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ABSTRACT

Scientific simulations are essential for understanding complex
physical systems, yet they are often computationally intensive and
time-consuming. To address this challenge, researchers increas-
ingly employ deep learning models to generate data efficiently and
predict future system states. However, the uncertainty inherent in
model outputs can undermine the reliability of these predictions,
especially when analyzing structural patterns critical for scientific
insight. While most existing approaches estimate uncertainty at the
pixel or grid level, characterizing uncertainty in predicted topologi-
cal structures provides a more intuitive and compact way to capture
meaningful changes in the data. In this work, we quantify and visu-
alize the uncertainty of Morse complexes during model prediction.
Morse complexes, grounded in Morse theory, are gradient-based
topological structures that offer concise abstractions of scalar fields.
Given a time-varying scalar field, we use UNet-T, a U-Net-style
convolutional architecture, to predict future timesteps. To assess
the uncertainty of the resulting topological structures, we introduce
MC-U, a joint-estimation graph neural network (GNN) that cap-
tures how uncertainty propagates into predicted Morse complexes.
We demonstrate our approach on several 2D time-varying scientific
datasets, showing that it effectively identifies regions of reduced
structural reliability, thereby enhancing both the interpretability and
the trustworthiness of the predictions.

Index Terms: Morse complex, uncertainty visualization, scientific
machine learning, discrete Morse theory, deep learning, topological
method.

1 INTRODUCTION

Scientific simulations are indispensable for understanding complex
physical systems, but running them over long time horizons is of-
ten computationally expensive and time-consuming. To overcome
this challenge, researchers have increasingly turned to deep learn-
ing models to enable efficient data generation [9, 53–55]. How-
ever, predictions from these models inherently involve uncertainty,
stemming from factors such as limited training data, model ap-
proximation errors, and chaotic dynamics in the underlying system.
This underscores the need for an effective uncertainty quantification
framework in surrogate modeling.

Uncertainty is commonly characterized using statistical sum-
maries—such as the mean, median, and standard deviation—which
are then encoded into the data for visualization and analysis. Most
existing approaches focus on point-wise or grid-wise uncertainty
estimation, where uncertainty is assessed independently at each
spatial location. While point-wise uncertainty quantification is
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commonly adopted in deep learning-based scientific data predic-
tions, the study of structural uncertainty from a topology-based per-
spective remains underexplored.

Topological descriptors are fundamental tools in topological data
analysis and scientific visualization, offering succinct and robust
abstractions of complex datasets. Popular scalar field descriptors
include persistence diagrams and barcodes [7, 15, 23], merge and
contour trees [5, 8], Reeb graphs [48], and Morse/Morse-Smale
complexes [13, 14, 22]. These have been applied across domains
such as structural biology, climate science, combustion, neuro-
science, physics, chemistry, and ecology for tasks including scalar
field comparison [40, 57, 66], data compression [24, 65], feature
tracking [39, 64], and ensemble analysis [3, 37]; see [67] for a
survey. By providing meaningful abstractions, these descriptors
reduce data complexity, enable multiscale hierarchical representa-
tions, and support progressive simplification and visual exploration.

Recent studies have integrated uncertainty visualization into
topological descriptors to enable more effective analysis of under-
lying structures. In particular, Gupta et al. explored structural un-
certainty of Morse complexes in image segmentation [28]. How-
ever, this method was designed for static image segmentation mod-
els and is not suitable for scientific visualization, particularly when
estimating dynamic data. In scientific visualization, prior work has
explored uncertainty in various topological descriptors—such as
merge trees [68], contour trees [35, 70], Morse and Morse-Smale
complexes [3]. However, few studies have addressed the visual-
ization of uncertainty in topological structures arising from deep
learning–based predictions of scientific temporal data.

Motivated by this gap, we investigate the structural uncertainty
of Morse complexes in predictions generated by deep learning
models for time-varying scientific data. Such data typically con-
sist of a sequence of scalar fields, where the underlying topology
evolves over time, often becoming increasingly complex. Predic-
tions of future timesteps—conditioned on current timesteps—may
exhibit structural deviations that impact scientific interpretation and
decision-making. Specifically, we quantify the structural variations
introduced into Morse complexes by the model’s prediction.
Contributions. In this paper, we quantify and visualize the struc-
tural uncertainty of Morse complexes arising from time-varying
data predictions. Our framework consists of two key components:
a UNet [49] architecture for forecasting future timesteps in time-
varying data, and an uncertainty model called MC-U that quanti-
fies structural uncertainty in the Morse complexes of the predicted
scalar fields. Together, these models effectively capture structural
uncertainties in the predictions, enabling more interpretable and
trustworthy analysis of complex scientific data. Our contributions
are as follows:

• We propose UNet-T, an UNet-style convolutional architecture to
perform predictions of future timesteps, demonstrating its effec-
tiveness through accurate reconstruction.

• We introduce MC-U, a Morse complex uncertainty quantification
model that employs a graph neural network (GNN) [51,63,69] to
jointly estimate structural uncertainty in predicted scalar fields.
The model is grounded in discrete Morse theory and extends a
joint estimation framework [28] originally developed for image



segmentation tasks. MC-U identifies regions of structural stabil-
ity by analyzing the uncertainty values associated with predicted
Morse complex skeletons.

• We demonstrate the effectiveness of MC-U both qualitatively and
quantitatively through experiments on various 2D time-varying
scientific datasets, in comparison with pixel-wise uncertainty
models.

