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Abstract We consider different notions of equivalence for Morse functions on
the sphere in the context of persistent homology and introduce new invariants
to study these equivalence classes. These new invariants are as simple—but
more discerning than—existing topological invariants, such as persistence bar-
codes and Reeb graphs. We give a method to relate any two Morse–Smale
vector fields on the sphere by a sequence of fundamental moves by considering
graph-equivalent Morse functions. We also explore the combinatorially rich
world of height-equivalent Morse functions, considered as height functions of
embedded spheres in R3. Their level set invariant, a poset generated by nested
disks and annuli from level sets, gives insight into the moduli space of Morse
functions sharing the same persistence barcode.
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1 Introduction

Morse theory describes the topology of a manifold M by studying well-behaved
functions f : M→ R (Milnor, 1963). This well-behavedness is qualified by the
notion of a Morse function: a smooth real-valued function with no degenerate
critical points. One of the main ideas of Morse theory is to associate the
topological changes of the sublevel sets Ma = f−1(∞, a], as a varies, with
the critical points of f . From an algebraic perspective, Morse functions are
effective in topological problems due to their local rigidity; that is, critical
points of Morse functions have a very simple local, quadratic structure (up to
a change of coordinates) (Nicolaescu, 2007). From a homological perspective,
the relationship between the topology of M and the critical points of f is
described by the powerful Morse inequalities, which have both topological and
geometric significance.

f : R→ R g : R→ R H0 barcode
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Fig. 1 The graphs of two different functions f, g : R → R restricted to a finite interval in
R, and their identical one-dimensional barcode and persistence diagram based on sublevel
set filtration. The longest bar in the barcode captures the connected component; while the
2nd longest bar is created due to the boundary condition.

Persistent homology is a relatively new tool for discriminating functions on
topological spaces based on how the shape of their (sub)level sets evolve. In
the standard setting, persistence is an extension of Morse theory, as it studies
homology groups of sublevel sets connected by inclusion maps, Ma ↪−→ Mb

(for a ≤ b). The evolution of shape is captured by what is known as the
persistence diagram or barcode (Edelsbrunner and Harer, 2010; Ghrist, 2008).
Barcodes enjoy properties such as simplicity, as a barcode is simply a collection
of intervals in the real line; and stability, as small perturbations of shape
produce small perturbations of the barcode. Both of these properties make
persistence an ideal tool for studying the shape of data, with wide applications
to science and engineering; see Edelsbrunner and Morozov (2012) for a survey.
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We are interested in exploring different moduli spaces of Morse functions
from the perspective of persistence. We characterize the set of Morse functions
that give rise to the same barcode, see Figure 1 for an example. Some of these
functions should be considered as different, because taking one function to
another requires a significant deformation. In other words, we are putting
different equivalence relations on the space of Morse functions that respect
persistence, i.e., two functions can only be deemed equivalent only if they have
the same barcode, but simply having the same barcode does not guarantee
equivalence. Each choice of equivalence relation leads to a different moduli
space structure on the space of Morse functions; and each equivalence class
has an interesting combinatorial structure that can be used practically to
enrich the barcode.

Instead of focusing on any Morse function f : M → R, we are initially
motivated by a simpler question by considering M = S2: How many Morse
functions on the sphere S2 have the same barcode? Or more precisely: How
many equivalence classes of Morse functions on the sphere have the same bar-
code? Asking such an open question is a first step towards exploring three
areas of interests described below. For simplicity, we sometimes require more
from f , such as factoring as an embedding into Euclidean space followed by a
projection, so as to exclude pathological examples like the Alexander horned
sphere.

Topological data analysis: The simplicity of the barcode is both a bene-
fit and a drawback, as information about the space and function is lost during
its computation. Precisely how much information is lost? How does the bar-
code compare to other topological invariants, and does it fail to capture some
key topological and geometric features? How does the analysis on a sphere
extend to a compact surface of genus g? From a statistical perspective, how
common is a particular barcode, and which one should we expect in a general
situation?

Shape analysis: Properties of shapes, such as being convex, nested, elon-
gated, or circular, are mostly geometric in nature. Do the discriminative ca-
pabilities of persistence—known to be mostly topological—also capture these
geometric properties? Recent work by Bubenik et al. (2020) has shown that
short intervals in barcodes encode geometric information; in particular, persis-
tent homology detects the curvature of disks from which points are sampled.
How much geometric information is preserved by the barcodes?

