′)

)
.

For context, note that when (Z, dZ) is the real line equipped with its standard metric, the Z-GW frame-
work reduces to the classical GW distance on measure networks.
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4.1.2. Parameterized GW Distances as Z-GW Distances. We now return to the setting of interest, to un-
derstand the parameterized GW distance on Nν as a Z-GW distance. To this end, set (Z, dZ) to be
(Lq(Ω; ν), ∥ · ∥Lq(Ω;ν)), where we are abusing notation and using ∥ · ∥Lq(Ω;ν) as a placeholder for its induced
metric. Let X = (X, µX , Ω, ν, ωX) ∈ Nν . This can be understood as a Z-network X = (X, µX , ωX), where
X = X, µX = µX , and ωX is the Z-valued kernel defined, for all x, x′ ∈ X, t ∈ ΩX , ωt

X(x, x′) ∈ R by

ωX(x, x′) := (t 7→ ωt
X(x, x′)) ∈ Lq(Ω; ν).

This leads to the following comparison result for parameterized GW distance and Z-GW distance, where
notation is the same as above:

Proposition 4.1. For any X , Y ∈ Nν , if p□q then GWC(X , Y)□GWZ
p (X , Y), where □ ∈ {≤, ≥, =}.

Proof. Assuming p ≤ q, we have

2 · GWC(X , Y) = inf
π∈C(µX ,µY )

∥disp(π, ωX , ωY )∥Lq(Ω,ν)

= inf
π∈C(µX ,µY )

∥∥∥ωX ◦ (pX , pX) − ωY ◦ (pY , pY )∥Lp((X×Y )2;π⊗π)
∥∥

Lq(Ω,ν)

≤ inf
π∈C(µX ,µY )

∥∥∥ωX ◦ (pX , pX) − ωY ◦ (pY , pY )∥Lq(Ω,ν)
∥∥

Lp((X×Y )2;π⊗π)

= inf
π∈C(µX ,µY )

∥dZ ◦ (ωX , ωY )∥Lp((X×Y )2;π⊗π)

= 2 · GWZ
p (X , Y),

where we have applied a generalized version of Minkowski’s inequality [2, Proposition 1.3]. The case p ≥ q
follows by a similar argument and these together imply the p = q case. □

4.1.3. Followup Remarks. We conclude this subsection with some remarks on the connection described above.
(1) Theoretical properties of GWZ

p are derived for general choices of (Z, dZ) in [4]. These properties therefore
apply to GWC on Nν in the case where p = q: the induced metric space (after modding out by fixed-
parameter isomorphism; see Theorem 2) is complete, contractible and geodesic, for example.

(2) One could instead define a cost structure C on Nν by integrating in a different order; that is, for p, q < ∞,

CX ,Y(π) := 1
2

(∫
(X×Y )2

(∫
Ω

|ωX(x, x′) − ωY (y, y′)|qπ(dx × dy)π(dx′ × dy′)
)p/q

ν(dt)
)1/p

In this case, one has GWC = GWZ
p (with (Z, dZ) defined as above) for all choices of p, q. The rationale for

our particular choice of cost structure on Nν is that it more naturally generalizes to the cost structure
on the collection of all pm-nets Nall defined in Proposition 3.19.

(3) The parameterized GW distance defined on Nall via Proposition 3.19 is not realized as an instance of a
Z-GW distance (in any obvious way).

4.2. Metrics for Spaces Parameterized by Real Numbers. The pm-nets described in Proposition 3.4
through Proposition 3.7 are all defined over a parameter space (Ω, ν) consisting of a compact set of real
numbers, endowed with some measure. In this subsection, we compare our approach to existing metrics in
the literature, which were designed to compare specialized pm-net structures.

4.2.1. Time-Varying Metric Spaces. Fix a parameter space (Ω, ν) consisting of a compact interval of real
numbers endowed with some probability measure (e.g., Ω = [0, 1], ν is Lebesgue measure) and consider the
class of pm-nets Ntvm consisting of time-varying metric measure spaces (Proposition 3.4); that is, an element
of Ntvm is a pm-net of the form X = (X, µX , Ω, ν, dX), where, for each t ∈ Ω, dt

X is a metric inducing the
given topology on X. Observe that this is a proper subclass of Nν , due to the constraint that the kernel is
a metric for each parameter value. We now provide examples of distances between objects of Ntvm which
have been previously introduced in the literature, and compare them to our approach.

Example 4.2 (Sturm’s Distance). In [42], Sturm introduced a distance on a more general class of objects
of the form X =

(
X, (µt

X)t∈Ω, (dt
X)t∈Ω

)
, where

• X is a Polish space;
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• Each dt
X is a metric generating the topology of X; Sturm also assumed that each dt

X is geodesic, but this
property is not important for our discussion;

• µt
X is a time-varying family of Borel measures which are absolutely continuous with respect to some

reference probability measure µX .
We refer to such a structure as a generalized time-varying metric measure space. Clearly, this concepts
restricts to our notion of time-varying metric space by imposing the constraint that µt

X = µX for all t.
Given two generalized time-varying metric measure spaces X and Y, Sturm defines a distance between

them as
(15)

DSt(X , Y) := inf
dX⊔Y ,π

(∫
Ω

∫
X×Y

dt
X⊔Y (x, y)2π(dx ⊗ dy)ν(dt)

)1/2
+
∫

Ω

∫
X×Y

|f t
X(x) − f t

Y (y)|π(dx ⊗ dy)ν(dt),

where the infimum is over
• π ∈ C(µX , µY ), i.e., couplings of the reference measures,
• (dt

X⊔Y )t∈Ω is a parameterized family of metric couplings, or metrics dt
X⊔Y on the disjoint union which

restrict to dt
X and dt

Y , respectively, on the appropriate subsets, for almost every t ∈ Ω, and
• (f t

X)t∈Ω is chosen so that µt
X = eft

X µX for all t, and similarly for (f t
Y )t∈Ω.

Restricting to the subspace Ntvm, the second term of Eqn. (15) vanishes and Eqn. (15) further simplifies to

DSt(X , Y) = inf
dX⊔Y ,π

(∫
Ω

∫
X×Y

dt
X⊔Y (x, y)2π(dx ⊗ dy)ν(dt)

)1/2
=
∥∥∥∥ inf

dX⊔Y

Wdt
X⊔Y

2 (µX , µY )
∥∥∥∥

L2(Ω;ν)
,

that is, an integrated version of Sturm’s well-known L2-transportation distance on the space of metric measure
spaces [41] (we abuse notation here, and consider µX and µY as measures on the disjoint union, in the obvious
way). The transportation distance is known to upper bound (classical) GW distance, and the proof in [29]
can be extended to show

GWC(X , Y) ≤ DSt(X , Y),
where the cost structure C comes from Proposition 3.16, with p = q = 2.

Example 4.3 (Integrated Gromov-Hausdorff Distance). A simple metric on Ntvm, which has primarily been
used in the topological data analysis (TDA) literature [32,52], is the integrated Gromov-Hausdorff distance,
defined as

IGH(X , Y) :=
∫

Ω
GH
(
(X, dt

X), (Y, dt
Y )
)
ν(dt),

where GH is the standard Gromov-Hausdorff distance between compact metric spaces. Arguments presented
in [29] can be adapted to show that

GWC(X , Y) ≤ IGH(X , Y),
where C is as in Proposition 3.16 with p = ∞ and q = 1.

Example 4.4 (Slack Interleaving Distance). An alternative metric on Ntvm, based on constructions used
in TDA, was in introduced in [23]. We review the details here. Given continuous functions f, g : R → R≥0
and λ ≥ 0, the λ-slack interleaving distance between the functions is defined by

dλ(f1, f2) := inf
{

ε ∈ [0, ∞] | ∀t ∈ R, min
s∈[t−ε,t+ε]

fi(s) ≤ fj(t) + λε, i, j = 1, 2
}

.

For p ∈ [1, ∞], the (p, λ)-Gromov-Wasserstein distance between X , Y ∈ Ntvm is defined as

inf
π∈C(µX ,µY )

∥∥dλ ◦ (dX × dY )
∥∥

Lp(π⊗π).

Taking the cost structure
CX ,Y(π) =

∥∥dλ ◦ (dX × dY )
∥∥

Lp(π⊗π),

we see that the (p, λ)-GW distance is an instance of a parameterized GW distance. We note that it was
shown in [4, Proposition 3.13] that the (p, λ)-GW distance can also be realized as a Z-GW distance.
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4.2.2. Heat Kernels. We consider classes of pm-nets induced by heat kernels. For the rest of this subsection,
we temporarily abuse terminology and drop the assumptions that the parameter space in a pm-net is compact,
and that the measure on this space is a probability measure. This is only for the sake of avoiding technical
details; in this setting, the basic definitions introduced in the paper related to parameterized GW distances
are still valid, but certain theoretical properties are no longer guaranteed. As we are only concerned here
with estimates of the parameterized GW distances, this issue is not a concern.

First, consider the class NHK of pm-nets of the form X = (X, µX , Ω, ν, ωX), where
• Ω = R>0 := (0, +∞) (with its usual topology, hence a non-compact space) and ν is Lebesgue measure

(not a probability measure),
• X is a compact Riemannian manifold endowed with normalized Riemannian volume µX , and
• ωt

X : X ×X → R is the normalized heat kernel of X (with respect to the given Riemannian metric), where
normalized means that limt→∞ ωt(x, x′) = 1 for all x, x′ ∈ X.

Example 4.5 (Spectral Gromov-Wasserstein distance). Mémoli defined a distance GWspec
p to compare two

Riemannian manifolds using their heat kernels [28, 30]; in our terminology, this is a distance on the class
NHK defined above. Here, we recall the definition of Mémoli’s distance and rewrite it as a parametrized
GW distance. To recall the original definition, we first define an auxiliary function c(t) := e−(t+t−1). Given
X , Y ∈ NHK, we define a cost

Γspec
X,Y,t(x, y, x′, y′) := |ωt

X(x, x′) − ωt
Y (y, y′)|

and
GWspec

p (X, Y ) := inf
π∈C(VolX ,VolY )

sup
t>0

c2(t) · ∥Γspec
X,Y,t∥Lp((X×Y )2;π⊗π),

where p ∈ [1, ∞].
Given p, q ∈ [1, ∞], we define a new cost structure C by

CX ,Y(π) :=
∥∥∥c2(t) · ∥Γspec

X,Y,t∥Lp((X×Y )2,π⊗π)

∥∥∥
Lq(Ω,ν)

for some π ∈ C(VolX , VolY ). Then GWspec
p (X, Y ) = GWC(X , Y) when q = ∞. We note that a similar

interpretation of GWspec
p as a Z-GW distance was provided in [4, Proposition 3.12], but that this result only

gives an upper bound due to issues similar to those that arose in the proof of Proposition 4.1.

Next we consider the class NGHK of graph heat kernels X = (X, µX , Ω, ν, ωX), where (Ω, ν) is as above, X
is the set of nodes of a graph, endowed with some probability measure µX , and ωt

X is the graph heat kernel
at scale t.

