
Interstitial and Interlayer Ion Diffusion Geometry Extraction in
Graphitic Nanosphere Battery Materials

Attila Gyulassy, Aaron Knoll, Member, IEEE, Kah Chun Lau, Bei Wang, Member, IEEE,
Peer-Timo Bremer, Member, IEEE, Michael E. Papka, Larry A. Curtiss, and Valerio Pascucci, Member, IEEE.

Fig. 1. A carbon nanosphere anode material is simulated with an annealing process using classical molecular dyanmics (left). To
understand the efficacy of this material in battery design, we seek to understand the adsorption of lithium. In graphitic carbon, lithium
motion is governed by the arrangement of carbon rings: while 6-member rings block lithium diffusion through layers of graphene,
higher valence rings permit it. Our approach turns to topological analysis of the distance function, constructing explicit triangulations
to represent carbon rings, classifying them as blocking (blue) or non-blocking (pink) (middle left). We use our representation to
quantify both the portions of the nanosphere that are accessible from the exterior (dark pink) (middle right), as well as studying the
effects of defects on the diffusion distance needed to saturate the nanosphere (right).

Abstract— Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of
battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling
of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes.
To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure.
In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry
of a thermally annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the
interstitial diffusion structure as a single mesh. Our results provide a new approach to analyze the geometry of the simulated carbon
nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge
dynamics of these carbon based battery materials.

Index Terms—materials science, morse-smale, topology, Delaunay, computational geometry

1 INTRODUCTION

Material science studies a wide range of phenomena at various scales,
using different computational codes for different purposes. Molecu-
lar dynamics (MD) are the main computational technique to simulate
chemical-physical systems in large spatio-temporal scale at the atom-
istic level. General computational studies must trade between compu-
tational cost and physical accuracy. At small spatio-temporal scales
in Ångströms and femtoseconds, first-principles ab initio molecular
dynamics (AIMD) codes, e.g., employing density functional theory,
(DFT) can accurately simulate electronic structure and bonding en-
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ergetics. For larger systems on the order of millions of atoms over
nanoseconds, material scientists employ classical MD codes with ap-
proximate atomic potential or force-field. As the underlying structure
and assumptions of simulations change, so too must techniques for
visualizing and analyzing them.

Carbon nanospheres are promising anode materials for a new gen-
eration of lithium ion-based battery technologies. These novel struc-
tures can be synthesized through autogenic pressure reactions by the
recycling of wasted plastic materials [47]. To optimize the design and
synthesis of these novel carbon materials, one has to understand their
basic structural properties and lithium storage capability at the funda-
mental atomistic level. To model this computationally, we have the
choice of precise small-scale models (hundreds of atoms over fem-
toseconds using DFT) and less accurate large-scale models (thouands
or millions of atoms over nanoseconds, using MD). DFT simulations
produce electronic structure properties: the electronic wavefunction
of the system, or all-electron density can be used in scalar-field analy-
sis. In real world application, experimentally synthesized nanospheres
would be on the order of 100 nm to 1 µm, consisting of hundreds of
thousands to billions of carbon atoms. Classical MD must be used
for phenomena at this scale, however the simulations produced with
time-dependent atomic motion in trajectories produce neither the cor-
rect electronic structure properties nor a scalar field that is required for
topological analysis.

Moreover, with both AIMD and classical MD methods we can sim-
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Fig. 2. Left: Where lithium (yellow) may diffuse in carbon (dark gray) nanosphere relates to its utility as a battery material. However, direct simulation
requires prohibitively long time scales. Instead, the motion is computed for local configurations. Center: The energy barriers for interlayer lithium
diffusion through the center of n-membered ring at a single graphene sheet are obtained from DFT calculation. Rings with valence six or less block
lithium diffusion. Right: Interstitial 1D-, 2D-diffusion of lithium is principally limited by the dynamics of adjacent lithium ions distribution within the
graphitic layers obtained from AIMD simulation, with no energy barrier from the carbon itself.

ulate thermal annealing of various-sized nanospheres, but we can-
not accurately model the complex diffusion dynamics of lithium ions
within these structures. While the physical properties of such systems
(e.g. sp2/sp3 ratio of carbon bonds of the carbon structure) are gener-
ally understood, the long time scale of the ion diffusion and transport
process (charging the battery) occurs over the course of microseconds
or longer, which would be too costly and inaccurate to compute with
current MD techniques. However, the basic diffusion characteristics
of nanospheres can be understood via topological and geometric anal-
ysis of the local atomic structures. For DFT data, it is possible to
use Morse-Smale decomposition of the wavefunction to determine the
paths that diffusing ions may take [25]. This analysis sheds light on
the interstitial and interlayer structure of the nanosphere, and provides
metrics for assessing theoretical performance of the battery anode.

Topological analysis would be desirable for larger data from clas-
sical dynamics as well. However, we are faced with two challenges:
classical MD data do not provide any “ground-truth” scalar field for
us to conduct such analysis; and the size of these data make analysis
of derived structured data costly. Although several techniques have
been proposed to compute diffusion paths in molecular structures, the
specific properties of lithium interacting with graphitic carbon pre-
vent straightforward application of a known solution. In particular,
in a molecule formed by deformed graphitic sheets, the diffusion of
lithium is regulated by the local arrangement of carbon atoms in rings,
not distance or charge density.