Topological descriptors, such as Reeb graphs (Reeb, 1946) and Morse–
Smale complexes (Edelsbrunner et al., 2003a,b), provide an abstract and com-
pact representation of data modeled by Morse functions. For instance, the
small number of cells in a Morse–Smale complex can significantly reduce the
number of cells when discretizing a shape, while keeping the same topological
properties. Does persistence allow us to reduce the carried data even further?

We refer the interested reader to the survey paper by Biasotti et al. (2008)
for a summary of shape analysis’s relationship to persistence and Reeb graphs.

Dynamical systems: What is the space of all Morse or Morse–Smale
vector fields, with and without the requirement of identical persistence as a
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constraint? Equivalence classes of Morse–Smale vector fields on 2-manifolds
have been studied previously (Peixoto, 1973; Fleitas, 1975; Gutierrez and
de Melo, 1977); however, not in the context of persistence. It is known that
the set of Morse–Smale vector fields on orientable surfaces is dense (Palis
and de Melo, 1982, Theorem 2.6). Given two Morse–Smale vector fields which
are not topologically equivalent, can we derive a distance measure between
them? What is the minimal number of operations (critical pair cancellation or
reverse-cancellation) to transform one to another?

1.1 Research Objectives

Our overarching goal is to classify and algorithmically construct all equivalence
classes of Morse functions on a manifold, where the equivalence is captured by
functions, embeddings, or dynamics, using barcodes as constraints. Fixing a
homology degree, the persistence map is the map that takes a function f on M
to its associated barcode (Curry, 2018). We classify the image, preimage, and
embeddings of the preimage of the persistence map under different notions
of equivalence relations. While there have been approaches to interpreting
the persistence map functorially (Bauer and Lesnick, 2015; De Silva et al.,
2016), and such categorical generalizations are of interest to us (see Section
4), considering the persistence map simply as a map rather than a functor
does not take away from our analysis.

Let M denote a smooth manifold, and let f : M → R denote a Morse
function. In this paper, we focus on characterizing Morse functions on the
sphere M = S2 that produce the same barcode.

– Objective 1: Classifying the image. Fix M (for example, S2) and the
number and type of critical points that respect the Euler characteristic (for
example, two maxima, one saddle point, and one minimum on S2). Enu-
merate the barcodes that correspond to sublevel set filtrations of functions
f : M → R. This is a computational objective, and can be interpreted by
counting Morse–Smale graphs (Section 2) via elementary moves (Section 3)
instead of functions. In this setting, we declare that two Morse functions
f, g : M→ R are indistinguishable if they are graph equivalent (Section 2).

– Objective 2: Classifying embeddings of the preimage. Fix M and
a barcode, and ask how many different embeddings ι : M → Rd of the
space M into Euclidean space Rd produce the given barcode when pro-
jected onto a fixed axis via π : Rd → R. In other words, we study the
behavior of the function f := π ◦ ι. This is related to the persistent homol-
ogy transform (Turner et al., 2014), which asks the same question, but for
all directions. Here, two Morse functions f, g : M → R (where f := π ◦ ι
and g := π ◦ ι′) are considered indistinguishable if (i) they generate the
same barcode and (ii) they are poset equivalent (Section 2).

– Objective 3: Classifying the preimage. Fix M and a barcode, and
ask for all functions, up to level-set preserving equivalence, whose image
is the given barcode. This topological objective benefits from the Reeb
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graph (Reeb, 1946), which enriches the barcode by distinguishing different
type of persistence pairings, and its refinement the decorated Morse–Smale
graph, introduced in Section 2.1. Two Morse functions f, g : M → R are
indistinguishable in this context if (i) they generate the same barcode and
(ii) they give rise to isomorphic decorated Morse–Smale graphs.

Classifying Morse functions under different notions of equivalences via the
persistence map is well-motivated, as persistence has emerged as a central tool
of topological data analysis. Applications of persistence include shape analy-
sis (Carlsson et al., 2004; Poulenard et al., 2018), cancer research (Seemann
et al., 2012; Lockwood and Krishnamoorthy, 2015; Hofmann et al., 2018; Qaiser
et al., 2019) and material sciences (Lee et al., 2018). By exploring the above
moduli spaces, we aim to build a better or enriched barcode for real-world
applications.