Example 4.6 (Graph Heat Kernels). Chowdhury and Needham [9] studied GW distances between graph
heat kernels at a fixed scale parameter t. Their approach contrasts with that of the present paper, which
aims to incorporate information across all scales when comparing pm-nets. In [9], the scale parameter was
treated as a tunable hyperparameter. From a high-level perspective, this can be viewed as computing GWC
while allowing additional flexibility in the choice of the measure ν; for example, permitting it to collapse to
a Dirac measure at a single scale t. This viewpoint aligns with the feature selection approach described in
Sec. 5.5.

4.3. Approximation by Wasserstein Distance. In this subsection, we derive a lower bound on the
parameterized GW distance by a certain Wasserstein distance.

4.3.1. Wasserstein Distance Over the GW Space. We begin by setting up necessary preliminary concepts.
Let M denote the class of measure networks (by Proposition 3.3, M is equivalent to the class Nν , where
(Ω, ν) is a one-point space, but we introduce this additional notation for bookkeeping purposes). For the rest
of this subsection, we let ∼ denote the weak isomorphism equivalence relation on M (Proposition 2.4); for
a measure network X , we let [X ] denote its equivalence class, and we let M⧸∼ denote the set of equivalence
classes, that is, measure networks, considered up to weak isomorphism.

Given p ∈ [1, ∞], let GWp be the p-GW distance on M. Considering elements of M up to weak isomor-
phism, GWp induces a complete and separable metric on M⧸∼: completeness follows essentially from [43, The-
orem 5.8], which enforces an additional symmetry condition on the kernels that is not intrinsically necessary
for the proof; separability is a standard argument, but a precise reference is [4, Proposition 4.8]. We abuse
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notation and continue to denote the induced metric by GWp. Therefore (M⧸∼, GWp) is a Polish metric space,
and measure theory on it is sufficiently well-behaved to consider the Wasserstein distance between distri-
butions defined over it. Throughout the rest of this subsection, we use WGWp

q to denote the q-Wasserstein
distance on (M⧸∼, GWp) (see Sec. 2.2).

4.3.2. Lower Bound on Parameterized GW Distance. Now consider an arbitrary pm-net X ∈ Nall. For any
t ∈ ΩX , the triplet Xt := (X, µX , ωt

X) is a measure network. We define the map

mX : ΩX → M⧸∼
t 7→ [Xt],

and the associated pushforward measure νX := (mX )#νX on M⧸∼. For this to be well-defined, we require
mX to be measurable, which is verified by the following Proposition 4.7.

Lemma 4.7. The map mX is continuous.

Proof. We factor mX as mX = q ◦ m̂X , where m̂X : ΩX → M is the map t 7→ Xt and q : M → M⧸∼
is the quotient map. It suffices to prove that m̂X is continuous, with respect to the topology induced
by the pseudometric GWp. Let us metrize ΩX via some choice dΩX ,p; the particular metric is irrelevant,
and we only assume that it induces the given Polish topology on ΩX . Let ϵ > 0. As parameterized
network kernels are assumed to be L∞ continuous, there exists δ > 0 such that dΩX ,p(s, t) < δ implies
∥ωs

X − ωt
X∥L∞(X×X;µX ⊗µX ) < ϵ. We have

GWp(Xs, Xt) ≤ GW∞(Xs, Xt) ≤ ∥ωs
X − ωt

X∥L∞(X×X;µX ⊗µX ).

Here, the first inequality follows from [29, Theorem 5.1 (h)]; that result proves the inequality in the case of
metric measure spaces, but the proof is based on properties of Lp-norms and applies to more general measure
networks. The second inequality follows by considering the ∞-distortion of the identity coupling of µX with
itself. □

We are now able to state the main result of this subsection.

Theorem 3. Let p, q ∈ [1, ∞] and let C be the cost structure from Proposition 3.19. For X , Y ∈ Nall, we
have

WGWp
q (νX , νY ) ≤ GWC(X , Y).

The proof will use the following general measure theory result.

Lemma 4.8. Let (X, µX) and (Y, µY ) be Polish probability spaces, X ′ and Y ′ Polish spaces, and f : X → X ′

and g : Y → Y ′ measurable maps. Then

C(f#µX , g#µY ) = {(f × g)#π | π ∈ C(µX , µY )},

where f × g : X × Y → X ′ × Y ′ is the product map (x, y) 7→ (f(x), g(y)).

Proof. One inclusion is straightforward: it is easy to show that a measure of the form (f ×g)#π is a coupling
of f#µX and g#µY , for π ∈ C(µX , µY ).

To prove the remaining inclusion, let {µX(· | x′)}x′∈X′ denote the disintegration of µX with respect to f .
That is, for each x′ ∈ X ′, µX(· | x′) is a Borel probability measure on X satisfying

µX(A) =
∫

X′
µX(A | x′)f#µX(dx′) and f#µX(· | x′) = δx′ ,

where δx′ denotes the Dirac measure on X ′ (see, e.g., [1, Section 5.3]). Likewise, let {µY (· | y′)}y′∈Y ′ denote
the disintegration of µY with respect to g.

Given ξ ∈ C(f#µX , g#µY ), define a measure π on X × Y for a product Borel set A × B as

π(A × B) =
∫

X′×Y ′
µX(A | x′)µY (B | y′)ξ(dx′ ⊗ dy′).
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We claim that π ∈ C(µX , µY ) and that (f × g)#π = ξ. The first point follows by checking marginals:

π(A × Y ) =
∫

X′×Y ′
µX(A | x′)µY (Y | y′)ξ(dx′ ⊗ dy′)

=
∫

X′×Y ′
µX(A | x′)ξ(dx′ ⊗ dy′)

=
∫

X′
µX(A | x′)f#µX(dx′) = µX(A),

where we have used that µY (· | y′) is a probability measure and the marginal condition on ξ. The fact that
π(X × B) = µY (B) follows similarly.

Finally, we prove that (f × g)#π = ξ. We will use the following identity, which holds for any x′ ∈ X ′, and
which follows by the property that f#µX(· | x′) = δx′ :

(16)
∫

f−1(A′)
µX(dx | x′) = 1A′(x′),

where 1A′ denotes the indicator function for a Borel set A′. Proceeding with the proof, let A′ × B′ be a
product Borel set in X ′ × Y ′. Then

(f × g)#π(A′ × B′) =
∫

A′×B′
(f × g)#π(dx′ ⊗ dy′)

=
∫

f−1(A′)×g−1(B′)
π(dx ⊗ dy)

=
∫

X′×Y ′

∫
g−1(B′)

∫
f−1(A′)

µX(dx | x′)µY (dy | y′)ξ(dx′ ⊗ dy′)(17)

=
∫

X′×Y ′

∫
g−1(B′)

1A′(x′)µY (dy | y′)ξ(dx′ ⊗ dy′)(18)

=
∫

X′×Y ′
1A′(x′)1B′(y′)ξ(dx′ ⊗ dy′)(19)

=
∫

A′×B′
ξ(dx′ ⊗ dy′) = ξ(A′ × B′),

where Eqn. (17) follows from the definition of π and Fubini’s Theorem, and Eqn. (18) and Eqn. (19) both
follow by applying Eqn. (16) to the iterated integrals. □

Proof of Theorem 3. First consider the q < ∞ case (p ∈ [1, ∞] is arbitrary). For any π ∈ C(µX , µY ), we
have

WGWp
q (νX , νY ) = inf

ξ∈C(νX ,νY )

(∫
M×M

GWp([X ], [Y])q ξ(d[X ] ⊗ d[Y])
)1/q

= inf
ξ∈C(νX ,νY )

(∫
M×M

GWp([X ], [Y])q (mX × mY)#ξ(d[X ] ⊗ d[Y])
)1/q

(20)

= inf
ξ∈C(νX ,νY )

(∫
ΩX ×ΩY

GWp(Xs, Yt)q ξ(ds ⊗ dt)
)1/q

(21)

≤ inf
ξ∈C(νX ,νY )

(∫
ΩX ×ΩY

1
2 disp(π, ωs

X , ωt
Y )q ξ(ds ⊗ dt)

)1/q

,

where Eqn. (20) follows from Proposition 4.8 and Eqn. (21) follows from a change of variables, and the fact
that GWp is invariant over equivalence classes. The result then follows by infimizing over π ∈ C(µX , µY ) on
the right-hand side.

Finally, consider the q = ∞ case. The work above shows that for any π ∈ C(µX , µY ) and any ξ ∈
C(νX , νY ),

WGWp
∞ (νX , νY ) = lim

q→∞
WGWp

q (νX , νY ) ≤ lim
q→∞

1
2∥disp(π, ωX , ωY )∥Lq(ξ) = 1

2∥disp(π, ωX , ωY )∥L∞(ξ),
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where the first equality follows from [15, Proposition 3]. The result once again follows by infimizing the
right-hand side. □

4.3.3. Lower Bound by Weight Distribution. We now utilize Theorem 3 to give further lower bounds on
parameterized GW distances. These are given in terms of a new invariant of pm-nets, defined below.

Definition 4.9 (Weight Distribution). Consider the function (see [8, 29])
M⧸∼ → P(R)

[Y] 7→ (ωY )#(µY ⊗ µY ).
(22)

Let X be a pm-net and let νX ∈ P(R) be as in Theorem 3 (Sec. 4.3.2). The weight distribution of X is the
measure ∆X ∈ P

(
P(R)

)
given by the pushforward of νX by the map Eqn. (22).

In Proposition 4.9, the weight distribution defines an invariant of pm-nets which takes the form of a
probability distribution over the space of probability distributions, denoted as P

(
P(R)

)
. Such an invariant

may appear to be rather unwieldy, but we show below that it is stable and, moreover, that it is easy to
compute in certain circumstances.

Corollary 4.10. The weight distribution is a stable invariant of pm-nets. That is, let X and Y be pm-
nets, let νX and νY be as in Theorem 3, and let C be the cost structure from Proposition 3.19, for some
p, q ∈ [1, ∞]. Then

(23) WWP(R)
p

q (∆X , ∆Y) ≤ 2 · GWC(X , Y).

In Eqn. (23), the superscript in WWP(R)
p

q indicates that the Wasserstein distance Wq is taken over the
metric space (P(R), WP(R)

p ); that is, it is a Wasserstein distance on the Wasserstein space. The proof will
use a lemma, whose proof follows directly from (the easy direction of) Proposition 4.8.

Lemma 4.11. Let f : X → Y be a k-Lipschitz map between Polish metric spaces (X, dX) and (Y, dY ).
Then the pushforward f# : P(X) → P(Y ) is a k-Lipschitz map with respect to WdX

q and WdY
q .

Proof of Proposition 4.10. It is shown in [8, Theorem 3.1] that the map Eqn. (22) is 2-Lipschitz, with respect
to GWp and WP(R)

p . By Proposition 4.11, the associated pushforward map P
(M⧸∼

)
→ P

(
P(R)

)
is 2-

Lipschitz with respect to WGWp
q and WWP(R)

p
q . From Theorem 3, we have

WWP(R)
p

q (∆X , ∆Y) ≤ 2 · WGWp
q (νX , νY ) ≤ 2 · GWC(X , Y).

□

Remark 4.12 (Computation). For pm-nets X and Y defined over finite sets X and Y and finite pa-
rameter spaces ΩX and ΩY , respectively, the right-hand-side of Eqn. (23) involves computing Wasserstein
distance between finitely-supported distributions on the Wasserstein space

(
P (P (R)) , WP(R)

p

)
. It is there-

fore polynomial-time computable (in the magnitudes of X, Y, ΩX , ΩY ). This gives a tractable lower estimate
of the parameterized GW distance.