In this paper, we present a new approach to analyze lithium dif-
fusion in graphitic carbon that considers the local arrangements of
atoms. First computing a Delaunay triangulation of the raw atom ge-
ometry, the algorithm produces triangular patches that close the inte-
rior of loops of edges in the triangulation, thereby enabling classifica-
tion of structures that permit or prevent lithium ion diffusion. Further-
more, we present visualizations that illuminate how lithium penetrates
a nanosphere. In addition, we are able to quantify for the first time
the effect of small-scale defects on adsorption capabilities. Signifi-
cantly, our analysis of a large (30-Ådiameter) nanosphere suggests in-
creased importance of interlayer geometry and large fracture features
in accumulating and storing lithium. Our work shows that topological
analysis can be used to characterize larger structures from molecular
dynamics, and suggests an alternative to direct large-scale AIMD or
MD simulations.

2 BACKGROUND

We provide a brief overview of necessary background, including basic
information on the simulation generating the carbon nanospheres and
how lithium diffuses in these materials. Figure 2 provides an overview
of the problem set-up: direct simulation of lithium motion in complex
geometries is impractical due to the long time scales involved; instead,
diffusion in the nanosphere is computed by finding simple configura-
tions, for instance, rings of certain valence, or interstitial space. An
overview of geometric and topological concepts used in our analysis
approach are also provided.

2.1 Simulating Carbon Nanospheres

In designing more powerful and resilient Li-ion batteries (LIB), find-
ing novel materials with robust cycling performance and high charge
capacity are extremely important. Carbon graphites are among the
most intensively studied anode materials due to their high coulom-
bic efficiency and high electrochemical stability [51]. Numerous
promising research directions have been proposed to increase gravi-
metric capacity of low dimensional carbon nanomaterials [38, 48,
39, 47]. The carbon nanospheres in this study were synthesized
by high-temperature autogenic reactions of hydrocarbon precursors
(e.g., polyethylene from plastic waste), enabling synthesis of bat-
tery anodes from daily recycled materials [47]. As discussed in
Section 1, to simulate this spherical morphology of carbon at atom-
istic scales one must trade between scale and accuracy: small car-
bon nanospheres (hundreds of atoms) can be modeled based on
density functional theory (DFT) or ab initio molecular dynamics
(AIMD) codes such as VASP [32], wherease large (experimental-
scale) nanospheres must employ more approximate classical molecu-
lar dynamics. The thermally annealed nanosphere in our example was
simulated in LAMMPS [46], sculpted from a solid block of carbon in
diamond bulk structures, heated to a high temperature (2500 Kelvin)
via molecular dynamics, and then annealed to 300 degrees Kelvin. The
resulting “nanosphere” possesses numerous channels that can accom-
modate lithium ion diffusing through both interstitial and interlayer
defects in the local graphitic structures of carbon nanospheres [47].
While effective, statistical analysis cannot fully quantify the charge
capacity of these structures: we wish to analyze the possible lithium
diffusion paths that may diffuse or transport through the inside or out-
side of the carbon nanosphere.

Simulating ion diffusion in electrified heterogeneous elec-
trode/electrolyte interfaces is a fundamental problem in the design of
electrochemical energy conversion and storage devices such as batter-
ies and fuel cells [27]. Accurate description of electronic properties
of materials (e.g. bulks, surfaces, interfaces, phase changes, etc.), is
generally limited by the approximate exchange-correlation function-
als, and limited system size due to the poor computational scaling
[10]. Classical molecular dynamics are limited by less accurate and
non-transferrable atomic force fields. Even given unlimited compute
time, straightforward simulation via classical MD will often result in
incorrect thermodynamic equilibrium properties, and potential energy
surfaces that do not accurately describe a complex system. Moreover,
validation of an atomistic simulation with state-of-the-art in situ or
in operando experimental observation of the electrochemical system
is difficult. For theoretical modeling and simulation, direct computa-
tion of Li ions diffusion paths derived from ”on-the-fly” trajectories
at various anisotropic local environments at the atomistic level are too
expensive for large spatio-temporal scale. With both current AIMD
and classical MD methods, the simulation of various size of carbon
morphologies (including nanospheres) at thermal equilibrium is pos-
sible, however the dynamics of such “rare events” at a long time scale
are simply too expensive to compute.

Nonetheless, to understand lithium ion diffusion and storage in



Fig. 3. Morse-Smale analysis of a 732-atom nanosphere, computed
via DFT. Left: using the electronic wavefunction. A volume rendering is
shown, with each blocking patch assigned a semi-random color. Right:
using the distance field.. As shown in [25], the distance field can be
used as a suitable, though not identical, substitute for the wavefunction.

carbon structures, we can conduct smaller DFT experiments study-
ing dynamics and energetics of diffusion. Li diffusion paths in car-
bon nanospheres can be 1-, 2- or 3-dimensional, depending on the
anisotropy of the local structure and the presence of defects, tunnels,
surfaces active or inactive upon lithiation or delithiation during the
electrochemical cycling. Binding energies, redox potentials, and hop-
ping energy barriers, diffusion paths and ions dynamics can strongly
deviated from the a graphite bulk values near surfaces or interfaces.
A Model for Lithium Motion. Given that directly simulating lithium
diffusion in the nanosphere is computationally infeasible, we in-
stead turn to models that describe its motion given local configura-
tions of atoms. As shown in Figure 2, lithium diffusion in carbon
nanospheres can be represented either as interstitial (lateral along or
within graphene layers) or interlayer (through defects in the layers
themselves). Small scale computations [47, 25] reveal that: (1) inter-
stitial motion is governed only by the presence of other lithium atoms,
and is otherwise free; and, (2) the energy required for interlayer diffu-
sion depends on the number of atoms in a carbon ring. In particular,
valence six and less rings block the diffusion of lithium, whereas va-
lence seven or more rings permit interlayer diffusion. Thus, the key
challenge in our work is to identify carbon rings, and count their va-
lence, and study how their arrangements block or permit lithium mo-
tion.