2 RELATED WORK

In this section, we briefly review uncertainty visualization for topo-
logical descriptors, with a focus on structure-aware data uncertainty
in scalar fields, and recent approaches to uncertainty quantification
in deep learning.
Uncertainty visualization of topological descriptors. A substan-
tial body of work has studied uncertainty visualization in topolog-
ical descriptors for scalar fields. A variety of feature-wise and
structure-wise uncertainty visualization methods have been pro-
posed, with a particular focus on critical points, merge trees [5],
contour trees [8], Morse and Morse–Smale complexes [42].

Mihai and Westermann [41] introduced a probabilistic frame-
work for assessing the stability of critical points in uncertain scalar-
field ensembles. They derive confidence regions by analyzing
statistics of gradients and Hessians matrices, confidence intervals
for the gradient vector and for the determinant and trace of the Hes-
sian—allowing them to identify locations where critical points are
likely to occur and infer their types. Günther et al. [25] introduced
the concept of mandatory critical points, identifying regions in 2D
uncertain scalar fields where at least one critical point is guaranteed
to exist within a mandatory critical region. Favelier et al. [16] intro-
duced persistence-based clustering to ensemble members, followed
by the identification of mandatory critical regions to visualize the
positional uncertainty of critical points.

To explore the structural variations of contours for noisy data,
scientists study uncertainty information that requires effective visu-
alization, enhanced by user interaction and relevant contexts. Wu
et al. [62] developed interactive visualization tools for exploring
data uncertainty of contour trees. Kraus [35] visualized uncer-
tain structures in contour trees by utilizing grayscale morphology.
Zhang et al. [70] proposed an efficient sampling-based Monte Carlo
method to study the uncertainty of contour trees arising from ter-
rains. Whitaker et al. [61] introduced contour boxplots for visual-
ization and exploration of ensembles of contours of the underlying
functions, providing a generalized method to quantify the uncer-
tainty in a model or simulation process. Yan et al. [68] introduced
strategies to compute structural averages of merge trees for uncer-
tainty visualization.

Morse and Morse-Smale complexes have been used to inves-
tigate structural variations for scientific ensembles. Athawale et
al. [3] proposed statistical summary maps for quantifying struc-
tural variations and visualizing the uncertainty of Morse complexes.
Their statistical summary maps characterize the uncertain behaviors
of gradient flows by capturing variations in destinations of gradi-
ent flows, persistence values, and directional changes during per-
sistence simplification. Lan et al. [37] introduced a novel topolog-
ical skeleton based on Morse complexes to analyze the uncertainty
associated with atmospheric rivers.
Uncertainty quantification in deep learning. There has been
significant work on uncertainty quantification of deep neural net-
works [1, 19, 21, 27]. For 2D data in particular, uncertainty es-
timation is often computed in the context of image-to-image and
segmentation tasks, producing per-pixel uncertainty estimates. For
image-to-image tasks, methods such as [2] train a neural network
to predict heuristic lower and upper bounds, which are used to esti-
mate uncertainty. For segmentation tasks, early work by Kendall
and Gal [32] proposed a Bayesian approach that combines MC
dropout [20] to estimate model uncertainty, with a learned loss

attenuation term to handle data uncertainty. In recent years, gen-
erative models have been used to create multiple possible outputs
(hypotheses), where the pixel-wise variance across these outputs is
treated as uncertainty [36,50]. Following this paradigm, Probabilis-
tic U-Net [34] combines a conditional variational autoencoder [56]
with a U-Net [49] architecture to generate different segmentation
hypotheses by sampling latent variables. PHiSeg [4] further ex-
tends this by introducing latent variables at each level of the U-Net,
while [47] using diffusion models to generate multiple hypotheses,
leading to more diverse outputs.

From a scientific visualization perspective, researchers have in-
vestigated uncertainty quantification in deep learning to support a
wide range of applications. Shen et al. [53] studied uncertainty
with a flow-based model for the super-resolution task. They per-
formed uncertainty quantification by sampling from the Gaussian
latent space. Shen et al. [52] investigated deep learning–based sur-
rogate flow models for scientific applications, with a particular em-
phasis on uncertainty quantification during data generation.

3 BACKGROUND

Our framework incorporates several technical ingredients, includ-
ing Morse complexes, discrete Morse theory, and structural uncer-
tainty estimation.

3.1 Morse Complexes
We focus on the construction of 2D Morse complexes. Let f :
M → R be a smooth function defined on a 2D manifold, where
∇f denotes its gradient. A point x ∈ M is called a critical point
if ∇f(x) = 0; otherwise, it is a regular point. A critical point is
non-degenerate if its associated Hessian matrix is non-singular. A
function f is a Morse function if all of its critical points are non-
degenerate and the critical points have distinct function values [12,
page 128]. At any regular point x, an integral line is a maximal
path whose tangent vectors align with ∇f [14]. f increases along
the integral line and each integral line originates and terminates at
critical points, namely local minima, local maxima, or saddles.max

min
(A) (B)

(C) (D)

<latexit sha1_base64="fOlZTrdeT55D43Q5L7u1e0Cw+sI=">AAAB6nicdVDLSsNAFL3xWeur6tLNYCu4CknRPnYFN11WtA9oQ5lMJ+3QySTMTIQS+gluXCji1i9y5984bSOo6IELh3Pu5d57/JgzpR3nw1pb39jc2s7t5Hf39g8OC0fHHRUlktA2iXgkez5WlDNB25ppTnuxpDj0Oe360+uF372nUrFI3OlZTL0QjwULGMHaSLeluDQsFB277rj1qypakdplRip15NrOEkXI0BoW3gejiCQhFZpwrFTfdWLtpVhqRjid5weJojEmUzymfUMFDqny0uWpc3RulBEKImlKaLRUv0+kOFRqFvqmM8R6on57C/Evr5/ooOalTMSJpoKsFgUJRzpCi7/RiElKNJ8Zgolk5lZEJlhiok06eRPC16fof9Ip227FrtyUi41mFkcOTuEMLsCFKjSgCS1oA4ExPMATPFvcerRerNdV65qVzZzAD1hvnyFXjb8=</latexit>p