4.3.4. Weight Distributions for Random Graph Models. We now specialize the results of Sec. 4.3.3 to the
setting of random graphs. Consider a random graph model X , in the sense of Proposition 3.8, and suppose
that |X| = n and that µX is uniform. For the sake of simplifying the discussion, choose an ordering of X
and consider the kernels ωt

X arising in this model as symmetric, binary, n × n matrices with zeros on their
diagonals (recall that we use adjacency kernels in this example). In this case, the distribution νX ∈ P

(M⧸∼
)

can be considered as a discrete probability measure on the finite set of such matrices (the set has cardinality
n(n − 1)/2). Given such a matrix ωt

X , the distribution (ωt
X)#(µX ⊗ µX) arising from Eqn. (22) is supported

on {0, 1}. Indeed, the weight on the point 1 is exactly k/n2, where k is the number of non-zero entries
appearing in the matrix; that is, k is twice the number of edges appearing in the graph t. In light of this
interpretation, the information contained in (ωt

X)#(µX ⊗ µX) is exactly the total number of edges in the
graph t, and we refer to the weight distribution ∆X in this case as the distribution of total edges.

The discussion above immediately leads to the following specialization of Proposition 4.10, stated here
somewhat informally.
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Corollary 4.13. The distribution of total edges is a stable invariant of a random graph model.

Example 4.14 (Erdős-Rényi Model). For a concrete example, consider an Erdős-Rényi random graph model
X on n nodes with probability ρ ∈ [0, 1] that any pair of nodes is connected. A straightforward calculation
shows that the distribution of total edges is given by

∆X =
N∑

k=0

(
N

k

)
ρk(1 − ρ)N−kδ k

n2
,

where N = n(n − 1)/2, and δ k
n2

is a shorthand for the Dirac mass on P(R) located at the distribution
supported on {0, 1} with weight k/(n2) at 1 and 1 − k/(n2) at 0. This recovers the well-known fact that the
total number of edges in an Erdős-Rényi graph is binomially distributed.

Remark 4.15 (Computation for Random Graph Models). When X is a random graph model, in par-
ticular, with each ωt

X taking values only in {0, 1}, the distribution of total edges ∆X is especially easy
to work with from a computational perspective. In this setting, the cost matrix used in the compu-
tation of WWP(R)

1
q (∆X , ∆Y) involves 1-Wasserstein distances between the measures (ωt

X)#(µX ⊗ µX) and
(ωt

Y )#(µY ⊗ µY ). Each of these measures is supported on {0, 1}, and it is not hard to show (via the
semi-explicit formula for Wasserstein distances on the real line [48, Remark 2.19]) that this is given by

|(ωt
X)#(µX ⊗ µX)({1}) − (ωt

Y )#(µY ⊗ µY ))({1})|.
This makes the lower bound of Proposition 4.10 (or Proposition 4.13) very efficient to work with in the
random graph setting; see Sec. 5.3.2 for a numerical example.

4.4. Sample Approximation. In this subsection, we consider random graphs and random metric spaces,
as introduced in Proposition 3.8 and Proposition 3.9. As previously noted, one typically does not have access
to the full distribution over the parameter space, but only to i.i.d. samples of measure networks drawn from
νX . Accordingly, this subsection focuses on convergence results for this sampling process. Throughout, we
employ the cost structure C from Proposition 3.19.

4.4.1. Random Measure Networks. We begin by focusing on a broadened version of the random metric space
model of Proposition 3.9.

Definition 4.16 (Random Measure Network Model). A random measure network model is a pm-net X
with the property that ΩX ⊂ L∞(X × X; µX ⊗ µX) and ωt

X = t. We view ΩX as a metric space equipped
with the metric dΩX ,p induced by the Lp-norm ∥ · ∥Lp(X×X;µX ⊗µX ).

Let X be a random measure network model. We define the empirical pm-net
XTN

:= (X, µX , TN , νN , ωN )

by sampling N kernels TN = {t1, . . . , tN } i.i.d. according to νX and setting νN :=
∑N

i=1
1
N δti

and ωti

N = ti.
For any t ∈ ΩX , let Xt be the trivial pm-net from Proposition 3.3 (alternatively, this is equivalent to the
associated measure network, utilized in Sec. 4.3.2).

We begin with some basic lemmas.

Lemma 4.17. Let (A, α) and (B, β) be probability spaces such that |B| = 1 (i.e., B is a one-point set).
Then C(α, β) consists of a single element ξ = (p−1

A )#α that satisfies
∫

A×B
F (a, b) ξ(da ⊗ db) = Eα[F (•, b)] :=∫

A
F (a, b) α(da) for any measurable map F : A × B → R.

Proof. Let ξ ∈ C(α, β). Since B is a one-point set, the projection pA : A×B → A is a bijection, so (pA)#ξ = α

forces ξ = (p−1
A )#α. Then

∫
A×B

F (a, b) ξ(da⊗db) =
∫

A×B
F (a, b) (p−1

A )#α(da⊗db) =
∫

A
F (p−1

A (a)) α(da) =∫
A

F (a, b) α(da). □

Lemma 4.18. For p ∈ [1, ∞] and q ∈ [1, ∞), GWC(X , Xt) = inf
π∈C(µX ,µX )

EνX
[disp(π, •, t)q]1/q.

Proof. This follows by setting A = ΩX , α = νX , B = {t} and Fπ(s, t) = disp(π, s, t)q in Proposition 4.17. □

This leads to our first sampling convergence result.

Proposition 4.19. For p ∈ [1, ∞] and q ∈ [1, ∞), GWC(XTN
, Xt) → GWC(X , Xt) almost surely as N → ∞.
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Proof. Given π ∈ C(µX , µX), define Fπ : TN → R≥0 by Fπ(ti) := disp(π, ti, t). By the Strong Law of Large
Numbers, EνN

[F q
π ] → EνX

[F q
π ] almost surely. Taking infimum over C(µX , µX) and using Proposition 4.17

yields
GWC(XTN

, Xt) = inf
π∈C(µX ,µY )

EνN
[F q

π(s)]1/q → inf
π∈C(µX ,µY )

EνX
[F q

π(s)]1/q = GWC(X , Xt)

almost surely. □

Remark 4.20 (WdΩX ,p

q metrizes weak convergence on P(ΩX)). Let p ∈ [1, ∞] and q ∈ [1, ∞). [47, Theorem
6.9] states that WdΩX ,p

q parametrizes weak convergence on the set of measures νX ∈ P(ΩX) that have finite
q moment. However, any νX ∈ P(ΩX) has finite moments of all orders by compactness of ΩX because if Dp

is the diameter of (ΩX , dΩX ,p) and q < ∞,∫
ΩX

∥t − t0∥q
ΩX ,p νX(dt) ≤

∫
ΩX

Dq
p νX(dt) = Dq

p < ∞.

Hence, WdΩX ,p

q parametrizes weak convergence on P(ΩX) for any 1 ≤ q < ∞.

Hence, we can state our next sampling convergence result for all measures νX ∈ P(ΩX).

Proposition 4.21. Let p ∈ [1, ∞] and q ∈ [1, ∞). For any νX ∈ P(ΩX), GWC(XTN
, X ) ≤ WdΩX ,p

q (νN , νX)
and, thus, GWC(XTN

, X ) → 0 almost surely as N → ∞.

Proof. Let ∆ := (idX × idX)#µX be the diagonal coupling in C(µX , µX). For p < ∞, we have

disp(∆, ti, t) =
(∫

(X×X)2
|ti(x, x′) − t(y, y′)|p ∆(dx ⊗ dy)∆(dx′ ⊗ dy′)

)1/p

=
(∫

X×X

|ti(x, x′) − t(x, x′)|p µX(dx)µX(dx′)
)1/p

= dΩX ,p(ti, t),

while
dis∞(∆, ti, t) = sup

(x,x′),(y,y′)∈supp(∆)
|ti(x, y) − t(x′, y′)| = sup

x,x′∈X
|ti(x, x′) − t(x, x′)| = dΩX ,∞(ti, t).

Then

GWC(XTN
, X )q = inf

ξ∈C(νN ,νX )
inf

π∈C(µX ,µX )

∫
TN ×ΩX

disp(π, ti, t)q ξ(dti ⊗ dt)

≤ inf
ξ∈C(νN ,νX )

∫
TN ×ΩX

disp(∆, ti, t)q ξ(dti ⊗ dt)

= inf
ξ∈C(νN ,νX )

∫
TN ×ΩX

∥ti − t∥q
ΩX ,p ξ(dti ⊗ dt)

= WdΩX ,p

q (νN , νX)q.

This yields the first claim. Since WdΩX ,p

q metrizes weak convergence on P(ΩX) by Proposition 4.20, and the
empirical measures νN converge (set-wise, hence weakly) to νX almost surely, WdΩX ,p

q (νN , νX) → 0 almost
surely as N → ∞. □

This quickly leads to our main sampling convergence result.

Theorem 4. Let p ∈ [1, ∞] and q ∈ [1, ∞). Let X and Y be random measure network models, as in
Proposition 4.16. Let XTN

and YSN
be their respective empirical pm-nets. Then

|GWC(XTN
, YSN

) − GWC(X , Y)| ≤ GWC(XTN
, X ) + GWC(YSN

, Y),
and thus, GWC(XTN

, YSN
) → GWC(X , Y) almost surely as N → ∞.

Proof. By the triangle inequality,
GWC(XTN

, YSN
) ≤ GWC(XTN

, X ) + GWC(X , Y) + GWC(Y, YSN
), and

GWC(X , Y) ≤ GWC(X , XTN
) + GWC(XTN

, YSN
) + GWC(YSN

, Y).
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Hence,
|GWC(XTN

, YSN
) − GWC(X , Y)| ≤ GWC(XTN

, X ) + GWC(YSN
, Y),

and the right-hand-side converges almost surely to zero by Proposition 4.21. □

From Proposition 4.21, the triangle inequality for Wasserstein distances, the argument in the proof of
Theorem 4, and Proposition 4.10, we deduce the following corollary.

Corollary 4.22. With the same notation and setup as Theorem 4, the weight distributions satisfy

WWP(R)
p

q (∆XTN
, ∆X ) → 0 and WWP(R)

p
q (∆XTN

, ∆YSN
) → WWP(R)

p
q (∆X , ∆Y)

almost surely as N → ∞.

Proposition 4.21 implies that GWC(XTN
, X ) converges towards 0 no faster than WdΩX ,p

q (νN , νX) does.
Likewise, the convergence of GWC(XTN

, YSN
) towards GWC(X , Y) in Theorem 4 is dominated by terms of the

form GWC(XTN
, X ) and thus, by Wasserstein distances. Thanks to existing results on rates of convergence of

Wasserstein distances, we can quantify the rate of convergence in Proposition 4.21 and Theorem 4. Although
the results we cite hold for measures on Rd and νX is defined on ΩX , the elements of ΩX are network functions
which can be embedded into Rd for some fixed d. We just need to restrict to finite pm-nets in order for
d < ∞. Following [14], we use the notation MRd,r(µ) :=

∫
Rd ∥v∥r µ(dv) where µ is a measure and ∥ · ∥ is a

norm, both defined on Rd. Below, we use ∥ · ∥ΩX ,p as short hand for the Lp-norm, restricted to ΩX .