For small DFT models, we can use the electronic wavefunctions of
the system, e.g. the simulated electronic structure, as input for scalar-
field topological analysis (specifically, Morse theory). With DFT data,
one can assume one-to-one correspondence between carbon atoms,
covalent bonds and components of the Morse-Smale complex of the
scalar function. From this information, the carbon defects and pos-
sible void spaces that are present in the carbon nanospheres can be
identified qualitatively [25]. Moreover, previous work has shown that
a distance field approximation of the wavefunction yields similar dif-
fusion paths, as illustrated in Figure 3. This is crucial for our analysis
of larger molecular dynamics computations: without a wavefunction
on which to conduct MS decomposition, we must induce the topology
of the nanosphere from raw atom geometry and the distance field.

2.2 Geometry and Topology

We provide a brief overview of Delaunay triangulations, their dual,
the Voronoi diagram, and relate them to the Morse complex of a the
distance function. Finally, we review discrete Morse theory from the
perspective of simplicial collapse, as this intuition is utilized in our
approach to computing diffusion geometry in the nanospheres.
Simplicial Complex. The algebraic topology concept of simplicial
complex is typically used to represent a topological space. A k-
dimensional simplex σ (a.k.a. a k-simplex) is the convex hull of k+1
affinity independent points. A face α of σ is any simplex that is the
convex hull of a subset of the k+ 1 points in Rd . We denote the face
relation with α < σ . If dim(α) = dim(σ)−1 we say α is a facet of σ

and σ is a co-facet of α , and we denote this α<̇σ Typically, we call an
0-simplex a vertex, a 1-simplex an edge, a 2-simplex a triangle and a
3-simplex a tetrahedron. A simplicial complex K in Rd is a collection
of simplices in Rd such that: (a) every face of a simplex of K is in K;
and (b) the intersection of any two simplices of K is a face of each of

them. A subcomplex L of K is a sub-collection of K that contains all
faces of its elements. The p-skeleton of K is a subcomplex of K that
contains all simpilces in K of dimension at most p, denoted as K p.
Therefore K0 contains the vertices of K, K1 \K0 contains the edges of
K, etc. |K| denotes the subset of Rd that is the union of simplices of
K. See [40] for introductory materials.
Voronoi Diagram and Delaunay Triangulation. For a finite set of
points P⊆ Rd , the Voronoi cell (or Voronoi region) of p ∈ P, denoted
as Vp, is the set of points in Rd whose (Euclidean) distance to p is no
greater than any other points in P. The partitioning of Rd into a collec-
tion of Voronoi cells of all points in P forms the Voronoi diagram. The
Delaunay triangulation of P is the dual graph of its Voronoi diagram.
These concepts could be extended to their corresponding weighted
version by assigning a weight to all points p ∈ P and modifying the
definition of distance between a point in Rd and a weighted point p.
Morse Complex. Let f be a real-valued smooth map f : M → R
defined over a compact d-manifold M. A point p ∈ M is critical
when |∇ f (p)| = 0, i.e. the gradient is zero, and is non-degenerate
when its Hessian (matrix of second partial derivatives) is non-singular.
The function f is a Morse function if all its critical points are non-
degenerate and no two critical points have the same function value.
In this case the Morse Lemma states that there exists local coordi-
nates around p such that f has the following standard form: fp =

±x2
1± x2

2 · · · ± x2
d . The number of minus signs in this equation gives

the index of critical point p. In three-dimensional functions, minima
are index-0, 1-saddles are index-1, 2-saddles are index-2, and maxima
are index-3.

An integral line in f is a path in M whose tangent vector agrees with
the gradient of f at each point along the path. The integral line passing
through a point p is the solution to ∂

∂ t L(t) = ∇ f (L(t)),∀t ∈ R, with
initial value L(0) = p. Each integral line has an origin and destination
at critical points of f , at t =±∞. Ascending and descending manifolds
are obtained as clusters of integral lines having common origin and
destination respectively. The descending manifolds of f form a cell
complex that partitions M; this partition is called the Morse complex.
An index-i critical point has an i-dimensional descending manifold.
The intersection of the ascending and descending manifolds produces
a refinement of the two complexes, which we refer to as the Morse-
Smale complex.

Our interest in Morse theory in this application is motivated by the
relation of the distance function of a set of points to the Voronoi dia-
gram and Delaunay triangulation. Each d-dimensional cell of a three-
dimensional Voronoi diagram corresponds exactly to the ascending d-
manifold of an index-(3− d) critical point in the distance function.
Furthermore, there is an injective map between index-i critical points
of the distance function and i-simplices of the Delaunay triangulation.
This is important, as all features of the distance function are guaran-
teed to be preserved as some simplex of a Delaunay triangulation.
Discrete Morse Theory. Although a complete overview of discrete
Morse theory [22] is outside the scope of this paper, we use basic no-
tions to simplify our discussion. In particular, we utilize simple homo-
topy extensions and collapses [11]. The star of a simplex α , denoted
St(α), is the set of co-faces of α . The link of α is the closure of the
star, minus the star itself, Lk(α) = St(α)−St(α). Let K be a simpli-
cial complex, the centroid C : K →M of an i-simplex α ∈ K, C(α),
is the average position of its vertices. A vector in the discrete sense
is a pairing of cells 〈α(i),β (i+1)〉, where α<̇β . We say that an arrow
points from α(i) to β (i+1). The direction of the arrow relates the com-
binatorial notion of the pairing to the geometric interpretation of flow,
and is given by C(β (i+1))−C(α(i)). Intuitively, this vector simulates
a direction of flow. A discrete vector field V on K is a collection of
pairs 〈α(i)

j ,β
(i+1)
j 〉 of cells of K such that each cell is in at most one

pair of V . All unpaired cells are critical cells. Given a discrete vector
field V on K, a V -path is a sequence of cells