<latexit sha1_base64="fOlZTrdeT55D43Q5L7u1e0Cw+sI=">AAAB6nicdVDLSsNAFL3xWeur6tLNYCu4CknRPnYFN11WtA9oQ5lMJ+3QySTMTIQS+gluXCji1i9y5984bSOo6IELh3Pu5d57/JgzpR3nw1pb39jc2s7t5Hf39g8OC0fHHRUlktA2iXgkez5WlDNB25ppTnuxpDj0Oe360+uF372nUrFI3OlZTL0QjwULGMHaSLeluDQsFB277rj1qypakdplRip15NrOEkXI0BoW3gejiCQhFZpwrFTfdWLtpVhqRjid5weJojEmUzymfUMFDqny0uWpc3RulBEKImlKaLRUv0+kOFRqFvqmM8R6on57C/Evr5/ooOalTMSJpoKsFgUJRzpCi7/RiElKNJ8Zgolk5lZEJlhiok06eRPC16fof9Ip227FrtyUi41mFkcOTuEMLsCFKjSgCS1oA4ExPMATPFvcerRerNdV65qVzZzAD1hvnyFXjb8=</latexit>p

min

max

Figure 1: (A) shows a 2D scalar field f . (B) depicts the Morse com-
plex of f , and (C) shows the Morse complex of −f . In (B), the stable
manifold of a local maximum p is highlighted, along with white integral
lines that terminate at p. In contrast, (D) shows the unstable manifold
of a local minimum p, with white integral lines originating from p.

The stable manifold associated with a local maximum p con-
sists of the point itself and all regular points whose integral lines
terminate at p [12]. The unstable manifold associated with a lo-
cal minimum p is the point itself together with all regular points
whose integral lines originate at p [12]. A Morse function f is a



Morse-Smale function if the stable and unstable manifolds intersect
transversally [12]. Assuming transversality, the stable manifolds in-
duce a decomposition of the domain into 2-cells, where local min-
ima and saddles correspond to 0-cells, and the integral lines con-
necting them define 1-cells. Together, these cells form the Morse
complex of f . In other words, the Morse complex segments the
domain into regions where gradient flow behaves coherently. Anal-
ogously, the unstable manifolds induce the Morse complex of −f .
See Fig. 1 for illustrations.

We focus on the 1D skeleton of the Morse complex—often re-
ferred to as the Morse skeleton in this paper—which consists of
the 0-cells and 1-cells and captures the connectivity between local
minima and saddles.

3.2 Discrete Morse Theory

Discrete Morse theory (DMT), introduced by Forman [17], is a
combinatorial analogue of classical Morse theory [42] that enables
topological analysis of discrete data. In our setting, let K be a
2D cell complex. A function f : K → R is a discrete Morse
function if for each d-cell α(d) ∈ K, there is at most one co-face
β(d+1) such that f(β) ≤ f(α), or at most one face γ(d−1) such
that f(γ) ≥ f(α), but not both. Cells that do not participate in
any such pair are called critical cells and they correspond to local
minima, local maxima, or saddles.

A discrete vector field V is a collection of such pairs
{α(d), β(d+1)} with α(d) < β(d+1), such that each cell appears
in at most one pair [18, Definition 3.3]. A V-path is an alternating
sequence of cells

α
(d)
0 , β

(d+1)
0 , α

(d)
1 , β

(d+1)
1 , . . . , β(d+1)

r , α
(d)
r+1

where each pair {αi < βi} ∈ V and βi > αi+1 ̸= αi, for 0 ≤
i ≤ r [18]. Such a path is a non-trivial closed V-path if r ≥ 0 and
α0 = αr+1. When V contains no non-trivial closed V-paths, it is
called a discrete gradient field [18, Theorem 3.5].

DMT provides a robust framework for extracting Morse (and
Morse-Smale) complexes. Notably, it has been used for image seg-
mentation to ensure topological accuracy [28, 31]. In our work,
we focus on V-paths that connect saddles to local maxima (or local
minima) through sequences of regular cells, which correspond to
the Morse skeleton. These paths may be considered as topological
analogs of mountain ridges in the scalar field.

3.3 Probabilistic Discrete Morse Theory

DMT, as described above, provides a deterministic framework for
computing the Morse skeleton of a discrete Morse function f . How-
ever, this deterministic treatment neglects the uncertainty that often
underlies f , and consequently overlooks the potential variability in
the stable (or unstable) manifolds and the resulting Morse skeleton.
In many real-world applications, f is not an exact, noise-free func-
tion. For instance, f may represent a likelihood map produced by a
segmentation model or a scalar field predicted by a temporal fore-
casting model. In such cases, f can be ambiguous or noisy due to
model limitations or inherent data variability.

To address this uncertainty, Gupta et al. [28] introduced the
Probabilistic DMT for modeling the variability inherent in segmen-
tation likelihoods from image analysis tasks. Unlike DMT, which
treats each 1-cell as a single fixed path, Probabilistic DMT mod-
els each 1-cell as a sample drawn from an underlying probability
distribution. This probabilistic formulation enables the capture and
quantification of uncertainty in segmentation likelihoods, yielding
a more robust and realistic representation of the data.