Proposition 4.23. Let p ∈ [1, ∞] and q ∈ [1, ∞). Let X and Y be random measure network models with
n := |X|, m := |Y | and m ≤ n < ∞. Let XTN

and YSN
be their respective empirical pm-nets for some

TN ⊂ ΩX and SN ⊂ ΩY with |TN | = |SN | = N . Define DX := supt∈ΩX
∥t∥ΩX ,p and DY := supt∈ΩY

∥t∥ΩY ,p.
Let d := n2. Then there exist constants C = C(p, q, n) and C ′ = C ′(p, q, n, m) such that

E [GWC(XTN
, X )q] ≤ CDq

X ·


N−1/2 if q > d/2,

N−1/2 log(1 + N) if q = d/2,

N−q/d if 0 < q < d/2.

and

E [|GWC(XTN
, YSN

) − GWC(X , Y)|] ≤ C ′(DX + DY ) ·


N−1/2q if q > d/2,

N−1/2q log(1 + N)1/q if q = d/2,

N−1/d if 0 < q < d/2.

If X and Y are random metric space models instead (see Proposition 3.9), then the same bounds hold with
d = n(n − 1)/2 instead of d = n2.

Proof. Given a labelling X = {x1, x2, . . . , xn}, any function f ∈ Lp(X × X, µX ⊗ µX) is represented by a
matrix Mf ∈ Rn×n defined by (Mf )ij = f(xi, xj). We define the linear function Φn×n : Lp(X × X, µX ⊗
µX) → Rn×n by sending f to Mf . Since X is finite, any f : X × X → R belongs to Lp(X × X, µX ⊗ µX),
so Φn×n has an inverse given by Φ−1

n×n(M)(xi, xj) = Mij for all M ∈ Rn×n. This makes Φn×n into an
isomorphism of vector spaces.

If X and Y are random metric space models, let Lp
Sym be the linear subspace of Lp(X × X, µX ⊗ µX) of

symmetric functions with 0 diagonal. As the dimension of Lp
Sym is n(n−1)/2, define ΦSym : Lp

Sym → Rn(n−1)/2

to be the coordinate map of Lp
Sym with respect to the standard basis of Rn(n−1)/2. As before, ΦSym is an

isomorphism of vector spaces.
The rest of the proof proceeds analogously for both random measure network and metric space models, so

we will fix the notation Lp
X and Φ to mean Lp(X × X, µX ⊗ µX) and Φn×n if X and Y are random measure

network models and Lp
Sym and ΦSym if X and Y are random metric space models instead. Let ∥ · ∥ΩX ,p be

the Lp norm on Lp
X . Since Φ is an isomorphism, the function ∥v∥Rd,p := ∥Φ−1(v)∥ΩX ,p defines a norm on

Rd. Recall that ΩX ⊂ Lp
X by definition, so any measure νX ∈ P(ΩX) extends to a measure on Lp

X . Hence,
Φ#νX is a measure on Rd with support Φ(ΩX) such that

MRd,r(Φ#νX) =
∫
Rd

∥v∥r
Rd,p Φ#νX(dv) =

∫
ΩX

∥Φ(t)∥r
Rd,p νX(dt) =

∫
ΩX

∥t∥r
ΩX ,p νX(dt).
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Moreover, supr>0 MRd,r(Φ#νX)1/r = supt∈ΩX
∥t∥ΩX ,p = DX . For any other measure ν′

X ∈ P(ΩX) ⊂ P(Lp
X),

we have, for Wq denoting the Wasserstein distance over the appropriate Euclidean space,

Wq(Φ#νX , Φ#ν′
X)q = inf

ξ∈C(Φ#νX ,Φ#ν′
X

)

∫
Rd×Rd

∥v − v′∥q
Rd,p

ξ(dv ⊗ dv′)

= inf
ξ′∈C(νX ,ν′

X
)

∫
Rd×Rd

∥v − v′∥q
Rd,p

(Φ × Φ)#ξ′(dv ⊗ dv′)

= inf
ξ′∈C(νX ,ν′

X
)

∫
Lp

X
×Lp

X

∥Φ(t) − Φ(t′)∥q
Rd,p

ξ′(dt ⊗ dt′)

= inf
ξ′∈C(νX ,ν′

X
)

∫
Lp

X
×Lp

X

∥t − t′∥q
ΩX ,p ξ′(dt ⊗ dt′)

= WdΩX ,p

q (νX , ν′
X)q.

We used Proposition 4.8 in the second line and the fact that the support of ξ′ is ΩX × ΩX in the last.
Now that we have pushed our measures into Rd, we can use the bounds of Fournier [14]. Let νN be the

empirical measure defined by TN . By Proposition 4.21,

GWC(XTN
, X )q ≤ WdΩX ,p

q (νN , νX)q = Wq(Φ#νN , Φ#νX)q,

and thus, E [GWC(XTN
, X )q] ≤ E [Wq(Φ#νN , Φ#νX)q]. If q ̸= d/2, we apply [14, Theorem 2.1] (replacing

their p, q, m with q, r, p respectively) to get

E [Wq(Φ#νN , Φ#νX)q] ≤ 2qκ
(p)
d,q[M (p)

r (Φ#νX)]q/rθ
(p)
d,q,r · N−e

for some functions κ
(p)
d,q and θ

(p)
d,q,r; see [14, Theorem 2.1] for their closed-form expressions. The value of e

depends on q and d: e = 1/2 if q > d/2 and e = q/d otherwise. Fournier noted in [14, Section 2.4] that
θ

(p)
d,q,r is a decreasing function with limr→∞ θ

(p)
d,q,r = 1, so together with MRd,r(Φ#νX)1/r ≤ DX , we remove

the dependency on r from the inequality above:

E [Wq(Φ#νN , Φ#νX)q] ≤ inf
r>0

2qκ
(p)
d,q[M (p)

r (Φ#νX)]q/rθ
(p)
d,q,r · N−e

≤ inf
r>0

2qκ
(p)
d,qDq

Xθ
(p)
d,q,r · N−e

= 2qκ
(p)
d,qDq

X · N−e.

Hence, we obtain the first claim with C(p, q, n) := 2qκ
(p)
d,qDq

X if q ̸= d/2. If q = d/2, we get an analogous
bound with e = 1/2, but the functions κ

(p)
d,p,N and θ

(p)
d,q,r,N depend on N . However, θ

(p)
d,q,r,N is still decreasing

in r and has limr→∞ θ
(p)
d,q,r,N = 1, while κ

(p)
d,p,N = O(ln(1 + N)). The result follows as above.

For the second claim, we embed ΩY in Rd instead of the smaller space Rm×m (or Rm(m−1)/2 for random
metric space models) as the rates are dominated by the convergence in Rd anyways. Then by Theorem 4
and Jensen’s inequality E[X]q ≤ E[Xq] for q ≥ 1, we get

E |GWC(XTN
, YSN

) − GWC(X , Y)| ≤ E [GWC(XTN
, X )] + E [GWC(YSN

, Y)]

≤ E [GWC(XTN
, X )q]1/q + E [GWC(YSN

, Y)q]1/q
.

The bound on E |GWC(XTN
, YSN

) − GWC(X , Y)| follows by applying the first claim to each term. □

Since p = q = 2 is a common choice in the upcoming experiments, we specialize the result above to these
values.

Corollary 4.24. With the same notation as Proposition 4.21, but with the specialization p = q = 2 and
n > 2, we have

E
[
GWC(XTN

, X )2] ≤ CD2
X · N−2/n2

, and

E |GWC(XTN
, YSN

) − GWC(X , Y)| ≤ C ′(DX + DY )N−1/n2
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Proof. These bounds are obtained by simplifying the conclusion of Proposition 4.23 with d = n2 and q = 2.
For example, the conditions q > d/2, q = d/2 and 0 < q < d/2 become n2 < 4, n2 = 4 and 4 < n2, which in
turn simplify to n < 2, n = 2 and n > 2, respectively. We only retain the n > 2 case. □

Once again, random metric space models have slightly better convergence rates.

Corollary 4.25. Under the same assumptions as Proposition 4.21, except that X and Y are random metric
space models, d = n(n − 1)/2, p = q = 2 and n ≥ 4, we have

E
[
GWC(XTN

, X )2] ≤ CD2
X · N−2/d, and

E |GWC(XTN
, YSN

) − GWC(X , Y)| ≤ C ′(DX + DY ) · N−1/d.

Proof. Note that with q = 2, the conditions q > d/2 and 0 < q < d/2 become n(n − 1)/2 < 4 and
4 < n(n − 1)/2, which are equivalent to n ≤ 3 and n ≥ 4. Once again, the result follows by simplifying
Proposition 4.21. □

Remark 4.26. The convergence rates for the quantity E |GWC(XTN
, YSN

) − GWC(X , Y)| in the previous
propositions originate from the rates for WdΩX ,p

q (νX , νN ). One may wonder if there exists another estimator
of GWC(X , Y) that has better convergence rates. However, [51, Chapter 3] proves that there exists no
estimator of Wq(µX , µY ) that improves the convergence by more than a logarithmic factor. We have no
reason to believe that we can improve the situation for GWC(X , Y).

Remark 4.27. The convergence results of this section would not hold if we replaced parametrized GW dis-
tances with the average GW distance. Let ω̂N := 1

N

∑N
i=1 ti and let X̂N be the measure network (X, µX , ω̂N ).

To condense notation, we use ∥ · ∥p to denote the Lp norm in Lp
(
(X × X)2; µX ⊗ µX

)
and denote the co-

ordinate projections as p1, p2 : X × X → X. By the triangle inequality,

disp(π, ω̂N , t) = ∥ω̂N ◦ (p1, p1) − t ◦ (p2, p2)∥p =

∥∥∥∥∥
N∑

i=1

1
N

[ti ◦ (p1, p1) − t ◦ (p2, p2)]

∥∥∥∥∥
p

≤
N∑

i=1

1
N

∥ti ◦ (p1, p1) − t ◦ (p2, p2)∥p = 1
N

N∑
i=1

disp(π, ti, t).

Hence, infimizing over C(µX , µY ) yields GWp(X̂N , Xt) ≤ inf
π∈C(µX ,µX )

1
N

N∑
i=1

disp(π, ti, t).

However, inf f + inf g ≤ inf(f + g), so

1
N

N∑
i=1

GWp(Xti
, Xt) ≤ inf

π∈C(µX ,µX )

1
N

N∑
i=1

disp(π, ti, t).

Note that GWp(X̂N , Xt) and 1
N

∑N
i=1 GWp(Xti

, Xt) are not comparable in these inequalities, so even if the
average GW distance converges, we can say nothing about GWp(X̂N , Xt).

4.4.2. Extending Beyond Random Measure Network Models. The results of the previous subsection apply
specifically to random measure network models. In particular, the convergence result does not apply directly
to random graph models, as formulated in Proposition 3.8. Clearly, the set of graphs over a node set X is in
bijective equivalence with the set of adjacency kernels X × X → {0, 1}, so that one can trivially reformulate
any random graph model as a random measure network model. Our convergence theorem therefore easily
translates to this setting. We record this, somewhat informally, as a corollary.