α
(i)
0 ,β

(i+1)
0 ,α

(i)
1 ,β

(i+1)
1 ,α

(i)
2 , . . . ,β

(i+1)
r ,α

(i)
r+1



such that for each j = 0,..., r, the pair 〈α(i)
j ,β

(i+1)
j 〉 ∈ V , and α

(i)
j and

α
(i)
j+1 are both facets of β

(i+1)
j . A discrete vector field in which each

V -path has disjoint start and end-points is a discrete gradient field, de-
noted G, of a discrete Morse function. Note that this condition implies
that a discrete gradient field G does not contain any loops.

The discrete gradient field G is the combinatorial analogue of ∇ f ,
enabling the notions from continous Morse theory to transfer to the
discrete setting. Discrete ascending and descending manifolds are
given by the collection of V-paths having the same critical cell as ori-
gin and destination, respectively. Similar to the continuous setting, the
discrete ascending and descending manifolds form a partition of M.
In our approach we construct a subset of a complete discrete gradient
field, such that the descending 2-manifold from every critical trian-
gle is guaranteed to close the interior of loops of marked edges and
vertices.

3 RELATED WORK

We review works that are most relevant to our proposed techniques,
which are inspired by applying discrete Morse theory to Delaunay tri-
angulations. We begin with a few bibliographic notes on Voronoi dia-
grams and Delaunay triangulations. Then we focus on geometric and
topological methods for the detection of protein cavities (i.e. voids,
pockets and tunnels) in molecular shape analysis, in particular, those
that rely on the computation of Voronoi diagrams and Delaunay trian-
gulation, as well as Morse-Smale complexes.
Methods based on Voronoi Diagrams and Delaunay Triangula-
tions. Voronoi diagrams [52, 53] and Delaunay triangulations [13]
are well-studied structures that produce meshes from sets of points.
We refer the reader to survey articles for an in-depth review [3, 2, 43]
and algorithms to compute them [16].

Most of the geometry-based cavity detection algorithms are based
upon the computation of Voronoi diagrams, Delaunay triangulations,
weighted Delaunay triangulations or their close relative, alpha shapes.
Voronoi diagram based techniques have been proposed that have a spe-
cial focus on the analysis and visualization of tunnels [37, 36], and
are implemented in tools such as CAVER [45] and MOLE [44]. In
particular, Lindow et. al. [37] provide an overview of all accessible
areas of the molecule from the filtered Voronoi diagrams of van der
Waals spheres. A followup work [36] used similar constructions to
detect structures from a molecular dynamics trajectory. Chakravarty
et. al [7] uses a grid-based Monte Carlo procedure to position water
molecules in combination with Voronoi-based procedure to identify
and quantitate empty space within the solvated protein.

Alpha shapes (concepts closely related to alpha complexes) are sub-
complexes of the Delaunay triangulation. Alpha shape theory [19, 21]
has been used for the detection of protein cavities [20, 33, 34, 50], ap-
pearing in tools such as CAST [35, 14], Proshape [31], CAVER [45]
and MolAxis [55]. For example, CAST [35] employes alpha shapes
and the discrete flow within Delaunay triangulation [21, 15, 17, 18]
to identify and measure protein pockets. A related concept similar to
Alpha shape is referred to as the Beta shape [28]. It is shown to be bet-
ter in terms of remaining connected for all resolutions. Beta shape has
been used to represent the proximity among the atoms on the boundary
of a molecule in defining cavities [29].
Methods based on Morse or Morse-Smale Complexes. A few works
exist that employ the Morse complex or Morse-Smale complex in
shape analysis. The topological spine [12] encodes the spatial rela-
tionships of the extrema of a scalar field together with the local vol-
ume and nesting structure of the surrounding contours. It is developed
based on the extraction of sparse subsets of the Morse-Smale com-
plex and is used as a visual representation that preserves the topolog-
ical and geometric structure of a scalar field. The work by Cazals et.
al. [6] performs Morse-Smale decompositions to the discrete gradi-
ent vector field induced by Connolly’s function for molecular surface
models. Natarajan et. al. [41] decompose the protein surfaces into seg-
mented features based on the Morse theory, identify rigid components
of protein molecules and study the role of cavities and protrusions in
protein-protein interactions. Both of these works focus on studying

surface geometry of the proteins, while our proposed technique stud-
ies both surface and interior structures.

Bajaj et. al. [5] propose a systematic use of the distance function
induced by an isosurface to model structural features of molecules,
in particular, by computing stable and unstable manifolds of the crit-
ical points of such a distance function. Their approach geometrically
complements the encoding of the topology by the contour tree, and
enables detection and ranking of the complementary structures of the
isosurface, i.e. the tunnels and pockets.