1.2 Related Work

The mathematical study of height functions through level sets (contour lines)
and relationships between them dates back to at least the 1850s, when Cayley
classified topographical maps based on configurations of contour lines (Cayley,
1859). Maxwell (1870) extended this work and laid the foundation for Morse
theory. Reeb (1946) defined a graphical invariants to classify Morse functions;
today, we call this invariant the Reeb graph. Later, Arnold (1991, 1992) defined
geometric equivalence classes of functions on S1 using a notion of “snakes”.
The classification for functions on surfaces is much more involved, and has
been considered in certain cases (Arnold, 2007; Nicolaescu, 2007), the latter
of which analyzed homological and geometric equivalence of Morse functions
on S2. Further, Kulinich (1998) and Sharko (1996, 2003) classified Morse
functions on surfaces, up to geometric equivalence, using Reeb graphs. Reeb
graphs use level-sets of functions, and the analogous join tree or merge tree
structure with sublevel sets was developed by Pascucci and Cole-McLaughlin
(2004) and Curry (2018). Further implications of Reeb graphs for persistent
homology were considered by Di Fabio and Landi (2016); Bauer et al. (2018).

From the dynamical system perspective, Peixoto (1973) classified Morse–
Smale flows on two-manifolds up to trajectory topological equivalence using
the concept of “distinguished graph”. Subsequent work by Fleitas (1975) and
Wang (1990) gave simpler invariants for Morse flows on two-manifolds. Os-
hemkov and Sharko (1998) also considered the problem of topological tra-
jectory classification of Morse–Smale flows on closed surfaces and introduced
a “three-color graph” as another alternative to the Peixoto invariant. Morse
flows are also used to determine two-dimensional Hamiltonian flows; and Sakajo
and Yokoyama (2018) developed tree representations for such flows. Both
three-color graphs and tree representations are combinatorial codings that
detail processes for constructing a flow by adding pairs of critical points. Fi-
nally, Adams and Carlsson (2015) used topological arguments like the ones in
Section 4 to decompose spaces for network evasion paths, however they did
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not use the language of Morse functions. Our work focuses on invariants based
on cell decompositions of the domain using gradient flows. It is primarily con-
cerned with the structure of the Morse–Smale complex and its interplay with
persistence, which is distinct from previous approaches.

The formal underpinnings of the sequence of moves described in Section 3
originate from Cerf theory (also known as pseudoisotopy theory) (Cerf, 1970;
Hatcher and Wagoner, 1973). In proving his celebrated “Pseudoisotopy The-
orem”, Cerf described the low codimension strata of a particular stratifica-
tion on the space of smooth functions on a smooth compact manifold. The
codimension-zero stratum consists of Morse functions with distinct critical
values, and the codimension-one stratum consists of either ‘generalized Morse
functions’ (those with a single cubic ‘birth-death’ singularity), or Morse func-
tions with precisely two critical values equal. Furthermore, Cerf showed that a
generic or typical path of smooth functions lies in the codimension-zero stra-
tum for all but finitely many ‘times’ (thinking of the path parameter as ‘time’),
at which points the function lies in the codimension-one stratum. The moves
described in Section 3 are inspired by moving across the codimension-one stra-
tum in the space of smooth functions and passing through a generalized Morse
function. The statement and proof of Theorem 3 relies on this description of
the stratification and adapts these ideas to the combinatorics of the Morse–
Smale graph of a surface.

Performing one of the moves introduced in Section 3 can be thought of as
a perturbation of the initial Morse-Smale flow (albeit a fairly large one from
the perspective the aforementioned stratification of Cerf). Perturbations in the
space of all vector fields have been studied by other authors (see Szymczak
(2012) and its extensive references). This perspective might be useful for future
work, but we do not take this approach now.

1.3 Overview

Our main contributions in this paper are:

– New notions of equivalence among (embeddings of) Morse functions con-
taining persistence information;

– A set of fundamental operations on Morse–Smale vector fields that relate
all such vector fields;

– A foundation for counting the number of Morse functions producing the
same barcode.

In Section 2.1 we begin with a background to the functions of interest in
the context of persistent homology, with new and existing notions of equiva-
lence among these functions in Section 2.2. Section 3 contains a method for
relating Morse–Smale vector fields on the sphere, building from existing de-
composition results (Edelsbrunner et al., 2003b). Section 4 explores one of the
new invariants, the nesting poset, and describes a zigzag poset structure in
Corollary 1, making steps to extend it combinatorially in Conjecture 1, with
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a goal of developing an enriched barcode. Section 5 presents a lower bound
in Conjecture 2 to counting height-equivalence classes of Morse functions that
factor through R3 as smooth embeddings, which leads to better understanding
of Morse functions by their barcode.

2 Technical Background

We first summarize relevant aspects of Morse theory, see Milnor (1963), Mat-
sumoto (1997), and Nicolaescu (2007) for detailed expositions on the topic.
We then review known notions of equivalence among Morse functions. Af-
ter that, we introduce the notions of graph equivalence, height equivalence,
and poset equivalence. We conclude by a comparison of equivalence relations
among Morse functions.