Corollary 4.28. Let X and Y be random graph models and let XTN
and YSN

be their respective empirical
pm-nets. Then GWC(XTN

, YSN
) → GWC(X , Y) almost surely as N → ∞.

Moreover, we make the observation that, when working with the cost structure C, the convergence results
described in this subsection apply broadly when considering pm-nets up to isomorphism. This is formalized
as follows.

Proposition 4.29. Any pm-net is isomorphic to a random measure network model.
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Proof. Let X be an arbitrary pm-net. We define an associated pm-net X̃ = (X, µX , Ω̃X , ν̃X , ω̃X) with:
• Ω̃X = L∞(X ×X; µX ⊗µX) and ν̃X = (m̃X )#µX , where m̃X : ΩX → Ω̃X is a map which is closely related

to the maps used in the proof of Proposition 4.7, namely,
m̃X (t) = ωt

X .

Here, the map m̃X is continuous, by the same arguments used in Proposition 4.7, so that the measure ν̃X

is well-defined;
• ω̃X is defined in the obvious way: given a point ωt

X in the support of ν̃X , we define ω̃
ωt

X

X = ωt
X .

Then X̃ is a random measure network model.
We claim that X is a stabilization of X̃ , hence that X is isomorphic to a random measure network model.

Indeed, the structure-preserving maps Φ : ΩX → Ω̃X and φ : X → X in the definition of stabilization are
given by Φ = m̃X and φ = idX . Clearly, these are both measure-preserving maps. The second condition in
the definition of structure-preserving maps reads in this case as

ωt
X(x, x′) = ω̃ωt

X (x, x′),

which is also obvious from the definition. This verifies that X is a stabilization of X̃ and completes the
proof. □

Proposition 4.29 says that, when working with the cost structure C, we can replace an arbitrary measure
network with a random measure network model at GWC-distance zero. Employing these replacements, the
sampling result Theorem 4 then applies to general measure networks.

5. Numerical Experiments

5.1. Implementation. We provide Python implementations of the distances described in ?? 3.16?? 3.19
with p = q = 2. Our implementation builds on the ot.gromov.gromov_wasserstein function from the
Python Optimal Transport (POT) library [13], which in turn implements the algorithms of [36, 45]. We
briefly review the key results from these works before presenting our own algorithms in detail.

Let X = (X, µX , ωX) and Y = (Y, µY , ωY ) be measure networks (recall Sec. 2.3) and let N := |X| and
M := |Y |. Following the notation of [36], define C ∈ RN×N and C ∈ RM×M by Cik = ωX(xi, xk) and
Cjl = ωY (yj , yl). Recall that a coupling π ∈ C(µX , µY ) is represented by a matrix π ∈ RN×M that satisfies
π · 1M = µX and π⊺ · 1N = µY where 1N ∈ RN and 1M are all-one vectors. Given a function L : R2 → R,
define the 4-way tensor

L(C, C) :=
(
L(Cik, Cjl)

)
ijkl

∈ RN×M×N×M

and the tensor-matrix multiplication

(24) L(C, C) ⊗ π :=
(∑

kl

L(Cik, Cjl)πik

)
ij

∈ RN×M .

Let Lp be the 4-way tensor induced by Lp(x, y) := |x − y|p and let ⟨•, •⟩ be the Frobenius inner product.
The distortion functional satisfies
(25) disp(π, ωX , ωY )p =

∑
ijkl

|ωX(xi, xk) − ωY (yj , yl)|p πijπkl =
∑
ijkl

L(Cik, Cjl)πijπkl = ⟨Lp(C, C) ⊗ π, π⟩.

L2(C, C) ⊗ π has a simplified form that is an order of magnitude faster to compute than Eqn. (24); see [36,
Remark 1].

Lemma 5.1 ([36, Proposition 1]). Let f1(a) = a2, f2(b) = b2, h1(a) = a and h2(b) = 2b. Then:
L2(C, C) ⊗ π = cC,C − h1(C) · π · h2(C)⊺,

where cC,C = f1(C) · µX · 1⊺
N + 1M · µY · f2(C)⊺.

To find GW2(X , Y), Peyré et al. [36] used projected gradient descent to minimize the function EC,C(π) :=
⟨L2(C, C) ⊗ π, π⟩; note that Eqn. (25) implies GW2(X , Y) = 1

2 inf
π∈C(µX ,µY )

EC,C(π)1/2. A useful observation

is that the line-search step, i.e. minimizing the objective function in the direction of the projected gradient,
has an explicit solution [45, Algorithm 2] that we specify in Proposition 5.2 Item 3. This Lemma collects
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other results from [36,45] that we use to implement parameterized GW distances. Since these previous works
solve more general problems, we also specify the parameter values that yield Proposition 5.2.

Lemma 5.2.
(1) GWC(X , Y) = 1

2 infπ∈C(µX ,µY ) EC,C(π)1/2.
(2) ∇EC,C(π) = 2L(C, C) ⊗ π.
(3) Given τ = argmin

τ∈C(µX ,µY )
⟨τ, ∇EC,C(π)⟩ and τγ = (1−γ)π +γτ = π +γ(τ −π) for 0 ≤ γ ≤ 1, the function

f(γ) := EC,C(τγ) expands as a second degree polynomial f(γ) = aγ2 + bγ + c with coefficients

a = −⟨h1(C) · (τ − π) · h2(C)⊺, τ − π⟩
b = −⟨h1(C) · π · h2(C)⊺, τ − π⟩ − ⟨h1(C) · π · h2(C)⊺, π⟩.

If a > 0, f is minimized when γ is either 0, 1 or −b/2a. Otherwise, f is minimized at γ = 0 or γ = 1.

Proof. Item 1 follows from Eqn. (25) and the definition of EC,C(π). Contrary to the above, Peyré et al. [36]
defined the GW distance in terms of EC,C . Item 2 originally appears in a formula in [45, Proposition 2] after
setting ε = 0. However, [45] does not contain the derivation and their final formula is missing a factor of 2.
The detailed and corrected calculations are found in [49, Section 1.2]. Finally, considering item Item 3: the
original solution of the line-search step appears in [45, Algorithm 2] when setting α = 1. Instead, we use the
formulas from [49, Section 1.3], which also come with a detailed derivation. □

5.1.1. Gradient descent for Proposition 3.16. Let (Ω, ν) be a fixed parameter space. When Ω is finite, the
cost structure in Proposition 3.16 becomes a sum of terms of the form disp(π, ωt

X , ωt
Y ), and the formulas

above generalize accordingly. Consequently, we compute GWC with projected gradient descent, using the
formulas in Proposition 5.3 to find the gradient and the explicit solution of the line-search step.

Fix p = q = 2 and suppose, for simplicity, that Ω = {1, . . . , T}. Let X = (X, µX , Ω, ν, ωX) and Y =
(Y, µY , Ω, ν, ωY ) be pm-nets in Nν with N := |X| and M := |Y |. Define C ∈ RT ×N×N and C ∈ RT ×M×M

by Ct,i,k = ωt
X(xi, xk) and Ct,j,l = ωt

Y (yj , yl), and let

EC,C,C(π, ν) :=
∑

t

⟨L2(Ct,∗,∗, Ct,∗,∗) ⊗ π, π⟩ · νt.

Lemma 5.3.
(1) GWC(X , Y) = 1

2 inf
π∈C(µX ,µY )

EC,C,C(π, ν)1/2.

(2) ∇πEC,C,C(π, ν) =
∑

t

2L2(Ct,∗,∗, Ct,∗,∗) ⊗ π · νt.

(3) Given τ = argmin
τ∈C(µX ,µY )

⟨τ, ∇πEC,C,C(π, ν)⟩ and τγ = (1 − γ)π + γτ = π + γ(τ − π) for 0 ≤ γ ≤ 1,

the function f(γ) := EC,C,C(τγ , ν) expands as a second degree polynomial f(γ) = aγ2 + bγ + c with
coefficients

a = −
∑

t

⟨h1(Ct,∗,∗) · (τ − π) · h2(Ct,∗,∗)⊺, τ − π⟩ · νt

b = −
∑

t

[
⟨h1(Ct,∗,∗) · π · h2(Ct,∗,∗)⊺, τ − π⟩ + ⟨h1(Ct,∗,∗) · π · h2(Ct,∗,∗)⊺, π⟩

]
· νt.

If a > 0, f is minimized when γ is either 0, 1 or −b/2a. Otherwise, f is minimized at γ = 0 or γ = 1.

Proof. Recall from Proposition 3.16 (setting p = 2) that

GWC(X , Y) = 1
2 inf

π∈C(µX ,µY )
∥dis2(π, ωX , ωY )∥L2(Ω;ν) = 1

2 inf
π∈C(µX ,µY )

(∑
t

dis2(π, ωt
X , ωt

Y )2 · νt

)1/2

.

Item 1 follows by applying Eqn. (25) to each term above. Since the gradient is linear, using Proposi-
tion 5.2 Item 2 on each summand of ∇πEC,C,C(π, ν) yields Item 2. Likewise, f(γ) = EC,C,C(τγ , ν) is a sum
of second degree polynomials in γ with coefficients given by Proposition 5.2 Item 3, so Item 3 follows. □
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5.1.2. Alternating optimization for Proposition 3.19. Similar to Proposition 5.3, it is straightforward to
generalize the objective function and the formulas in Proposition 5.2 to compute the parametrized GWC
from Proposition 3.19. However, this time we need to find two couplings ξ ∈ C(νX , νY ) and π ∈ C(µX , µY )
that jointly minimize the objective function, so we have to update the optimization procedure. We set up
notation and generalize Proposition 5.2 before explaining the algorithm.

Once again, fix p = q = 2. Let (ΩX , νX) and (ΩY , νY ) be parameter spaces with ΩX = {1, . . . , T} and
ΩY = {1, . . . , S}, and let X = (X, µX , ΩX , νX , ωX), Y = (Y, µY , ΩY , νY , ωY ) ∈ Nall. Define C ∈ RT ×N×N

and C ∈ RS×M×M by Ct,i,k = ωt
X(xi, xk) and Cs,j,l = ωs

Y (yj , yl). Given π ∈ C(µX , µY ) and ξ ∈ C(νX , νY ),
define

EC,C,C(π, ξ) :=
∑
t,s

⟨L2(Ct,∗,∗, Cs,∗,∗) ⊗ π, π⟩ · ξts.

Lemma 5.4.
(1) GWC(X , Y) = 1

2 inf
π,ξ

EC,C,C(π, ξ)1/2 where the inf runs over π ∈ C(µX , µY ) and ξ ∈ C(νX , νY ).

(2) ∇πEC,C,C(π, ξ) =
∑
t,s

2L2(Ct,∗,∗, Cs,∗,∗) ⊗ π · ξts.

(3) Given τ = argmin
τ∈C(µX ,µY )

⟨τ, ∇π EC,C,C(π, ξ)⟩ and τγ = (1 − γ)π + γτ = π + γ(τ − π) for 0 ≤ γ ≤ 1,

the function f(γ) := EC,C,C(τγ , ξ) expands as a second degree polynomial f(γ) = aγ2 + bγ + c with
coefficients

a = −
∑
t,s

⟨h1(Ct,∗,∗) · (τ − π) · h2(Cs,∗,∗)⊺, τ − π⟩ · ξts

b = −
∑
t,s

[
⟨h1(Ct,∗,∗) · π · h2(Cs,∗,∗)⊺, τ − π⟩ + ⟨h1(Ct,∗,∗) · π · h2(Cs,∗,∗)⊺, π⟩

]
· ξts.