The full Morse-Smale complex has been used to study topological
features and to construct hierarchical representations of atomic struc-
tures on volume data, identifying the atoms and bonds in a C4H4
molecule and orbitals of a hydrogen atom [26]. Günther et al. [23]
present a combinatorial algorithm involving the Morse-Smale com-
plex for the automated extraction and characterization of covalent and
non-covalent interactions in molecular systems, based on a derived
gradient of electron density.
Scalar Field and Diffusion Analysis in Chemistry. In the chemistry
literature, relatively little analysis is carried out on the wavefunction
field itself, as opposed to atom geometry. Bader analysis [4] decom-
poses charge density into regions of uniform gradient each associated
with one atom, for example using Voronoi partitioning. It is similar
to Morse theory in that it uses gradient descent to partition the scalar
field, but would not help in identifying tunnels between 1-saddles and
minima. Knoll et al. [30] create approximate wavefunction fields for
atomistic MD data using radial basis functions averaged from bulk
DFT computations; these fields were used for quantifying surface
area and volume but not topological analysis. In materials science,
analysis of ion diffusion is typically carred out via small-scale DFT
computations similar to the ones in our study in Figure 2 (also see,
e.g., [56, 1, 42]). Alternately, larger-scale studies are carried out on
bulk systems and model diffusion with electric continuum, e.g. with
Maxwell’s equations [54].
Comparisons to Prior Work. The fundamental difficulty in apply-
ing known approaches for analysis of diffusion of lithium in carbon
nanospheres is that there are no criteria based on distance, charge den-
sity, or any other scalar value to determine which space permits dif-
fusion. In particular, the middle of a blocking ring of carbon may
appear the same as a non-blocking ring or even interstitial space in
terms of both distance and charge density values. For instance, Lin-
dow et al. [37, 36] determine accessibility by computing channel radii.
The work in [5] forms pockets and tunnels by clustering and merging
adjacent stable manifolds of critical points based on their scalar value.

Compared to the work in [24], the approach in this paper is much
more scalable in extracting and analyzing diffusion paths. The ex-
traction process relies directly on Delaunay triangulation instead of a
scalar volume, no extra critical points need to be simplified, and only a
partial gradient field is computed. The prior approach would require an
excessively large volume to attain the same accuracy, and discretiza-
tion error of the distance field would create unmanageable numbers of
spurious critical points.

4 APPROACH

Problem Statement. Our proposed approach attempts to determine
the diffusion characteristics of lithium in a thermally annealed car-
bon nanosphere. The data output from the molecular dynamics code,
which we use as input to our approach, is a set of points A in R3,
with each point representing the location of a carbon atom. The model
upon which we formulate our approach makes two initial assumptions:
first, carbon atoms are bonded if and only if they are closer than 1.8
angstroms; and second, the valence of carbon rings is the primary fac-
tor restricting the diffusion of lithium [47].

Many techniques based on Voronoi diagrams and Delaunay trian-
gulation including Alpha and Beta shapes (as reviewed in Section 3)
use Euclidean distance metric during computation to detect tunnels in
molecules. In contrast, the geometric arrangement of the atoms in the
nanosphere (independent of the underlying metric) plays a key role in
determining diffusion paths of the diffuser. For instance, the length
of the diagonal of a carbon 6-ring may be greater than the distance



Fig. 4. A carbon nanosphere with 90K atoms (left) is output from
a molecular dynamics simulation as a set of atom locations. car-
bon atoms (white spheres) closer than 1.9 angstroms are considered
bonded (green cylinders). The Delaunay triangulation (gray triangles)
of the set of atom positions (right) has carbon atoms at vertices, and a
subset of the edges form the bonds. The carbon atoms are generally
arranged in concentric graphitic sheets, with the interlayer distances ap-
proximately equal to the diagonal length of a carbon 6-ring.

separating two layers of graphitic carbon; lithium is prevented from
diffusing across the former, while may move freely in the interstitial
space in the latter. Therefore, we are motivated to study the local,
geometric arrangements of carbon atoms.

Our proposed approach extracts the free diffusion regions and sur-
faces within the nanosphere by computing a subcomplex of the Delau-
nay triangulation. Given a set of points A ⊂ R3 that determines car-
bon atom locations, our computation is rather straightforward. First,
we compute the Delaunay triangulation K of A and identify a subset
of edges in K that corresponds to bonds between atoms; these bonds
further define atom rings of various valence (and thus size). Second,
we apply the ring-patch algorithm to compute the sets of triangles
that form patches that fill the interior of every ring of bonded atoms;
patches for rings with valence d or less are considered as blocking
patches that prevent lithium diffusion due to their geometry. Finally,
we characterize the interstitial spaces within the nanosphere by identi-
fying paths that do not cross blocking patches, therefore extracting the
free diffusion regions.
Identifying atoms and bonds. As noted in section 2, the Delaunay
triangulation has the representative capacity to encode features of the
distance function, and provides a discretization of the space occupied
by the nanosphere. We utilize the publicly available software Tet-
Gen [49] to construct a Delaunay triangulation K (represented as a
simiplicial complex) from a set of input points A that corresponds to
atom locations. Let A, E, F and T represent the sets of vertices, edges,
triangles and tetrahedra in K, respectively. An edge in K is identified
as a bond between atoms if two of its vertices are closer than a given
threshold c. The set of bounds in K is denoted by B. Graphitic car-
bon has a known covalent bond length of 1.42 Angstroms, however,
variability due to thermal energy necessitates a more in-depth analy-
sis, provided in Section 5. In Fig. 4 we show the computed Delaunay
triangulation of the set of atom locations, and the corresponding set of
extracted atom bonds.

A simple cycle formed by atoms and bonds in K is referred to as an
atom ring. The valence of a ring is its number of atoms. A 2D sub-
complex P (i.e. a set of triangles together with its lower-dimensional
faces) of K forms a patch of a ring R, if the boundary of P is R, i.e.,
R = ∂ (P). Intuitively, a patch closes the hole in the middle of a ring,
and it is homotopy equivalent to a 2D disk. As the lithium atom can
move in the interstitial space, a diffusion path is represented as a se-
quence of alternating triangles and tetrahedra, starting and ending in
tetrahedra, {t0, f0, ..., ti, fi, ti+1, ..., tn}, that represents the cells inter-
sected by the path of a moving lithium atom.