Probabilistic DMT extends DMT by incorporating a perturb-
and-walk sampling algorithm. Directly sampling from the expo-
nentially large space of all possible Morse skeletons (also referred

(D) Prob. DMT (Structure #2)(C) Prob. DMT (Structure #1)

(B) DMT(A) Ground truth

min

max
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Figure 2: (A) A ground truth scalar field and a piece of a Morse skele-
ton (i.e., a 1-cell in pink). (B) The likelihood f predicted by a deep
learning model, and a 1-cell e (in pink) obtained from DMT. Red and
white points denote local maximum pm and saddle ps respectively.
(C) Probabilistic DMT uses perturb-and-walk strategy to first sample
fn ∼ f + r, followed by a guided walk to generate structure varia-
tion ê between the same pair of critical points (ps, pm). (D) Another
structure generated by Probabilistic DMT.

to as structures) is computationally intractable. Hence, the perturb-
and-walk strategy is used to efficiently generate diverse, plausible
structures of the likelihood without exhaustively enumerating all
possible structures [29,38,45]. By introducing controlled perturba-
tions to the likelihood and repeatedly extracting pieces of the Morse
skeleton, Probabilistic DMT simulates how slight fluctuations in
the likelihood can lead to different structures. This stochastic sam-
pling process avoids explicitly evaluating all subsets of structures,
while still capturing meaningful variability, making it well-suited
for modeling structure-wise uncertainty.

Formally, consider a 1-cell (i.e., a structure) e defined by the path
connecting a pair of critical points (ps, pm) where ps represents a
saddle point and pm represents a local maximum. In order to obtain
a structural variation of e, a perturbed version fn is first sampled
from f by adding random Gaussian noise:

fn ∼ f + r, r ∼ N (0, σ2)

This process is independent of the perturbation model r (which is
Gaussian). As the variance of the Gaussian model σ is unknown,
Bayesian probability theory is used to sample the variance from the
Inverse Gamma distribution (its conjugate prior [43]).

Next, to generate a variation ê of e, a guided walk from ps to
pm is simulated on the perturbed field fn. At each step, given
the current location p, the next location p′′ is chosen as p′′ =
argmax(Q(p′)), where, p′ ∈ neighborhood(p)1 and,

Q(p′) = γQd(p
′) + (1− γ)fn(p

′),

where Qd(p
′) =

1

∥pm − p′∥2
.

And γ ∈ [0, 1] is a balancing parameter. The distance regular-
izer Qd ensures path completion towards the destination pm, while

1An 8-connectivity neighborhood for a 2D domain.



fn(p
′) enforces preference for high intensity values (as in DMT).

Thus, the process begins with p := ps and continues in this man-
ner p := p′′ until reaching pm, thereby generating ê. Fig. 2 illus-
trates different structures generated by the perturb-and-walk strat-
egy between the same pair of critical endpoints (ps, pm) identified
by DMT.

As a result, the sampling process generates structural variations
that reflect the uncertainty inherent in the likelihood. Structures
with high uncertainty give rise to greater variation across sam-
ples, whereas structures with low uncertainty (high confidence)
yield more consistent outcomes. This variability provides direct
estimates of intra-structural uncertainty. A complete Probabilis-
tic DMT procedure produces a single sample Morse skeleton from
the space of possible skeletons, and multiple realizations enable ex-
plicit modeling of structure-wise uncertainty.

3.4 Structural Uncertainty Using Joint Estimation
Probabilistic DMT quantifies intra-structural uncertainty by analyz-
ing variations within individual structures. While intra-structural
uncertainty captures ambiguity within a single structure (arising
from intrinsic properties such as geometry), the uncertainties of dif-
ferent structures are not independent. Estimating each structure’s
uncertainty in isolation neglects spatial relationships and may re-
sult in inconsistent or suboptimal uncertainty quantification across
the entire Morse skeleton.

Therefore, Gupta et al. [28] emphasized that inter-structural un-
certainty must be considered, as the uncertainty in one structure is
often influenced by its neighboring structures. To model these de-
pendencies, a joint estimation framework is used to reason over all
structures simultaneously. Rather than predicting uncertainty inde-
pendently for each structure, a graph is constructed where nodes
represent individual structures and edges encode spatial adjacency.
A graph neural network (GNN) [51, 63, 69] is then used to propa-
gate information across this graph, enabling the model to capture
context and refine uncertainty estimates based on inter-structure re-
lationships.

This joint estimation framework avoids the computational bur-
den of explicitly enumerating all possible Morse skeletons—which
grows exponentially with the number of structures—while still
accounting for inter-structural dependencies. Through message-
passing mechanisms, the uncertainty of each structure is refined
using information from its neighbors, producing more coherent and
contextually aware estimates that reflect both local structural char-
acteristics and their mutual interactions.

4 METHOD

Our framework for quantifying structural uncertainty in predicted
Morse complexes consists of two components. The first is UNet-T,
a U-Net architecture designed to predict the future state of time-
varying scientific data. The second is MC-U, which takes the pre-
dictions from UNet-T as input and quantifies the uncertainty of the
Morse complexes at future timesteps.

4.1 UNet-T: Time-Varying Data Prediction
We are interested in predicting a scalar field xt+∆t at a future
timestep t + ∆t given an input scalar field xt at timestep t. To
that end, we implement a U-Net [49] style convolutional architec-
ture called UNet-T, which consists of an encoder–decoder architec-
ture with symmetric skip connections that transfer high-resolution
features from the encoder to corresponding decoder layers. The en-
coder compresses the input to a latent representation z = ϕ(x),
and the decoder attempts to reconstruct the future timestep from
this representation, yielding x̂ = ψ(z). Specifically, the encoder
consists of stacked convolutional blocks interleaved with average
pooling layers that progressively reduce spatial resolution and in-
crease feature complexity. Each convolutional block contains two

convolutional layers followed by ReLU activations, which allow the
network to learn rich feature representations.