If a > 0, f is minimized when γ is either 0, 1 or −b/2a. Otherwise, f is minimized at γ = 0 or γ = 1.

We minimize the two-variable objective EC,C,C(π, ξ) with an alternating optimization procedure. The
minimization with respect to π ∈ C(µX , µY ) is solved using projected gradient descent with the updated
formulas in Proposition 5.4. The minimization infξ∈C(νX ,νY ) EC,C,C(π, ξ) is a standard optimal transport
problem with cost matrix Mπ,C,C ∈ RT ×S given by

(Mπ,C,C)ts = ⟨L2(Ct,∗,∗, Cs,∗,∗) ⊗ π, π⟩.

In other words, we solve

Minimize:
∑
ts

(Mπ,C,C)ts · ξts

Subject to: ξ ∈ C(νX , νY ).

5.2. Pandas. We begin with a proof of concept that the parametrized GW distance incorporates information
that is spread across multiple scales. By “spreading information” we mean that given a metric space (X, dX)
and an expression X = X1 ∪ · · · ∪ Xℓ, we define the pseudo-metrics ωi

X : X × X → R≥0 by ωi
X(x, x′) =

dX(x, x′) if x, x′ ∈ Xi and 0 otherwise. Each ωi
X only remembers the distances between points in Xi, so if

we have another metric space (Y, dY ) with an analogous expression Y = Y1 ∪ · · · ∪ Yℓ and pseudo-metrics
ωi

Y , the GW coupling between ωi
X and ωi

Y only has information on Xi and Yi. We use the parametrized
GW distance to incorporate the information of all ωi

X and ωi
Y in one coupling.

For this experiment, we use a graph that we call a panda. Let P1 be a cycle graph of size N and select two
vertices of C at distance e ≤ ⌊N/2⌋. Given integers N, n, e with n < N and e ≤ ⌊N/2⌋, an (N, n, e)-panda
graph P is formed by gluing two cycle graphs P2 and P3 of size n to P1, one at each distinguished vertex.
We say that the N -cycle P1 is the head of the panda, and that each of the smaller n-cycles P2 and P3 is an
ear. Consequently, P = P1 ∪ P2 ∪ P3 and |P1 ∩ Pi| = 1 for i = 2, 3. The pseudo-metrics ωt

P are defined as
above. We define a number of pm-nets from this setup. Let Ω := {1, 2, 3}. Let µP and ν be the uniform
measures on P and Ω, respectively, and let dP be the shortest path distance on P . We define the metric
measure spaces (mm-spaces) P0 := (P, µP , dP ) and Pt := (P, µP , ωt

P ) for t = 1, 2, 3. We also define the
pm-net PMS := (P, µP , Ω, ν, (ωt

P )t∈Ω).
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We perform our experiments on a (25, 10, 6)-panda graph X and a (30, 12, 6)-panda Y . The pm-nets XMS ,
YMS and the mm-spaces Xt and Yt are defined as above. Fig. 1 shows the graph, distance matrix, and the
pseudo-metrics ωt of X in the top row and those of Y , in the bottom.

We compute GW2(Xt, Yt) for t = 1, 2, 3 and GWC(XMS , YMS) where C is the cost structure of Proposi-
tion 3.16 with p = q = 2. Fig. 2 has the optimal couplings πC for GWC(XMS , YMS) and πt for GW2(Xt, Yt),
0 ≤ t ≤ 3. We observe that a single πt with 1 ≤ t ≤ 3 only sees the points from Xt and Yt, so every πt is a
random coupling outside of a single block. The coupling πC combines the information from these couplings
into one. We remark that πC is still not an optimal coupling for GW2(Xt, Yt) because the computation of
GWC still has no access to interactions between Xi and Yj for i ̸= j.

Graph Distance Matrix (ωt)1≤t≤3
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Figure 1. From left to right, each row shows a panda graph, its distance matrix, and the network functions
ω1, ω2, and ω3. The function ω1 is the restriction of the distance matrix to the vertices of the head, while
ω2 and ω3 are the restrictions to the ears. In the top row, the head consists of 25 vertices and each ear
of 10 vertices; in the bottom row, the head has 30 vertices and each ear 12. The ears are formed by the
vertex sets {18} ∪ {25, 26, . . . , 33} and {24} ∪ {34, . . . , 42} in the top panda, and by {0, . . . , 10} ∪ {45} and
{11, . . . , 21}∪{51} in the bottom panda. The corresponding heads are given by {0, . . . , 24} in the top panda
and {22, . . . , 51} in the bottom panda.
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Figure 2. From left to right, the optimal couplings for GWC(XMS , YMS) and GW2(Xt, Yt) for t = 0, 1, 2, 3.

5.3. Random Graph Models. The next experiments illustrate the behavior of parameterized GW dis-
tances on random graph models.

5.3.1. Perturbation Model. For the first experiment, we study the behavior of the parameterized GW distance
on a perturbative random graph model. Given a graph G = (V, E), we construct a generative random graph
model as follows. For a positive integer k < |E|, a random sample is generated by deleting k existing edges
and adding k new edges, both uniformly at random. Each graph is represented by a binary adjacency kernel,
yielding a pm-net Vk = (V, µV , ΩV , νV , ωV ), where:

• µV is the uniform distribution on V ;
• ΩV is the set of all adjacency kernels on V ;
• νV is the (unknown) distribution from which the graph kernels are being sampled under the pertur-

bation model with parameter k;
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• ωt
V = t for all t ∈ ΩV , i.e., an adjacency kernel.

The goal of this experiment is to understand the behavior of the parameterized GW distance on empirical
estimates of this pm-net, as in Sec. 4.4. We begin with the well-known Karate Club graph G = (V, E),
from [54]. For a fixed k ∈ {1, 2, 3, 4, 5} and n ∈ {10, 20, 50, 100, 150}, we construct an empirical estimate
Vk,n of the pm-net Vk by drawing n samples of the perturbation model with addition/deletion parameter k.
We then construct an additional empirical estimate V ′

k,n via the same procedure (i.e., Vk,n and V ′
k,n are both

estimates of the same pm-net Vk) and compute GWC(Vk,n, V ′
k,n), where C is the cost structure defined in

Proposition 3.19, with p = q = 2. This calculation is repeated 10 times for each choice of parameters (k, n),
and results are reported in Fig. 3. As a baseline, we compare the empirical estimates using the standard
p = 2 GW distance: for each pair of sampled graphs in Vk,n and V ′

k,n (in the arbitrary order they were
sampled), we compute the GW distance between their adjacency kernels and then average the results. These
results are also recorded in Fig. 3.

The results of this experiment are rather intuitive. The standard GW distance (denoted as GW) is
essentially constant as the number of samples increases, with the only difference being a tightening of the
standard deviations over trials for larger numbers of samples. On the other hand, the parameterized GW
distance (denoted as PGW) decreases as the number of samples increases—indeed, in theory, this should
converge to zero as the number of samples goes to infinity. The difference between the standard GW and
parameterized GW distances is more pronounced as k increases, i.e., as the underlying distribution becomes
more complicated. This experiment illustrates the benefit of incorporating global information in the distance
computation via the parameterized GW framework.

Figure 3. Illustration of the perturbation model from Sec. 5.3.1. The Karate Club graph G appears on
the left. The center panel shows samples from the perturbation model, where k = 5 edges are deleted from
and added to G in each instance; added edges are drawn in bold, and deleted edges in dotted style. The
right panel plots the standard GW distance (dashed, denoted as GW) and the parameterized GW distance
(solid, denoted as PGW) between empirical estimates of the random graph model, as a function of the
number of samples (x-axis) and the number of edge additions/deletions (encoded by color).

5.3.2. Clustering Random Graphs via Distributions of Total Edges. We use the distribution of total edges
invariants described in Sec. 4.3.4 to cluster random graph models by their parameters. By Proposition 4.10
and Proposition 4.13, this serves a proxy for the parameterized GW distance, and by Proposition 4.15, it
is efficiently computable. Here, we use parameters q = 2 and p = 1 when computing Wasserstein distances
between distributions of total edges.

In the first version of the experiment, we use the Erdős-Rényi random graph model. We consider four
instances of this model: in each instance, the underlying graphs have 50 nodes, with the probability of
connecting any two nodes given by ρ ∈ {0.44, 0.46, 0.48, 0.5}. A single trial of the experiment is described as
follows. For each k ∈ {1, 5, 10, 15, 20}, we draw k graphs from each model (i.e., each choice of ρ), and then
repeat this a total of 10 times. This gives a total of 40 empirical random graph models, but these really come
from only 4 classes—we expect that empirical models with the same ρ should cluster tightly together, and
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Figure 4. LOONN clustering scores (higher is better) versus number of samples in the empirical approxi-
mations for the Erdős-Rényi random graph model (Left) and the stochastic block model (Right).

that this clustering should become more pronounced for larger values of k. We compute pairwise Wasserstein
distances between the distributions of total edges across the dataset of 40 random graph models. Clustering
is measured by Leave One Out Nearest Neighbor (LOONN) score (higher is better): for a fixed random
model, we determine which model among the remaining 39 is closest to the fixed one (using Wasserstein
distance between distributions of total edges); if the closest model has the same ρ-value as the fixed one,
this is treated as a success, and total success percentage across the dataset is the reported score. We repeat
the full experiment 10 times, and the results are provided in Fig. 4. Observe that the results agree with
intuition. Indeed, increasing k yields higher clustering scores, and the distribution of total edges appears to
capture the dependence of the models on ρ quite well (this is unsurprising, given Proposition 4.14).

We next run the same experiment on a different random graph model. In the second version of the
experiment, we use stochastic block models. In each instance, we have a graph on 50 nodes which have
been partitioned into even groups of 25. An instance of the model depends on parameters ρ1, ρ2 ∈ [0, 1],
where ρ1 is the probability of connecting any two nodes within a partition block, and ρ2 is the probability
of connecting two nodes lying in distinct blocks. Here, we also use four classes, with

(ρ1, ρ2) ∈ {(0.5, 0.28), (0.5, 0.3), (0.6, 0.28), (0.6, 0.3)}.

The experimental setup is then identical to the above. The results (also reported in Fig. 4) are qualitatively
similar to the Erdős-Rényi case, but quantiatively indicate that this classification task is slightly more
difficult.

5.4. Nested Cycles. The graph heat kernel represents the diffusion of heat in a graph across time, and it
captures graph features at increasing scales as time advances. In many applications, people perform tests
on graphs using the heat kernel at a single time, which raises the question of how to compare graphs that
have features at multiple scales that the heat kernel cannot capture simultaneously.