4.1 Ring-Patch Algorithm
The input to the ring-patch algorithm, Algorithm 1, is a Delaunay tri-
angulation K where all its vertices are atom locations, a set B of bond
edges, and an integer constant d. The output of the algorithm is a set
of patches P for rings of valence d or less.

The algorithm draws inspiration from discrete Morse theory, in

Fig. 5. The progress of Algorithm 1 is displayed for three different tri-
angulations of a valence 6 carbon ring. The top two are planar, while
the bottom configuration is more typical in the three-dimensional data.
Each round shows the state of the algorithm after line 17; blue indicate
triangles that have been enqueued, red or green indicates edges and tri-
angles that have been assigned, with critical trianlges marked in green.
The top two configurations each yield one patch, while the bottom con-
figuration yields three valid patches (a-c).

Algorithm 1 RingPatch(K, B, d)
1: Patches P = {}
2: V = {}
3: A = K0, E = K1 \K0, F = K2 \K1

4: for v ∈ A do: V = V ∪〈v,v〉 ; done
5: for e ∈ B do: V = V ∪〈e,e〉; done
6: for i ∈ [1, ...,d] do
7: Queue q = {}
8: for f ∈ F do: if f.#assignededges()≥ 2 : q.insert(f); done
9: while not q.empty() do

10: f = q.top(); q.pop()
11: if f.#assignededges() = 2 then
12: e = f.unassignededge()
13: V = V ∪〈e, f 〉
14: else if f.#assignededges() = 3 :
15: V = V ∪〈 f , f 〉
16: endif
17: end while
18: end for
19: for f ∈ F s.t. 〈 f , f 〉 ∈ V do
20: Pf = descendingMani f old(f, V)
21: R f = ∂Pf
22: if issimplecycle(R f ) and #triangles(Pf ) = #edges(R f ) − 2

then
23: P = P∪Pf
24: end if
25: end for
26: return P

particular, in interpreting discrete vectors as simple homotopy type
collapses and expansions. The intermediate state of the algorithm is
stored in a partial discrete vector field V . We begin the algorithm with
the subcomplex K0 of K1 formed by atoms v ∈ A and bonds e ∈ B, and
build a filtration by adding edges and triangles. Each vertex and edge
in K0 is marked critical in V . To grow the filtration, each step of the
algorithm adds either a triangle-edge pair to Ki, or if all edges of the
triangle are present, then just a single triangle. The #assignededges()
function simply counts the number of edges of a triangle that have
been previously assigned. A triangle-edge pair can be added when
the two other edges are already in Ki, and the unassignededge() func-
tion identifies that edge of a triangle. Adding a triangle-edge pair is a
simple homotopy type preserving operation, and is recorded by assign-
ing a discrete vector between the cells in V . Adding a single triangle
closes a hole, and the topological change is recorded in V by marking
it critical.

There may be many candidate triangle-edge pairs or critical trian-
gles to choose from at any given time; we simulate a breadth-first
traversal by performing expansions in rounds. In each round, all tri-
angles with two or more assigned edges are entered into the queue.
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Fig. 6. Triangles of K are colored either dark gray, if they are part of
blocking patches, or a random color assigned to each void to which
they belong. We generate a dual surface to the volumetric labels (b)
by inserting triangles whose corners have the same void label. This
surface is smoothed (c) to reveal the large-scale connectivity of the free
diffusion surface (d). One layer of the generated surfaces in (b) and (c)
are highlighted in red, and show the effect of smoothing.

When a triangle is popped off the queue, its number of unassigned
edges is counted, and the triangle is either paired or marked critical.
After dd/2e rounds, the descending manifolds of critical triangles in
V are guaranteed to cover all ring patches for rings of valence d or
less. However, not all critical cells and their descending manifolds are
patches: only those with #triangles =#edges−2. This restriction pre-
vents degeneracies, such as pouches, from being reported as patches.
The descendingMani f old(f, V) function computes the descending
manifold of a critical triangle by adding cells in V -paths through a
breadth-first search. The issimplecycle(R f ) function traverses the ver-
tices and edges in the boundary of a descending manifold to check that
it forms a simple cycle. Non-simple cycles indicate degeneracy in a
patch, leading to the patch being discarded.

4.2 Computation of Free Diffusion Regions and Surfaces
The ring-patch algorithm returns a set of patches that fill the interior
of carbon rings up to a certain valence. We formulate explicitly the
two mechanisms of lithium motion illustrated in Fig. 2, namely, ring
valence regulating interlayer diffusion, and free interstitial diffusion.
We investigate the hypothesis that small defects, i.e., rings of valence
7, 8 and 9, are gatekeepers in lithium diffusion between regions of the
carbon nanosphere. We call a region a void when it is completely en-
closed by a graphitic shell formed by rings with a maximum valence d.
To compute voids and how they are connected to one another explicitly
for any given ring valence d, we look at how patches affect lithium dif-
fusion between tetrahedra. We define patches for rings with valence
d or less as blocking patches that prevent lithium diffusion. We can
therefore compute voids as connected volumetric regions, where two
tetrahedra are in the same void if and only if there exists a diffusion
path between them that does not intersect any blocking patches. We
construct a graph whose nodes are tetrahedra, and add an undirected
arc between each pair of nodes whose corresponding tetredra share a
non-blocking triangle in K. A connected component algorithm is used
to extract the individual voids. Fig. 6(a) shows the voids as colored re-
gions of the 90K nanosphere, with blocking patches rendered as gray
triangles.