Encoder Decoder

Skip-connections

Latent space

1x1 
Con. layerScalar field 𝒙𝒕 Scalar field 𝒙"𝒕"∆𝒕

Figure 3: An illustration of the UNet-T model architecture. The model
takes as input a scalar field at timestep t and reconstructs the scalar
field at timestep t+∆t.

In the latent space, the network operates at the lowest spatial res-
olution, capturing global context. The decoder then reconstructs the
high-resolution output by upsampling via bilinear interpolation and
combining features through skip connections from the correspond-
ing encoder layers. This skip-connection design helps preserve spa-
tial details.

The final output is produced by a 1 × 1 convolution that maps
the decoded features back to the scalar field space and resizes them
to match the input dimensions. This architecture effectively pre-
dicts future timesteps by learning a compact latent representation
of spatiotemporal dynamics while maintaining spatial coherence in
the reconstructed data. As shown in Fig. 3, given an input xt, the
model is trained to predict a future state x̂t+∆t, learning a compact
latent representation that reflects spatial evolution. The input xt

passes through four convolutional blocks during encoding and de-
coding. We optimize our model by minimizing a pixel-wise mean
squared reconstruction loss, where the ground truth is taken to be
the scalar field at future timestep xt+∆t. This encourages the de-
coded output to closely resemble the target future timestep:

Lrec =
1

N

N∑
i=1

(xt+∆t,i − x̂t+∆t,i)
2

where xt+∆t,i and x̂t+∆t,i denote the original and reconstructed
scalar field values at spatial location i, respectively, and N is the
total number of pixels or grid points in the domain. By training the
model to map a field at time t to a future state at time t + ∆t, the
model effectively learns to predict spatial field evolution through a
compressed representation.

The prediction serves as the input for our MC-U model. The
predicted future scalar field x̂t+∆t is subsequently analyzed using
a structure-aware GNN designed to estimate the uncertainty of the
Morse complex of x̂t+∆t.

4.2 MC-U: Uncertainty of Predicted Morse Complexes
The UNet-T predicts future scalar field values by encoding spatial
information into compact latent representations, potentially intro-
ducing structural variations that pixel-wise uncertainty measures
cannot capture. To address this limitation, we introduce a Morse
complex uncertainty model, MC-U, designed to detect structural
variations in the Morse complexes that arise in the predictions.

Our approach extends the Probabilistic DMT and joint estima-
tion framework of Gupta et al. [28] (see Secs. 3.3 and 3.4) with
key modifications to address the time-varying scalar field predic-
tion task. In particular, we design the input feature vector and loss
function of MC-U specifically for this task.

An overview of our MC-U model architecture is shown in Fig. 4.
Given the prediction at timestep t+∆t, we first extract the Morse
skeleton by computing the 1-cells of the Morse complex from the
prediction. The original joint estimation framework [28] was de-
veloped for the image segmentation task, where the segmentation
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Figure 4: MC-U: Morse complex uncertainty model designed to jointly estimate the uncertainty of the Morse skeleton of the prediction at timestep
x̂t+∆t. ’GT’ stands for the ground truth.

model outputs a continuous likelihood map indicating the per-pixel
probability of belonging to the target structure. DMT is then ap-
plied to this likelihood map to identify pieces of Morse skeletons
that highlight structural inconsistencies—such as false positives
and false negatives. In our setting, the UNet-T model predicts a
continuous scalar field instead of a probability map. Therefore, we
directly compute the Morse skeleton from the predicted scalar field
to capture the underlying topological structure.

The Morse skeleton of the prediction consists of a set of 1-
cells, each defined by a path connecting a saddle–maximum pair
(ps, pm). To analyze structural variability within the skeleton, we
perturb the predicted scalar field by adding Gaussian noise. For
each 1-cell, we fix its endpoints (the saddle–maximum pair) and
perform a guided walk starting from the saddle and ascending to-
ward the local maximum. This walk is directed by both the scalar
field values and the distance to the destination, following the pro-
cedure described in Probabilistic DMT (Sec. 3.3). Through this
process, we obtain a collection of sampled 1-cells (paths) that cap-
ture possible structural variations of the scalar field. Specifically,
if the sampled 1-cells for a given saddle–maximum pair exhibit lit-
tle variation under perturbations, the 1-cell is associated with low
uncertainty; conversely, high variability in the sampled 1-cells in-
dicates greater structural uncertainty.
Joint estimation and training procedure. Probabilistic DMT
estimates intra-structural uncertainty, that is, uncertainty arising
from structural variations internal to each 1-cell. To account for
the spatial relationships between the 1-cells, we also model inter-
structural uncertainty using a GNN. To train the GNN, we modify
the input feature vectors to include information from the predicted
scalar field. Specifically, for each node in the graph, we construct
the input feature vector as

[x̂c
t+∆t, m, x

c
t+∆t]

and then process it through convolutional and pooling layers to
obtain a fixed-length vector representation. Here, m denotes the
sampled 1-cells generated by the guided walk technique. The term
x̂c
t+∆t refers to a small block c extracted from the predicted scalar

field xt+∆t, centered around the sampled 1-cell m. xc
t+∆t denotes

the small block centered around the corresponding locations of the
original scalar field xt+∆t at timestep t+∆t. Note that we take the
block from xt+∆t, rather than from the original input scalar field
xt used by the UNet-T, because the uncertainty model MC-U treats
timestep t + ∆t as its input. Similar to Probabilistic DMT, edges
between two nodes encode spatial adjacency.