2.1 Morse Functions and Persistence

Let M be a smooth, compact, orientable manifold, equipped with a Rieman-
nian metric gM, and f : M→ R be a smooth function.

2.1.1 Morse Functions

A critical point p of M is non-degenerate if there exists a chart (x1, . . . , xn)
on a neighborhood U of p such that

1. xi(p) = 0 for all i, and
2. f(x) = f(p)− x21 − · · · − x2λ + x2λ+1 + · · ·+ x2n.

The number λ is the (Morse) index of the critical point p, and is independent
of the choice of chart. The index of a critical point is an integer between 0
and the dimension of M. A smooth function f : M→ R is a Morse function if
all its critical points are non-degenerate. Furthermore, f is an excellent Morse
function if all critical points have distinct function values (Nicolaescu, 2008).
All Morse functions considered in this paper are excellent, and referred to
simply as Morse functions.

2.1.2 Handle Decomposition

For f : M → R a Morse function, let Mt := f−1(−∞, t] = {x ∈ M | f(x) ≤
t} denote sublevel sets of f . Morse theory studies how Mt changes as the
parameter t changes. There are two fundamental theorems regarding handle
decomposition of manifolds in Morse theory (Milnor, 1963; Matsumoto, 1997;
Nicolaescu, 2007).

Theorem 1 ((Milnor, 1963, Theorem 3.1)) If f has no critical values in
the real interval [a, b], then Ma and Mb are diffeomorphic.
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Theorem 2 ((Milnor, 1963, Theorem 3.2),(Matsumoto, 1997, page
77)) Let p be a critical point of index λ with critical value c = f(p). Suppose
that for some ε > 0, the set f−1([p− ε, p+ ε]) contains no critical points of f
besides p. Then the space Mc+ε is diffeomorphic to the manifold obtained by
attaching a λ-handle to Mc−ε. That is, Mc+ε is diffeomorphic to Mc−ε ∪Dλ×
Dd−λ, where Dλ denotes a λ-dimensional disk.

Summarizing, the sublevel sets of a Morse function change precisely when
passing through a critical value. Moreover, this change is completely charac-
terized topologically by the index of the critical point.

2.1.3 Gradient Vector Fields

A vector field on a manifold is a smooth section of the tangent bundle. Equiv-
alently, it is a smooth function v : M → TM, such that v(x) ∈ TMx, where
TMx is the tangent space of M at x. Given a smooth function f : M→ R, the
gradient of f (with respect to the metric gM) is a vector field ∇f : M → TM
consisting of vectors in the direction of the steepest ascent of f , and is formally
dual to the differential df . The singularities of ∇f coincide with the critical
points of f , and hence are isolated and finite.

2.1.4 Morse–Smale Functions

Let φt denote the flow generated by ∇f . For a critical point p ∈ M of f , the
stable manifold of p is S(p) = {x ∈ M | limt→∞ φt(x) = p} . The unstable
manifold of p is U(p) = {x ∈ M | limt→−∞ φt(x) = p} . A Morse–Smale
function is a Morse function whose stable and unstable manifolds intersect
transversally. The Morse–Smale condition is dependent on the metric gM, but
we omit this from the terminology.

An integral curve of f passing through a regular point x is γ = γx : R→M
defined by γ(t) = φt(x). A flow line is an equivalence class of integral curves
of f , where γ ∼ γ′ if γ(t) = γ′(s + t) for some s and all t ∈ R. Therefore the
unstable and stable manifolds of a critical point are the unions of all flow lines
which begin and terminate, respectively, at that critical point. The Morse–
Smale condition imposes restrictions on flow lines. For example, flow lines of
a Morse–Smale gradient cannot connect critical points of the same index.

For a given Morse–Smale function f , by intersecting the stable and unstable
manifolds, we obtain the Morse–Smale cells as the connected components of
the set U(p)∩S(q) for all critical points p, q ∈M (Edelsbrunner et al., 2003b).
The Morse–Smale complex is the collection of Morse–Smale cells (Edelsbrun-
ner et al., 2003b).1 We define the Morse–Smale graph of f to be the 1-skeleton
of the Morse–Smale complex, that is, the union of the zero-dimensional (ver-
tices) and one-dimensional (edges) cells of the Morse–Smale complex of f .