The visualization of the voids shown in Fig 6 does not sufficiently
show how a lithium atom is able to diffuse within uniformly labeled
voids. Recognizing that the blocking patches form two-dimensional
layers, it is natural to represent the interstitial space itself as a surface.
Such a surface can represent the two degrees of freedom of free inter-
stitial lithium motion that are not constrained by the blocking patches.

We construct the surface by examining the labels from the con-
nected component algorithm. For each tetrahedron ti, for each of its
face triangles f j, and for each of f j’s edges ek, we construct the trian-
gle (C(ti),C( f j),C(ek)), where C(·) gives the centroid of a simplex, if
and only if every tetrahedral co-face of f j and ek belongs to the same
component as ti and f j is not part of any blocking patch. Fig. 6(b)
illustrates the surface created from the labeled triangulation. We ap-
ply Laplacian smoothing to the resulting surface to improve the vi-
sual quality, shown in Fig. 6(c) and (d). The actual paths of diffusing
lithium particles would likely exhibit even greater vibrational momen-
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Fig. 7. The jump in the cumulative density function of edge lengths
(left) of the Delaunay triangulation shows that bond edges, those with
length less than 1.8, are extracted without ambiguities. The technique
for computing patches breaks down when the layers are closer together
than a bond length (right), in which case the triangulation flips and no
set of triangles form a patch of the ring.

tum than we can represent via these surface structures. In our exam-
ples, we used 10 iterations of Laplacian smoothing, based solely on
user preference for visualization of the result. Though artificial, the
smoothing step compensates for the piecewise-linear nature of the De-
launay triangulation, with the goal of better representing average paths
of diffusing particles over time. We make an assumption that the initial
free surfaces are uniformly crooked, therefore uniform smoothing will
have little effect on relative geodesic distances along those surfaces.

5 DISCUSSION

A key to our technique is perfect identification of bonds between car-
bon atoms. Although the expected length in graphere is 1.42 Å, in
the result of the MD simulation, the carbon atoms are not in a uni-
form structure and furthermore thermal energy causes jitter in their
positions. However, as shown in Fig. 7, when all edges of the De-
launay triangulation are plotted, there is a clear separation between
those edges with length greater than 2.1 Åand those with length less
than 1.6 Å. Guided by experiment [47], we used 1.8 Å as the stable
distance threshold to determine if two carbon atoms are bonded.

Implicit in our technique is the assumption that the Delaunay tri-
angulation possesses triangles that mesh the interior of a ring. This
is equivalent to the statement that there are 2-saddles in the distance
function whose descending manifolds close the ring. However, it is
possible to have geometric arrangements of atoms that violate these
assumptions. For instance, if two carbon atoms are positioned on op-
posite sides of a ring, in the direction normal to the plane of the ring,
then if they are closer together than the diameter of the ring, the trian-
gulation flips, and no disk of triangles closes the ring. This configu-
ration is illustrated in Fig. 7. For sheets of graphene with 6-rings, the
diameter is two times the bond length, and therefore the sheets must
be at separated by at least the bond length. In practice, the separation
tends to be roughly two times what is needed to guarantee the presence
of 2-saddles in the distance function.

The model determining lithium diffusion through carbon rings as-
sumes planar morphology. In practical applications, it is rare for the
rings to be truly planar, and instead, the atoms are typically displaced
in the third dimension by a small amount, as illustrated in Fig. 5(bot-
tom). In such cases, there is no unique patch closing the ring; several
patches close the ring, trapping a volumetric region between them.
These slivers make up 0.2% of the volume of the nanosphere. In prac-
tice, they do not affect the overall diffusion properties, as all patches
for the same ring behave in similar manner, as only valence of the ring
is taken into consideration.
Implementation. The simplicial complex used as the input mesh was
generated with TetGen [49]. The approach in Section 4 was imple-
mented in c++ and run on a single core of a shared memory machine,
taking approximately 5 minutes to perform the full analysis, generat-
ing annotated meshes and surfaces. The majority of time was spent in
reading and constructing the simplicial complex, and writing surfaces
in formats supported by downstream visualization tools. Subsequent
visualizations were produced using MeshLab [9] and VisIt [8].



Fig. 8. The patches of rings with valence six or less are shown in blue
(top left) for the 740K nanosphere. The other colors are patches for
small defects, rings up to valence 10. These are clustered near the
exterior (top right) or along the principle axes (bottom) in the interior of
the sphere. Defect patches with the same color touch along at least one
atom of their rings, and the large components indicate that defect rings
occur in the neighborhood of other defects.

Fig. 9. We show the voids of the 740K nanosphere for two different
thresholds of valence that marks rings as blocking or not. On the left,
any ring with valence greater than six permits free diffusion of lithium.
On the right, any ring with valence ≤ 12 blocks flow. In both images,
the dark pink region is the larges void, connected to the exterior. Sur-
prisingly, the two void images are almost identical, with some minor dif-
ferences. This suggests that small-scale defects are not the primary
mechanism of interlayer lithium diffusion.

6 RESULTS

Experimental results were generated for both a 90K and 740K atom
simulations, showing similar characteristics. We focus on the 740K
simulation in this section as it more closely approximates real-world
nanosphere sizes.
Defects The traditional atom-and-bond visualization of 740K
nanosphere is shown in the teaser image. It is challenging to identify
any patterns of defects in the traditional image, and therefore in Fig. 8
we present a visualization of all blocking and non-blocking patches
extracted by our approach. It becomes apparent that small defects oc-
cur with highest concentrations near the surface of the nanosphere, or
along the principle axis leading to the center. Indeed, the interiors of
the eight regions bounded by the x = 0, y = 0, and z = 0 planes and

Fig. 10. Uniformly labeled voids from Fig. 9 are converted to free
diffusion surfaces (pink surfaces), and rendered with the atoms (gray
spheres) and bonds (gray cylinders) for the 740K nanosphere (top).
While small-scale defects contribute to lithium diffusion, the free sur-
faces highlight a more pervasive mechanism: large scale dislocations
propagating through graphitic layers. Defect-free graphitic layers (bot-
tom left) are broken along coherent dislocations (bottom right), which
connect the free diffusion surface of different layers.