After constructing the graph for GNN, we utilize the joint esti-
mation approach to estimate the uncertainty associated with each
1-cell s of the predicted Morse skeleton. The network head is di-
vided into two components: a mean µs representing the predicted
probability that s is a true positive, and a variance σ2

s representing
the uncertainty of s in the prediction. For supervision, we extract
the Morse skeleton from the ground truth scalar field at timestep
t + ∆t, which allows us to compute the proportion of overlap be-
tween a sampled 1-cell m (that shares the same endpoints as s) and
the ground truth 1-cell w. This overlap serves as a target measure
for training. The training loss function is formulated as

Lunc =
1

|S|
∑
s∈S

(
1

2 exp(qs)
∥µs − rs∥2 +

1

2
qs

)
where S contains a set of 1-cells forming the predicted skeleton,
rs =

∑
(w⊙m)∑

m
is the average overlap between the ground truth

1-cell w at timestep t + ∆t and a set of sampled 1-cell m, ⊙ de-
notes the Hadamard product, and qs = log σ2

s . The variance σ2
s is

modeled to capture the structural uncertainty inherent in scalar field
xt+∆t and prediction uncertainty introduced in UNet-T.

During inference, we perform k runs of the uncertainty model
to compute the average uncertainty value for each 1-cell. For
each run, we then take the union of the predicted Morse skele-
tons—represented by

⋃
µs—and compute their average across

runs. Based on this averaged skeleton, we generate the structural
uncertainty heatmap by overlaying it with the corresponding aver-
age uncertainty values. The final structural uncertainty heatmap is
shown in Fig. 4. Each 1-cell in the Morse skeleton is associated
with an uncertainty value that reflects the structural variation in the
predicted scalar field.
Implementation details. We take the pre-trained UNet-T model
and use its predicted future timesteps as input for the MC-U model.
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Figure 5: Navier Stokes dataset: Structural uncertainty of the Morse skeleton of predicted scalar field at timesteps 31, 56, and 96. The Morse
skeleton is captured in blue. Pink and green arrows highlight false-positives and false-negatives, respectively.

We employ the Topology Toolkit (TTK) [58] to generate the Morse
complexes of these predictions. We then extract the connectivity
information of the Morse skeletons in advance to perform guided
walks within each 1-cell (a saddle-maximum pair). We take 10 runs
to generate an average structural uncertainty value for each 1-cell.

5 EXPERIMENTAL RESULTS

We qualitatively and quantitatively evaluate our Morse complex
uncertainty quantification framework MC-U for the time-varying
scalar field prediction task. Here are our highlighted results:

• We demonstrate the effectiveness of MC-U in identifying highly
variant structures, which are highlighted with high uncertainty
values in the heatmap, while assigning low uncertainty values
to more stable regions in the prediction. Compared to the base-
line, MC-U is able to clearly capture and distinguish the struc-
tural variations present in the predicted Morse complex.

• We quantitatively evaluate our uncertainty heatmaps using a
range of evaluation metrics, where MC-U consistently outper-
forms the baseline. In addition, we report the reconstruction qual-
ity of the predicted scalar fields generated by our UNet-T model
to further support the validity of our structural uncertainty assess-
ment.

Datasets. We conduct experiments on four 2D time-varying sci-
entific datasets defined on structured grids, as presented in Tab. 1:
Heated Cylinder [26] from [46] (available at [10]), Red Sea [30],
Navier Stokes [6], and Ionization Front [59]. We apply persistence
simplification [15] with a threshold ϵ = 0.01 across all datasets
during the preprocessing of extracting Morse complexes, in order
to separate features from noise.
Training configurations. The training, validation, and inference
samples are randomly chosen and split among all timesteps with a
ratio of 0.7/0.1/0.2 to ensure full coverage of the data. We per-
form our experiments on a standard laptop with i7 processor with
20 threads running at 3.5 GHz, with 32 GB memory. The UNet-
T and MC-U are implemented in PyTorch and trained on a single
NVIDIA RTX 2070 Super GPU. We use the Adam optimizer [33]

Table 1: Detailed descriptions of all datasets.
Dataset Variable Dimensions Timesteps

Heated Cylinder velocity 150× 450 500
Red Sea scalars 100× 150 60

Navier Stokes speed 64× 192 101
Ionization Front density 248× 600 120

for all datasets. The learning rate for both UNet-T and MC-U is
0.001. In Tab. 2, we provide the total training time for both UNet-T
and MC-U, and the inference time for MC-U across all datasets.
An overview of experiments. As the output of the UNet-T model
serves as the input to MC-U model, our primary focus is on analyz-
ing the structural variations introduced into the Morse complexes
of the predicted scalar fields. In our experimental setup, we use a
UNet-T trained to predict the future timestep t + 5 given input at
timestep t as a single-step prediction. It serves as one of the model-
ing configurations for generating predictions. While other predic-
tion horizons could be adopted, our emphasis is on evaluating how
structures in the Morse complex respond to the prediction process.
Additionally, during inference, we perform an evaluation on multi-
step predictions by recursively feeding the model’s output back as
input for further steps without retraining the model, allowing us to
study the structural uncertainty of Morse complexes over extended
prediction horizons.

We compare with the pixel-wise uncertainty estimation model,
Probabilistic U-Net (Prob.UNet in short) [34], which serves as our
baseline. Prob.UNet extends the traditional U-Net architecture by
incorporating a conditional variational autoencoder framework, al-
lowing it to model the distribution over plausible segmentation out-
puts given an input image. We adopt Prob.UNet as a baseline be-
cause it can be naturally extended to the task of time-varying scalar
field prediction, where it captures pixel-wise uncertainty in the pre-
dicted fields. In contrast, our proposed external MC-U model fo-
cuses on capturing structural uncertainty in the Morse complexes of
the predictions. To enable a consistent comparison of uncertainty
in the context of Morse complexes, we construct an uncertainty
heatmap for Prob.UNet by overlaying its pixel-wise uncertainty es-
timates onto the Morse skeleton extracted from its prediction.