1 The Morse–Smale complex described here is treated as a combinatorial structure, not
to be confused with Morse–Smale–Witten chain complex (Banyaga and Hurtubise, 2013,
Chapter 7).
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Remark 1 The Morse–Smale graph is also referred to as the topological skeleton
in visualization (Helman and Hesselink, 1989), consisting of critical points
and streamlines that connect them which divide the domain of ∇f into areas
of different flow behavior (referred to as separatrices). A similar invariant is
the distinguished graph of a gradient-like flow (Peixoto, 1973), allowing for
the possibility of maximum-minimum connections, which never occur in the
Morse–Smale graph (Edelsbrunner et al., 2003b, Quadrangle Lemma).

Let Vf denote the vertices of the Morse–Smale graph. We define the dec-
orated Morse–Smale graph of a Morse function f : M → R to be the Morse–
Smale graph of f equipped with a vertex weighting given by restricting f to
the vertices: f |Vf

: Vf → R. Figure 2 is an example of a decorated Morse–Smale
graph with the vertex weighting marked next to the critical points. We begin
with a Morse function on the sphere f : S2 → M with three maxima, three
saddles and two minima. We imagine cutting open and replacing the global
minimum with an elastic band, and mapping the sphere to a disk for a clearer
visualization.

1
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4

5
6

7
8

maximum

saddle

minimum

saddle-max connection

saddle-min connection

global minimum

Fig. 2 A decorated Morse–Smale graph for a Morse function on the sphere. The boundary
of this disk is identified to a point, which is the global minimum with weight 1.

2.1.5 Filtrations for Persistent Homology

In this paper, we are mostly concerned with sublevel set filtrations of func-
tions. That is, we are interested in the topological and algebraic properties of
sets f−1(−∞, t] for t ∈ R, and inclusion maps among them. Section 4 is an
exception, where level set and interlevel set filtrations are considered, that is,
we use sets of the sort f−1(t) and f−1[t− ε, t+ ε] for t ∈ R and ε > 0. We refer
the reader to broader surveys such as (Edelsbrunner and Harer, 2010; Bendich
et al., 2013) for more on the different ways to approach persistence.
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2.2 Equivalences Among Morse Functions

We first review several equivalence relations between Morse functions that
have been studied in the literature, including geometric equivalence, topological
equivalence, and homological equivalence. We then introduce new notions of
equivalence relations between Morse–Smale functions that are essential to our
research objectives, namely, graph equivalence, height equivalence, and poset
equivalence.

2.2.1 Orientation Preservation and Level Set Preservation

Let M and N be smooth, oriented manifolds (of dimension n). A diffeomor-
phism h : M → N is orientation-preserving provided that dhp preserves the
orientation at each point p of M, that is, the linear transformation dhp has
positive determinant.

Given two Morse functions on manifolds, f : M → R and g : N → R, a
homeomorphism h : M → N is level set preserving if h(f−1(a)) = g−1(a) for
any a ∈ R. Equivalently, h : M → N is level-set preserving if and only if the
diagram

M N

R

h

f g
(1)

commutes.

2.2.2 Geometric, Topological and Homological Equivalences

As before, let f : M → R be Morse and Mf
t := f−1(∞, t] its sublevel sets.

For nf the number of critical points of f , let a0 < · · · < anf
be a sequence

of regular values of f such that each interval (ai, ai+1) contains exactly one
critical value of f (for 0 ≤ i ≤ nf −1), called a slicing (Nicolaescu, 2008) of f .
Two Morse functions f, g : M → R are geometrically equivalent if there exist
orientation-preserving diffeomorphisms r : M → M and l : R → R such that
g = l ◦ f ◦ r−1, or equivalently, if the diagram

M M

R R

r

f g

l

(2)

commutes. The Morse functions f and g are topologically equivalent if they
have the same number of critical values nf = ng and there exists a slicing
a0 < · · · < anf

of f and a slicing b0 < · · · < bng
of g together with orientation-

preserving diffeomorphisms φi : Mf
ai → Mg

bi
between sublevel sets. They are

(mod p) homologically equivalent if they have the same number of critical
points and there exists a slicing of f and a slicing of g such that each of the
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sublevel sets Mf
ai and Mg

bi
have the same (mod p) Betti numbers. Note that

geometric equivalence implies topological equivalence, which in turn, implies
homological equivalence; see (Nicolaescu, 2008) for details.