We study this question with the following family of graphs. Given a sequence of graphs G1, . . . , Gn and
basepoints v1 ∈ G1, . . . , vn ∈ Gn, we define an n-cycle of graphs as the result of attaching each Gi to an
n-cycle Cn by gluing vi ∈ Gi to the i-th vertex of Cn. We set v1 as the basepoint of the resulting graph. For
a fixed set of positive integers n1, . . . , nℓ and m, we define a 1-nested cycle of cliques of type (n1, m) as an
n1-cycle of m-cliques and an ℓ-nested cycle of cliques of type (n1, . . . , nℓ, m) as an n1-cycle of cliques of type
(n2, . . . , nℓ, m). Note that this construction is independent of the choice of basepoint in the m-cliques. See
Fig. 5. We refer to the ni-cycles and m-cliques as features at scale i and ℓ + 1, respectively. The heat kernel
of an ℓ-nested cycle of cliques has features at ℓ different times because, in order for heat to diffuse through
each ni-cycle, it first has to diffuse through (ℓ − i)-nested cycles of cliques, and this process takes longer for
smaller i.

To set a benchmark for the upcoming experiments, suppose we compute the GW distance between the
distance matrices of two ℓ-nested cycles of cliques of types (n1, . . . , nℓ, m) and (n1, . . . , nℓ, m′) with m ̸= m′

and equipped with the uniform measure. The optimal coupling π captures the multiscale structure of these
graphs through a hierarchy of nested blocks. At the coarsest level, these graphs are n1-cycles of subgraphs,
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Figure 5. Left: A 5-cycle of graphs formed by the cycle graphs C3, C4, C5, C6, C7. The basepoint of each
cycle graph is marked in red. Right: A 2-nested cycle of cliques of type (5, 4, 7). This graph is a 5-cycle of
1-nested cycles of type (4, 7), each of which is a 4-cycle of 7-cliques. The basepoint of each 1-nested cycle is
marked in red.

so π should be an n1-by-n1 grid of blocks of size (N1m)-by-(N1m′), where Ni = ni+1 · · · nℓ. These outer
blocks form a coupling2 between two n1-cycles. After normalizing, each non-zero sub-block of size (N2m)-
by-(N2m′) is a coupling between (ℓ − 1)-nested cycles of cliques, and we can iterate this description on
each block. Thus, π has a nested block structure where the outer blocks form a coupling of n1-cycles, each
non-zero block thereof is a coupling of n2-cycles, and so on. At the smallest scale, the blocks that form
a coupling of nℓ-cycles are themselves couplings between cliques of sizes m and m′. Note that an optimal
coupling between n-cycles with uniform measure is a cyclic permutation of {1, . . . , n}, while an optimal
coupling between cliques is random. We say that the outer blocks of size (N1m)-by-(N1m′) occur at scale
1, their sub-blocks of size (N2m)-by-(N2m′) occur at scale 2, and so on.

To test how well the GW distance captures multiscale features, we compare heat kernels at multiple values
of t. Concretely, let G1 and G2 be 2-nested cycles of cliques of types (10, 5, 5) and (10, 5, 20), and let Hi,t

denote the heat kernel of Gi at time t. Based on the discussion above, we expect the optimal coupling π
to have 10 blocks, each with 5 sub-blocks of random noise of size 5-by-20, and the blocks at scales 1 and
2 should form cyclic permutations of 10- and 5-cycles, respectively. We summarize this structure using the
binary vector cyclic above each coupling in Fig. 6 and Fig. 7. The i-th entry of cyclic indicates whether
all non-zero blocks of π at scale i form cyclic permutations of ni-cycles. In line with our intuition, the GW
couplings in Fig. 6 capture small and large scale features at different times. Specifically, only the blocks at
scale 2 are cyclic permutations when 30 ≤ t ≤ 50 (as indicated by cyclic = [0, 1]), while the opposite is
true when t ≥ 170 (cyclic = [1, 0]).
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Figure 6. Optimal couplings for GW2(H1,t, H2,t), where Hi,t is the heat kernel of the 2-nested cycle of
cliques Gi, and G1 and G2 have types (10, 5, 5) and (10, 5, 20). Each panel has the time parameter of Hi,t,
and the vector cyclic indicates whether the coupling is a cyclic permutation at each scale.

We now attempt to capture features at both scales simultaneously with the parametrized GW distance
on a fixed parameter space. Let C be the cost structure from Proposition 3.16 with p = q = 2. We set
t1 = 50, t2 = 200 and Ω = {t1, t2}, but select ν later. We manually chose t1 and t2 because the GW

2More precisely, the n1-by-n1 matrix of block sums is a coupling between two n1-cycles.
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Figure 7. Optimal couplings for GWC(H1, H2). Hi is a sequence of two heat kernels Hi,t with t1 = 50 and
t2 = 200. The title of each panel contains the value of ν1 (nu[0] in 0-indexing) and the vector cyclic that
indicates whether the coupling is a cyclic permutation at each scale. The coupling induced by ν1 = 10−3

(and ν2 = 0.999) has the desired block structure at all scales (i.e. cyclic=[1,1]).

couplings satisfy cyclic = [0,1] when t = 50 and cyclic = [1,0] when t = 200. We construct pm-nets
Hi = (Gi, µi, (Hi,tj )j=1,2, Ω, ν) with the uniform measure µi for each i = 1, 2.

We have to carefully choose ν because of a numerical issue in the computation of GWC(H1, H2). The
extreme values of H1,t1 and H2,t1 are several orders of magnitude larger than those of H1,t2 and H2,t2 , even
after normalization (e.g. with the Frobenius norm). When we set ν as the uniform measure, the values at t1
dominate the optimization and the resulting coupling resemble the GW coupling at t1. We resolve this issue
by doing a grid search on ν. Fig. 7 has the optimal couplings for GWC(H1, H2) for several choices of ν. In
particular, the coupling with ν1 = 10−3 and ν2 = 1−ν1 has the expected block structure (cyclic = [1, 1]).

Therefore, after some parameter tuning, the parametrized GW distance with a fixed parameter space
(Proposition 3.16) captures information that is spread across multiple heat kernels with a single coupling.

5.4.1. 3-nested cycles of cliques. We repeat the experiments above with 3-nested cycles of cliques of types
(4, 4, 4, 5) and (4, 4, 4, 20) to see if the parametrized GW distance needs 3 levels to capture features at three
scales.

For the standard GW framework, we construct the heat kernels H1,t and H2,t as above with 10 ≤ t ≤ 500
and compute GW2(H1,t, H2,t); see Fig. 8. The blocks of the GW couplings form cyclic permutations of
4-cycles at scale 3 when t = 20, 30 (cyclic=[0,0,1]), at scale 2 when 100 ≤ t ≤ 280 (cyclic=[0,1,0]) and
at scale 1 when t = 410, 430 (cyclic=[1,0,0]).

For the parametrized GW framework, we manually select t1 = 30, t2 = 100, and t3 = 410, and set
Ω = {t1, t2, t3} and Hi = (Gi, µi, (Hi,tj

)1≤j≤3, Ω, ν). We perform a grid search over ν and found that
ν1 = 1.29 × 10−4, ν2 = 3.39 × 10−5 and ν3 = 1 − ν1 − ν2 ≈ 9.998 × 10−1 produces a coupling with the correct
block structure at all scales; see Fig. 9.
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Figure 8. Optimal couplings for GW2(H1,t, H2,t), where Hi,t is the heat kernel of the 3-nested cycle of
cliques Gi. G1 and G2 have types (4, 4, 4, 5) and (4, 4, 4, 20). Each panel has the time parameter of Hi,t,
and the vector cyclic indicates whether the coupling is a cyclic permutation at each scale.

5.5. Feature Selection. In this subsection, we propose the parameterized GW distance as a cost function
for feature selection. We interpret Ω as the set of feature labels (invariants) and ν as their relative importance.
For instance, in the case of graph data one may take Ω = {adj, Lap, dist}, where ωadj

G denotes the adjacency
matrix, ωLap

G the Laplacian, and ωdist
G the shortest-path distance matrix of a given graph G.



34 MARIO GÓMEZ, GUANQUN MA, TOM NEEDHAM, AND BEI WANG

0 500 1000

0

50

100

150

200

250

300

nu[0:1]=[9.99E-01, 9.99E-05]
cyclic: [0 0 1]

0 500 1000

0

50

100

150

200

250

300

nu[0:1]=[1.00E-04, 1.00E+00]
cyclic: [0 1 1]

0 500 1000

0

50

100

150

200

250

300

nu[0:1]=[1.29E-04, 3.59E-05]
cyclic: [1 1 1]

Figure 9. Optimal couplings for GWC(H1, H2). Hi is a sequence of three heat kernels Hi,t with t1 = 30,
t2 = 100, and t3 = 410. The title of each panel contains the value of ν1 and ν2 (nu[0:1] in 0-indexing,
and rounded to 2 decimal places) and the vector cyclic that indicates whether the coupling is a cyclic
permutation at each scale. The coupling induced by ν1 = 1.29 × 10−4, ν2 = 3.39 × 10−5 and ν3 =
1 − ν1 − ν2 ≈ 9.998 × 10−1 has the desired block structure at all scales (cyclic=[1,1,1]).

Our objective is to find the weights ν that optimize a downstream task. Invariants that hinder performance
should get small or zero weights, while those that contribute positively should get larger weights. We work
on the class Nν of pm-nets parameterized by (Ω, ν) (recall Proposition 3.11) and use the cost structure from
Proposition 3.16 with p = q = 2. For any X = (X, µX , Ω, ν, ωX) ∈ Nν , the set {ωt

X : t ∈ Ω} contains all
invariants of (X, µX), and the parametrized GW distance GWC(X , Y) measures the difference between the
corresponding invariants of X , Y ∈ Nν .

To choose a concrete task, suppose we have pm-nets X1, . . . , Xn with class labels y1, . . . , yn ∈ {1, . . . , m},
and we want to determine which invariants from Ω correctly classify them. Let Mν be the n-by-n matrix
given by (Mν)ij = GWC(Xi, Xj). Suppose that y1 ≤ · · · ≤ yn so that Mν has the block structure

(26) Mν =

B11 · · · B1m

...
. . .

...
Bm1 · · · Bmm


where Bij is the matrix of distances between elements of classes i and j. The best clustering is achieved
when the intra-cluster distances are small relative to the inter-cluster distances, so we want to find the ν
that minimizes

costp(ν) :=
∥B11∥p

p + · · · + ∥Bmm∥p
p

∥Mν∥p
p

where ∥ • ∥2 is the Frobenius norm. Depending on the context, we may add a regularization term and
minimize

(27) costp,λ(ν) :=
∥B11∥p

p + · · · + ∥Bmm∥p
p

∥Mν∥p
p

+ λ · KL(ν|q)

instead, where λ ≥ 0, q is the uniform measure on Ω, and KL(ν|q) is the KL divergence.

5.5.1. Dynamic Metric Spaces. Recall that X is a dynamic metric space if Ω is a compact subset of R≥0 and
every ωt

X is a (pseudo)-metric. Suppose that a set of drones flies through one of two corridors that have the
same shape, except that one corridor has an obstacle. If the drones maintain roughly the same speed and
direction, their behavior only changes significantly when they dodge the obstruction. We use the pipeline
above to identify the times when the drones find the obstacle.