Table 2: UNet-T training and inference time, together with the MC-U training and inference time. The training time for MC-U is reported in hours
(h), whereas the rest is reported in seconds (s). We present the number of epochs trained for MC-U across all datasets.

Dataset UNet-T training time (s) Epochs MC-U training time (h) MC-U inference time (s)
Heated Cylinder 549.05 100 3.30 0.8169

Red Sea 53.59 300 0.29 0.4062
Navier Stokes 60.19 200 0.31 0.3509

Ionization Front 207.35 200 2.83 1.2435
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Figure 6: Red Sea dataset: Structural uncertainty visualization of the Morse skeleton of predicted scalar field at timesteps 17, 30, and 48. The
Morse skeleton is captured in blue. Pink and green arrows indicate false positives and false negatives, respectively.

5.1 Structural Uncertainty of Morse Complexes

In this section, we present the Morse complex uncertainty of pre-
dicted scalar fields using several time-varying scientific datasets.
Navier Stokes dataset. The Navier Stokes dataset comes from a
direct numerical Navier Stokes simulation of a viscous 2D flow
around a cylinder [6]. We consider the speed as the scalar field.
We present the Morse complex uncertainty of the predicted scalar
fields at timesteps 31, 56, and 96, given input timesteps 26, 51,
and 91, respectively. The Morse skeleton (colored in blue) is over-
laid on the ground truth timesteps and the predicted timesteps. As
shown in Fig. 5, MC-U captures the 1-cells with large variations
in the prediction and assigns low uncertainty values to the stable
ones. Red 1-cells in the skeleton represent higher uncertainty, and
blue 1-cells indicate lower uncertainty. In the prediction, noise can
be introduced during the reconstruction process, particularly in the
regions with high gradient flows. Therefore, false-positive 1-cells
will be present in the Morse skeleton. On the other hand, exist-
ing 1-cells in the original Morse skeleton may be eliminated during
the reconstruction, resulting in false-negative ones in the predicted
Morse skeleton. MC-U captures both false negatives and false pos-
itives, marking them as high-uncertainty 1-cells, as indicated by the
pink and green arrows in Fig. 5, respectively.

In contrast, Prob.UNet assigns high uncertainty to relatively flat
regions with steady gradient flows, while assigning near-zero uncer-
tainty to both false positives and false negatives—failing to capture
the structural variations present in the predicted Morse skeleton.
Red Sea dataset. The Red Sea dataset is an ensemble, which con-
tains 50 members, of time-dependent 2D flow and scalar fields on a
regular grid. We employ one ensemble member for the experiment.
We present the Morse complex uncertainty of the predicted scalar
fields at timesteps 17, 30, and 48, given input timesteps 12, 25, and
43, respectively. The Prob.UNet generates near-zero uncertainty
everywhere in the Morse skeleton, as shown in Fig. 6. The uncer-
tainty heatmap of our MC-U model detects the false-positive and
false-negative 1-cells with high uncertainty values as highlighted
by the arrows.

Heated Cylinder dataset. The Heated Cylinder dataset is a simula-
tion of a 2D flow generated by a heated cylinder using the Boussi-
nesq approximation [46] where the time-varying turbulent plume
contains many small vortices that rotate around each other. We take
the magnitude of the velocity as the scalar field. We consider 500
timesteps from 600-1100. In Fig. 7, we present the Morse complex
uncertainty of the predicted scalar fields at timesteps 845, 1006,
and 1084, given input timesteps 840, 1001, and 1079, respectively.
The initial predictions from the UNet-T model capture the majority
of key features, as evidenced by the preservation of small rotated
vortices in the Morse skeleton of the predicted scalar field. MC-
U accurately diagnoses false-positive 1-cells by assigning high un-
certainty to them, whereas Prob.UNet treats all 1-cells uniformly,
failing to differentiate between reliable and spurious features.
Ionization Front dataset. The Ionization Front dataset simulates
the propagation of an ionization front instability. The simulation
is done with 3D radiation hydrodynamical calculations of ioniza-
tion front instabilities in which multi-frequency radiative transfer
is coupled to the primordial chemistry of eight species [60]. We
consider the density from the 2D slices near the center of the simu-
lation volume for timesteps from 11-133. These timesteps show the
density over time as the instability progresses toward the right. We
present the Morse complex uncertainty of the predicted scalar fields
at timesteps 101 and 116, given input timesteps 96 and 111, respec-
tively in Fig. 8. While the UNet-T preserves the main Morse skele-
tons of the ground truth in the predicted scalar field, there are a few
noisy 1-cells present on the boundary. Our structural uncertainty
heatmap highlights both the false positives and false negatives with
non-zero uncertainty values.
Structural uncertainty in multi-step data predictions. In the
Navier Stokes dataset, by extending beyond the structural uncer-
tainty of a single-step prediction at t+5, we study the structural evo-
lution of Morse skeletons under multi-step predictions. As shown
in Fig. 9, during inference, starting from an initial input at timestep
t = 26, we recursively feed the model’s output as input to pre-
dict timesteps t + 5, t + 10, t + 15, and t + 20, corresponding to
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Figure 7: Heated Cylinder dataset: Structural uncertainty visualization of the Morse skeleton of predicted scalar field at timesteps 845, 1006,
and 1084. The Morse skeleton is captured in blue. Pink arrows highlight false positives.
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Figure 8: Ionization Front dataset: Structural uncertainty visualiza-
tion of the Morse skeleton of predicted scalar field at timesteps 101
and 116. The Morse skeleton is captured in blue. Pink arrows high-
light false positives and green arrows highlight false negatives.

timesteps 31, 36, 41, and 46. This procedure enables uncertainty
quantification at each predicted timestep, allowing us to track how
structural uncertainties evolve and accumulate throughout the pre-
diction horizon. While the predictions generated by the UNet-T
model largely preserve the major features of the ground truth scalar
fields throughout this recursive process, the structural uncertainty
heatmaps precisely capture both false positives and false negatives.
These uncertainties reflect the increasing complexity of the scalar
fields, particularly as vortex structures give rise to more intricate

Table 3: Quantitative evaluation of the UNet-T model. We report the
average Peak Signal-to-Noise Ratio (PSNR) and mean squared er-
ror (MSE) over all test samples for predicted future timesteps across
various datasets.