2.2.3 Graph Equivalence

Two Morse–Smale functions f, g are graph equivalent if there is a graph iso-
morphism ϕ : Vf → Vg with f |Vf

= g|Vg
◦ ϕ. Graph equivalence is strictly

stronger than topological equivalence and level-set equivalence, as described
in Figure 3.
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Fig. 3 An example of two Morse functions S2 → R that have the same barcode, Reeb
graph, and merge tree. These functions are geometrically equivalent by (Nicolaescu, 2008,
Theorem 3.3), but are not graph equivalent.

2.2.4 Height Equivalence

Let ι, ι′ : S2 → R3 be smooth embeddings of a sphere to R3. Let π : R3 → R
be a projection onto the unit normal vector [0, 0, 1]T . Let f, g : S2 → R be two
Morse functions that factor through the two embeddings ι and ι′, respectively;
that is, f = π ◦ ι and g = π ◦ ι′. Then f and g are called height equivalent
whenever there is a level set preserving homeomorphism ψ : R3 → R3 with
ι′ = ψ ◦ ι. Equivalently, f and g are height equivalent if the diagram

S2

R3 R3

R

ι ι′

ψ

π π

(3)

commutes. Two height equivalent Morse functions are necessarily equal as
functions S2 → R, and thus will have the same critical values and (sub)level
set persistence barcodes.
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2.2.5 Poset Equivalence

We remind the reader that an isomorphism from a poset (F,≤F ) to a poset
(G,≤G) is a bijective function ϕ : F → G of sets with the property that, for
every x and y in F , x ≤F y if and only if ϕ(x) ≤G ϕ(y).

Definition 1 (Poset Equivalence) Two Morse functions f, g : S2 → R fac-
toring through embeddings ι, ι′, respectively, are poset equivalent if they are
height equivalent, and if

1. there exists a common slicing a0 < · · · < an of f and g such that, for every i,
the sets Fi := π0

(
π−1(ai)− ι ◦ f−1(ai)

)
andGi := π0

(
π−1(ai)− ι′ ◦ g−1(ai)

)
have the structure of a poset, and

2. the map π0 ◦ ψi : Fi → Gi induced by ψi :
(
π−1(ai)− ι ◦ f−1(ai)

)
→(

π−1(ai)− ι′ ◦ g−1(ai)
)

is an isomorphism of posets, where ψi is a restric-
tion of ψ to the planes π−1(ai).

This equivalence is necessary for understanding the preimage of the persis-
tence map in Section 4. Both Figure 6(a) and Figure 6(c) give two examples
of this poset structure, and Figure 7 describes these examples in the context
of their Morse functions.

2.2.6 Comparison of Equivalence Relations

We conclude this section with a comparison of the equivalence relations intro-
duced thus far, for Morse functions f : S2 → R.

Lemma 1 The following are strict implications among the equivalence rela-
tions.

poset height geometric topological homological

graph

|

Proof In the top line, the first implication follows directly by definition, and is
strict by the example of Figure 7. The second implication follows from taking
r = idS2 and l = idR in Diagram (2). Given any Morse function f : S2 → R,
and sufficiently small ε, the functions f and f+ε are geometrically equivalent,
but not height equivalent (because they are distinct). The third and fourth
implications are shown in (Nicolaescu, 2008), and Figure 5 in the same paper
shows that the third implication is strict. As topological equivalence considers
orientation while homological equivalence does not, examples abound of why
the fourth implication is strict. Figure 3 gives an example of two Morse func-
tions that are geometrically equivalent but not graph equivalent. ut

Both the cell decomposition in the decorated Morse–Smale graph and re-
cent work (Mart́ınez-Alfaro et al., 2016, Theorem 1) suggest that graph equiv-
alence implies geometric equivalence. However, this remains an open problem.
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Remark 2 If two functions f, g : S2 → R are homologically equivalent, this
does not imply they have the same barcode. However, if we instead consider
ε-interleavings (Chazal et al., 2009) of barcodes (thought of as persistence
modules), then homological equivalence does imply an ε-interleaving.

3 Fundamental Moves

We focus on understanding how cells (generically as quadrangles) of a Morse–
Smale complex fit together on a surface and how they change when a pair of
critical points is added or removed. We only consider Morse–Smale complexes
that arise from a Morse-Smale function on a sphere, and we refer to the changes
as fundamental moves, or moves in short. Our first main result is to define
moves on the Morse–Smale complex, with the goal of describing all the possible
ways to create a new Morse–Smale function.

By the Quadrangle Lemma (Edelsbrunner et al., 2003b), every face (cell)
of a decorated Morse–Smale graph has four edges, counting an edge twice if
the face is on both sides of the edge. This allows us to describe changes to the
graph as a composition of moves.