Fig. 11. We propose a model for the creation of defects in the
nanosphere, namely the propagation a fault (left), dislocation, and sub-
sequent reconnection (right) of layers.

nanosphere surface are relatively devoid of defects. Incidentally, the
regions with high number of defects correlate to exactly those areas
where the stacked graphitic carbon layers bend.
Voids We next investigate the voids in the interior of the carbon
nanosphere, and how they are affected by defects. Our initial hypoth-
esis held that the interior of the nanosphere was composed of distinct
voids, connected to one another by defects with relatively small va-
lence, e.g. 7-12. Fig. 9 shows our first surprising result, namely that
the vast majority of the nanosphere, 97.8% of the volume, is com-
posed of a single void. This behavior does not change, whether only
rings with valence less than 7, or those with valence 12 or less are
considered blocking for the purposes of delimiting voids. This clearly
contradicts our initial hypothesis, suggesting instead that some factor
other than defect rings drives lithium diffusion in the nanosphere.
Free Diffusion Surfaces To better understand the mechanics of
lithium diffusion, we compute and visualize the free diffusion sur-
faces. Fig. 10 provides the first insight into the nature of large-scale



defects in the nanosphere. For the first time, we can show that the two-
dimensional free diffusion surfaces wrap around their one-dimensional
boundary in a helical structure, as illustrated in Fig. 13(b). This struc-
ture enables lithium motion in the third dimension, similar to how a
spiral staircase allows locally two-dimensional travel to transport be-
tween levels. Furthermore, the coherent, linear location of these dislo-
cations suggests a formative process wherein layered graphite is bro-
ken and reconnected along faults, as in Fig. 11.
Distance The utility of a material as an anode in a battery is highly
dependent on the time needed to saturate the material with lithium
ions. Absent the capability to simulate this diffusion, we instead turn
to a proxy, namely the minimum distance an ion would have to travel
from the interior to the exterior of the nanosphere. The motivation is
the hypothetical scenario where lithium ions initially surround a va-
cant nanosphere, and over time diffuse into the sphere. Recall that
the free diffusion surfaces record the approximate mean location of
lithium bouncing between layers of graphitic carbon. Therefore, with
the assumption that the leading edge of the diffusion progresses at a
steady rate, the geodesic distance along free surfaces is a reasonable
approximation to the solution.

We consider a triangle of the Delaunay triangulation as exterior if
it is either is a non-patch boundary triangle, or a face of a tet with an
edge longer than 6.8 Å. We utilize the free diffusion surfaces and com-
pute geodesic distance to the exterior. Fig. 12 shows a cross-section
of the nanosphere colored by geodesic distance, illustrating that dif-
fusion to the interior is facilitated by dislocations. Furthermore, we
can compute how much of the nanosphere is accessible within any
distance of the exterior. While small defects did not affect the connec-
tivity of voids inside the nanosphere, we observe a small impact on the
rate of diffusion. Namely, we compare the volume vs. distance curves
of configurations where rings with valence less than d block the dif-
fusion of lithium. Higher valence rings blocking diffusion results in
longer diffusion distance to achieve the same volume of saturation.
Finally, in Fig. 13, we extract the boundary curves of the free diffu-
sion surfaces, and provide an illustrative visualization of the regions
of the nanosphere accessible at varying distances. These images pro-
vide strong support for a new hypothesis that dislocations extending to
the surface of the nanosphere are the primary mechanism controlling
the rate of saturation in carbon nanospheres.

7 CONCLUSION/FUTURE WORK

We have presented a new approach for studying lithium diffusion char-
acteristics in carbon nanospheres used as battery anode materials. We
showed, for the first time, that the majority of the interior of the
nanosphere was directly accessible to its exterior via major disloca-
tions. The visualizations of the free diffusion surfaces further led to a
hypothesis for the formation of these dislocations, which will be testes
in future experiments. We finally quantified the contribution of small-
scale defects to the overall accessible volume, and furthermore their
effect on the speed of saturation.

The major finding of this work is that local defects, rings with
high valence, have relatively insignificant contribution to the adsorp-
tion characteristics of this carbon nanosphere. We anticipate that this
study will enable the systematic analysis of nanospheres computed in
different configurations to be able to quantify the effects of changing
geometries and physical processes. This could lead to rethinking how
best to create nanospheres to have desirable cycling properties in bat-
teries.

We will extend this work to study large scale amorphous meso-
porous carbon structures, a 3D periodic repeated structure. An addi-
tional target will be studying carbon nanosphere matrices, where each
sphere is bonded with others to form a periodic matrix. We plan on
extending the technique to handle multi-material MD computations,
for instance, to study the effect of dopants or coating layers. Use of
this analysis at simulation checkpoints could be useful for computa-
tional steering, to terminate unpromising simulations where diffusion
cavities are unlikely to develop. Our technique should also be appli-
cable to other silicon-based anode materials, and extended to larger,
experimental-scale nanospheres. In addition, we will use the extracted

geometries to accelerate more accurate “dynamics-like” analysis to
compute adsorption rates.
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