Dataset MSE PSNR
Heated Cylinder 0.0002 40.5223

Red Sea 0.0006 35.0206
Navier Stokes 0.0004 36.8684

Ionization Front 0.0003 37.7844

topological structures.

5.2 Quantitative Evaluation

We quantitatively evaluate the uncertainty heatmap of MC-U com-
pared to the uncertainty heatmap of Prob.UNet by utilizing various
evaluation metrics. Additionally, we assess the prediction quality of
the UNet-T model to further validate the reliability of the structural
uncertainty heatmap produced by MC-U.
Evaluation metrics. To evaluate the quality of the predictions,
we analyze how well the scalar field is reconstructed pixel-wise.
We compute the mean square error (MSE) between the prediction
x̂t+∆t and the ground truth xt+∆t at timestep t + ∆t. We also
provide the peak signal-to-noise ratio (PSNR) between x̂t+∆t and
xt+∆t. Tab. 3 shows the average MSE and PSNR evaluated on all
test samples across all datasets. The high average PSNR and nearly
zero MSE across all datasets indicates that our UNet-T model suc-
cessfully captures the majority of features in future timesteps.

To evaluate the quality of the structural uncertainty estimation,
we use Expected Calibration Error (ECE) [44] and reliability dia-
grams [11]. The ECE metric quantifies how well a model’s pre-
dicted confidence aligns with actual accuracy (where confidence is
defined as 1− uncertainty). It bins predictions by confidence and
computes the weighted average of the absolute difference between
accuracy and confidence in each bin. The lower the ECE the better,
with the ideal ECE value being 0. A reliability diagram visually
assesses calibration by plotting predicted confidence against esti-
mations across confidence bins.

As shown in Tab. 4, the ECE of MC-U outperforms the
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field at timestep 26 is used to recursively predict future timesteps, each prediction serving as input for the next. The Morse skeleton is captured
in blue. Pink and green arrows indicate false positives and false negatives, respectively.

Table 4: Quantitative evaluation of MC-U. We report the average ex-
pected calibration error (ECE) of the baseline Prob.UNet and MC-
U over all test samples for predicted future timesteps across all
datasets. MC-U achieves lower ECE error is highlighted in bold.

Datasets Heated
Cylinder

Red
Sea

Navier
Stokes

Ionization
Front

ECE of Prob.UNet 0.6571 0.8166 0.6061 0.7642
ECE of MC-U 0.0929 0.1587 0.1106 0.1950
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Figure 10: Reliability diagrams of test samples across various
datasets, comparing MC-U with the baseline, Prob.UNet. The dot-
ted line x = y represents the ideal reliability curve.

Prob.UNet across all datasets that are highlighted in bold. The
structural uncertainty estimated by MC-U accurately reflects the ac-
tual correspondence between the Morse skeleton of the predictions
and the ground truth structures, demonstrating the effectiveness of
our approach in capturing well-calibrated structural uncertainty rel-
ative to the true topological features. In Fig. 10, the structural un-

certainty estimations of MC-U highly align with the ideal reliability
curve. In contrast, the reliability curves of the baseline Prob.UNet
show deviations from the diagonal, indicating that its uncertainty
estimates are less consistent with the true structure. The curves
of Prob.UNet mainly stay in the bottom-right quadrant, implying
over-confident predictions (high confidence, low accuracy). This is
in line with Prob.UNet’s qualitative results of near-zero uncertainty
in most locations.

6 CONCLUSION AND DISCUSSION

Our framework introduces a novel approach to reasoning about un-
certainty in scientific data predictions. It quantifies and visualizes
structural uncertainty in predicted Morse complexes. It integrates
the UNet-T model, which forecasts future states from the current
state, with the MC-U model, which incorporates Morse complex
structures derived from predicted data. We extend probabilistic dis-
crete Morse theory by performing guided walks on the scalar field
and jointly estimating structural uncertainty using a GNN. By op-
erating on Morse complexes extracted from predicted scalar fields,
the MC-U model effectively captures and interprets structural vari-
ations introduced by data predictions.

While our current work primarily focuses on Morse complexes,
the MC-U model demonstrates the potential to estimate uncertainty
in other topological descriptors, such as merge trees and Reeb
graphs. These examples highlight the flexibility of using GNNs to
model structural variability across different topological represen-
tations. Furthermore, although we adopt UNet-T for single- and
multi-step predictions to study structural uncertainty, our frame-
work is adaptable and can be integrated with a broader class of
deep learning-based surrogate models, including those used for re-
construction, super-resolution, or generative tasks.

Another important direction is to investigate how structural un-
certainty affects downstream scientific tasks, such as feature track-
ing and event detection, where reliable topological interpretations
are essential. Additionally, enhancing the MC-U framework to in-
corporate temporal consistency—ensuring smooth and coherent un-
certainty estimates across timesteps—may further improve the ro-
bustness and interpretability of structural uncertainty analysis. We
leave these extensions for future work.
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