The gradient of a Morse–Smale function gives rise to a Morse–Smale vector
field, therefore our approach equivalently describes changes to a Morse–Smale
vector field due to the moves, with the changes limited to a particular region of
cells for each move. Everything in the vector field outside of this region stays
the same between moves. As we only investigate Morse–Smale functions on a
manifold, by definition, all saddles are simple; that is, every saddle has degree
four, and the endpoints of the four adjacent edges alternate between maxima
and minima. All higher-order saddles can be unfolded into simple saddles. As
in Figure 2, a saddle-maximum connection is indicated by a solid line, and a
saddle-minimum connection is marked by a dashed line. Maxima and minima
may have arbitrary degrees.

We now describe face moves, edge moves, and vertex moves; which operate
on faces, edges, and vertices, respectively. All of the moves add or remove two
cells to the quadrangulation, or equivalently, they add or remove one saddle-
maximum or saddle-minimum pair.
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Definition 2 (Face Moves) A face move is addition (cancellation) of a pair
of critical points in the interior of a cell.

↔

face-max move

↔

face-min move

Definition 3 (Edge Moves) An edge move is addition (cancellation) of a
pair of critical points on the edge of a cell.

↔

edge-max move

↔

edge-min move
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Definition 4 (Vertex Moves) A vertex move is addition (cancellation) of
a pair of critical points at an existing critical point.

↔

vertex-max move

vertex-min move

↔

The face, edge, and vertex moves are ways of manipulating the Morse–
Smale complex to obtain another Morse–Smale complex. These moves do not
have functional values associated with the critical points, so they are manip-
ulations of the Morse–Smale complex and not of the underlying function.

Theorem 3 The Morse–Smale graph of any two Morse–Smale functions is
related by a sequence of face, edge, and vertex moves.

The proof of this theorem relies on the following restriction imposed on
the Morse–Smale graph. We recall this fact from Edelsbrunner et al. (2003b)
without proof.

Lemma 2 (Quadrangle Lemma) Each region of the Morse–Smale complex
is a quadrangle with vertices of index 0, 1, 2, and 1, in this order around the
region. The boundary is possibly glued to itself along vertices and arcs.

Proof (Proof of Theorem 3) We recall the following fact due to Cerf (1970):
any two Morse functions on a manifold M, and therefore any two Morse flows,
can be connected by a path in the space of all smooth functions on M. Further-
more, this path can be chosen to be comprised of Morse functions for all but
finitely many times – at which times the function has a single cubic degener-
ate critical point – in addition to non-degenerate critical points. As one moves
along this path of functions, the cubic degenerate critical point either gives rise
or removes two non-degenerate critical points. Translating this general result
to the Morse–Smale complex of a surface, it suffices to consider introducing
or removing a pair of critical points into a quadrangle decomposition of the
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surface. Depending on where we introduce this pair, we shall obtain the dif-
ferent moves of Definitions 2–4. Notice that since the cubic degenerate critical
point must give rise to critical points of adjacent index, a saddle point must
always be involved in these moves. Since adding and removing critical points
are symmetric operations, we only discuss the case of adding critical points.

First suppose the pair of critical points is added in the interior of a quad-
rangle. Then, as in Figure 4, the introduced saddle must have two flow lines
to a single vertex on the boundary of the quadrangle. If a maximum-saddle
pair is added, the additional saddle must have two flow lines to the unique
minimum, and for an added minimum-saddle pair, the saddle must have two
flow lines to the unique maximum. This completely determines the move, and
hence is the face-max or face-min move.

(a) Starting position (b) Isolated saddle-min

edge

(c) Isolated saddle-min

edge

(d) Unique resolution

Fig. 4 New edges are uniquely determined when a pair of critical points is added in the
interior of a quadrangle.

Next, suppose the pair is added on an edge between two quadrangles.
Note that a maximum-saddle pair cannot be added on a separatrix between
a minimum and a saddle, and vice-versa, since such a pair would force the
saddle in the initial separatrix to have more than four flow lines incident to it.
However, adding a maximum-saddle pair to the separatrix between a maximum
and a saddle is permissible. In this case, there is a unique way of adding flow
lines to obtain a valid configuration, and this is precisely the edge-max move.
The edge-min move case is proven similarly.