We define two types of pm-nets that represent the flight of the drones through one of the two corridors;
see Fig. 10. Fix the indexing sets X = {0, · · · , 4} × {0, · · · , 4} and Ω = {0, . . . , 4}, and let µX and ν0 be
their uniform probability measures. The corridor is the rectangle [−1, 4] × [−2, 2] in R2 and the obstacle is
the ellipse

(
x−1.5

0.5
)2 +

(
y

0.7
)2 = 1. The initial drone configuration is the 5 × 5 grid P (X) ⊂ [0, 1] × [−1, 1]

where P (x, y) =
(

x
4 , −1 + y

2
)
. Each point represents a drone. At each time step, all drones move ∆x = 0.6

units to the right resulting in 5 grids X0, . . . , X4 of 25 points each. In the corridor without obstacles, we
apply Gaussian noise N (0, 0.05) independently to every point of Xi, and define ωi

X as the distance matrix
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λ ν0 ν1 ν2 ν3 ν4 costλ(ν)
0.01 0.007 0.001 0.968 0.022 0.001 0.095149
0.1 0.011 0.423 0.525 0.027 0.014 0.187433
1 0.146 0.258 0.298 0.151 0.146 0.283082
10 0.195 0.206 0.210 0.195 0.195 0.296712

Table 1. Minimizer of costλ(ν) for several values of λ. If λ is small, the measure ν assigns the most weight
to the single time that distinguishes classes 1 and 2 the best. Conversely, if λ is too big, there is no time
that has significantly larger weight than the others. In the intermediate range (λ = 0.1, 1), the times when
the drones avoid the obstacle (t = 1, 2) have the largest weights.
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Figure 10. Examples of obstructed and unobstructed drone flights. Each row shows 5 snapshots of a 5 × 5
grid of drones flying through the square [0, 4] × [−2, 2]. The first row shows unobstructed flight, while the
second row shows the drones avoiding an obstacle at the ellipse

(
x−1.5

0.5

)2
+
(

y
0.7

)2
= 1.

of Xi. This process defines a random variable X = (X, µX , Ω, ν0, ωX) valued in pm-nets that we call clear
flight.

In the presence of an obstacle, a drone avoids collision by moving above the ellipse if its y-coordinate
is positive and below the ellipse otherwise. Within each vertical column of drones (i.e. drones with the
same x coordinate), those that go above remain evenly spaced between the top of the obstacle and the
line y = 1, while those that go below remain evenly spaced between the line y = −1 and the bottom of
the obstacle. As before, this process produces 5 grids Y0, . . . , Y4 of drones to which we apply independent
Gaussian noise N (0, 0.05), except when it would cause a collision. Let ωi

X be the distance matrix of Yi; the
tuple X = (X, µX , Ω, ν0, ωi

X) defines another random variable valued in pm-nets called obstructed flight.
In our experiment, we sample 10 instances of pm-nets: 5 clear flights X1, . . . , X5 and 5 obstructed flights

X6, . . . , X10. We then apply alternating optimization to minimize costλ(ν) for several values of λ, with results
summarized in Table 1. As λ increases from 0.01 to 10, the optimal measure ν assigns different weights to
the features. For λ = 0.01, the regularization is too weak, and ν concentrates on the time steps where the
drone configurations differ the most (see Fig. 10). In contrast, when λ = 10, the strong regularization drives
ν close to the uniform measure, failing to distinguish between time steps. The most informative range is
between 0.1 and 1, where the weights in ν capture the differences between the two flight classes. Specifically,
in obstructed flights the drones begin crossing the obstacle at time 1 and nearly clear it by time 3, making
times 1 and 2 the most distinctive, time 3 moderately distinctive, and times 0 and 4 indistinguishable. This
pattern is reflected in the weights, with ν1 and ν2 largest, ν3 intermediate, and ν0 and ν4 smallest.

5.5.2. Supervised Classification. We use the above dataset in a supervised classification experiment. We
sample 15 instances of each flight pattern and reserve 5 of each as test set. Using the rest as training set,
we obtain the νopt that minimizes costλ(ν) with λ = 10−1.

We then classify each entry of the test set by its nearest neighbor under the parametrized GW distance
with parameter space (Ω, νopt). For comparison, we build the following ensemble classifier. For every
X = (X, µX , Ω, νopt, ωX) in the training set and every Y = (X, µX , Ω, νopt, ωY ) in the test set, we can



36 MARIO GÓMEZ, GUANQUN MA, TOM NEEDHAM, AND BEI WANG

compute the standard GW distances GW2(ωt
X , ωt

Y ) for every t ∈ Ω. This results in one set of distances
between the training and test sets for every t ∈ Ω, and thus, one nearest neighbor classifier for each t ∈ Ω
that we call the t-th GW classifier. The ensemble classifier then labels each entry of the test set with the
most frequent label among the labels given by the GW classifiers.

After repeating the above experiment 10 times, the parametrized GW distance classifier reaches an average
of 95% classification accuracy with a 7% standard deviation, while the ensemble classifier (based on standard
GW) manages only 87% accuracy with a 8% standard deviation.

5.5.3. Implementation. Minimizing costλ(ν) requires solving several optimizations that we describe now.
Let ν ∈ P(Ω). For every i = 1, . . . , n, let Xi = (Xi, µi, Ω, ν, ωi) be a pm-net in Nν with class label yi such
that 1 ≤ y1 ≤ · · · ≤ yn ≤ m. We begin by finding couplings πij ∈ C(µi, µj) that realize GWC(Xi, Xj) for
1 ≤ i, j ≤ n using gradient descent as detailed in Sec. 5.1.1. Then we assemble the matrix Mν as in Eqn. (26)
and minimize costλ(ν) subject to ν ∈ P(Ω) using gradient descent. We alternate these optimizations until
a convergence criterion is satisfied. Each gradient descent starts from the previous optimal coupling (resp.
measure).

To complement Sec. 5.1, we record the gradient of costλ(ν) with respect to ν. To simplify the presentation
below, we assume Ω = {1, . . . , T}. The results below hold for arbitrary 1 ≤ p, q < ∞, but our code only
implements the version for p = q = 2.

Lemma 5.5. Let M ∈ Rn×n be a matrix with block structure

M =

B11 · · · B1m

...
. . .

...
Bm1 · · · Bmm


where Bij ∈ Rni×nj and n1 + · · · + nm = n. Let S(M) := ∥B11∥1 + · · · + ∥Bmm∥1

∥M∥1
. Then:

• If Mij belongs to a block Bkk, ∂S

∂Mij
= 1 − S(M)

∥M∥1
.

• Otherwise, ∂S

∂Mij
= −S(M)

∥M∥1
.

Proof. Suppose that the entry Mij belongs to the block Bkk for some 1 ≤ k ≤ m. Note that ∂∥Bkk∥1/∂Mij =
1 and ∂∥Bhh∥1/∂Mij = 0 for any h ̸= k. Likewise, ∂∥M∥1/∂Mij = 1. Then

∂S

∂Mij
=
[

∂∥Bkk∥1

∂Mij
· ∥M∥1 −

(
m∑

h=1
∥Bhh∥1

)
· ∂∥M∥1

∂Mij

]
/∥M∥2

1

=
[

1 −

(
m∑

h=1
∥Bhh∥1

)
/∥M∥1

]
1

∥M∥1

= 1 − S(M)
∥M∥1

.

If Mij does not belong to any block Bkk, then ∂∥Bhh∥1/∂Mij = 0 for all 1 ≤ h ≤ m and ∂∥M∥1/∂Mij = 1.
Hence

∂S

∂Mij
=
[

0 · ∥M∥1 −

(
m∑

h=1
∥Bhh∥1

)
· ∂∥M∥1

∂Mij

]
/∥M∥2

1

= −
∑m

h=1 ∥Bhh∥1

∥M∥1
· 1

∥M∥1

= −S(M)
∥M∥1

.

□
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Lemma 5.6. Let ν ∈ P(Ω), and let X , Y ∈ Nν . Let π ∈ C(µX , µY ) be the coupling that realizes
GWC(Xi, Xj). Then for any 1 ≤ t ≤ T ,

∂

∂νt
GWC(Xi, Xj)p = disp(π, ωt

X , ωt
Y )p.

Proof. When Ω is finite, the equation in Proposition 3.16 becomes GWC(X , Y)p =
T∑

s=1
disp(π, ωs

X , ωs
Y )p · νs.

The result is immediate from here. □

Lemma 5.7. Let ν ∈ P(Ω) and fix 1 ≤ p < ∞. For every i = 1, . . . , n, let Xi = (Xi, µi, Ω, ν, ωi) be a pm-net
in Nν with class label yi such that 1 ≤ y1 ≤ · · · ≤ yn ≤ m. Let πij ∈ C(µi, µj) be the coupling that realizes
GWC(Xi, Xj) and define M ∈ Rn×n by Mij = GWC(Xi, Xj)p. Then for any 1 ≤ t ≤ T ,

∂

∂νt
costp(ν) =

∑
Mij∈Bkk

for some k

1 − S(M)
∥M∥1

· disp(πij , ωt
i , ωt

j)p +
∑

Mij /∈Bkk

for any k

−S(M)
∥M∥1

· disp(πij , ωt
i , ωt

j)p

Proof. Since we define Mij = GWC(Xi, Xj)p, costp(ν) = S(M), where S is the function defined in Proposi-
tion 5.5. Hence, using the chain rule and Proposition 5.5 and Proposition 5.6 yields

∂

∂νt
costp(ν) =

n∑
i,j=1

∂S

∂Mij
· ∂Mij

∂νt
=

n∑
i,j=1

∂S

∂Mij
· ∂

∂νt
GWC(Xi, Xj)p

=
∑

Mij∈Bkk

for some k

1 − S(M)
∥M∥1

· disp(πij , ωt
i , ωt

j)p +
∑

Mij /∈Bkk

for any k

−S(M)
∥M∥1

· disp(πij , ωt
i , ωt

j)p

□

5.6. Discussions, Limitations, and Future Work. In this section, we demonstrated four applications of
the parameterized GW distance. The utility of the parameterized GW framework in each case is summarized
as follows.
(1) Block matrices: It defines distances by decomposing each block matrix into submatrices and combining

information from all parts (Sec. 5.2).
(2) Random graphs: It serves as a meaningful invariant for comparing and clustering random graph samples,

tested on Erdős–Rényi and stochastic block models (Sec. 5.3).
(3) Heat kernels: By aligning sets of heat kernels, it captures features across multiple timescales (e.g., cycles

of different lengths or nesting structures), with ν tuned for effective couplings (Sec. 5.4).
(4) Feature selection: Allowing ν to vary enables identification of discriminative time intervals in dynamic

data, illustrated by classifying obstructed vs. unobstructed drone flights (Sec. 5.5).
In the block matrix experiments, the computation of GWC ignores interactions between blocks Xi and Yj for
i ̸= j, and consequently does not yield the expected optimal alignment. Further work is needed to determine
the minimal interaction information required to approach the global optimum. In the heat kernel and feature
selection experiments, manual tuning of the parameter ν is necessary both to capture features across scales
and to identify discriminative time intervals.

We remark that the focus of this paper is on fundamental theory and establishing core methods for its
application. In particular, the experiments above are qualitative in nature and only deal with synthentic
data. An important direction for future research is the development of more efficient learning frameworks
that support automatic parameter tuning, so that these methods are more applicable to real-world data.
Applications to time-varying metric space and network data, e.g., in the form of longitudinal fMRI data,
will be the goal of a followup project.
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