Finally, suppose the pair is added at a vertex in the quadrangulation. As
in the edge moves, a maximum-saddle pair cannot be added at a minimum,
and a minimum-saddle pair cannot be added at a maximum. For example, if a
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minimum-saddle pair was added at a maximum, a quadrangle would be formed
with two minima and two saddles, contradicting the Quadrangle Lemma. Sup-
pose a minimum-saddle pair was added at a minimum. Then, the additional
saddle must connect to two maxima. If it connects to the same maximum
twice, this is a face move. If it connects to two adjacent maxima, meaning
they are both connected to a saddle in the quadrangulation, then this is an
edge move. Otherwise, the saddle connects to two maxima, and we have the
vertex move. The max-saddle case gives rise to the vertex-max move and is
proven similarly. ut

As the fundamental moves add critical points, the moves change the equiv-
alence class (of the classes described in Section 2.2) of the associated Morse–
Smale function. However, different moves may give the same change of equiv-
alence class, as witnessed by their Reeb graphs in Figure 5. These changes
in the Reeb graph are termed elementary deformations of B-type and D-type
by Di Fabio and Landi (2016), though their analysis emphasizes movement of
critical values past each other (see Section 6.3 for further discussion).

↔

(a) Face-max,

edge-max

↔

(b) Face-min,

edge-min

↔

(c) Vertex-max

↔

(d) Vertex-min

...
...

...
...

...
...

...
...

...
...

...
...

Fig. 5 Changes to the Reeb graph by the fundamental moves.

Moreover, attempting to consider notions of “distance” on the fundamental
moves, as in d’Amico et al. (2010); Bauer et al. (2018), gives no meaningful
results, as not specifying critical values allows these distances to be infinitesi-
mally small.

Remark 3 The fundamental moves also have implications for the space of
all vector fields, with topology induced by distance between functions. This
infinite-dimensional stratified space has strata within which vector fields are
Morse–Smale, and the lower-dimensional strata are where transversality of
the stable and unstable manifolds fails to hold. Hence the described opera-
tions identify different types of lower-dimensional strata, and may be used to
count the number of strata within some parameters.

4 The Nesting Poset

To study poset equivalence, we employ the nesting poset introduced in Sec-
tion 2. The nesting poset is used to study the level sets of a Morse function,
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and describe relations among the posets by using the topology of associated
level sets. We also show that the nesting poset is a circle containment order,
following research in geometric containment orders (Fishburn and Trotter,
1999).

4.1 The Nesting Poset of Level Sets

We first show that the poset isomorphism condition (2) in Definition 1 can be
formulated as a nesting poset isomorphism, or equivalently as a circle contain-
ment order isomorphism.

4.1.1 Nesting Poset of Jordan Curves

A Jordan curve is a non-self-intersecting continuous loop in the plane. For-
mally, a Jordan curve is a simple closed curve in R2 that is the image of an
injective continuous map φ : S1 → R2. Let γ := im(φ) denote a Jordan curve.
The Jordan curve theorem (Veblen, 1905) states that the complement R2 − γ
of every Jordan curve γ consists of exactly two connected components: one
bounded interior component, denoted as int(γ), and one unbounded exterior
component. In this paper, we consider two Jordan curves γ1 and γ2 to be
semi-disjoint if they intersect at a single point (γ1∩γ2 = ∗). Two nonidentical
Jordan curves are nested if int(γ1) ⊆ int(γ2) or vice versa.

Given a set of m Jordan curves Γ := {γ1, . . . , γm} with at most one pair
of semi-disjoint curves (and the rest are disjoint), its complement R2 − Γ
consists of exactly m+ 1 connected components: m bounded components and
one unbounded component.

Remark 4 Let P := π0(R2 − Γ ) denote the set of (path-)connected compo-
nents of R2 − Γ . The closure of each bounded component in P is a collection
of elements of Γ , consisting of an exterior boundary and zero or more interior
boundaries. With a slight abuse of notation, we speak of the boundary of a
component in P as the boundary of its closure. Let pi ∈ P denote the com-
ponent whose exterior boundary is γi ∈ Γ ; let p0 ∈ P denote the unbounded
component. Let ∂(pi) denote the set of boundary curves of pi, where we note
that ∂(p0) contains only interior boundaries. Two components pi, pj ∈ P are
adjacent if they share a boundary in Γ , that is, ∂(pi) ∩ ∂(pj) ∈ Γ .

Definition 5 (Nesting Poset of Jordan Curves) Let Γ = {γ1, . . . , γn}
and P = π0(R2−Γ ) be as above. For any two adjacent components pi, pj ∈ P ,
define a binary relation ≤, such that pi ≤ pj if and only if (1) int(γi) ⊆ int(γj),
or (2) pj is unbounded. The nesting poset associated to Γ is N(Γ ) := (P,≤P ),
where ≤P is the transitive closure of ≤ on P .

Reflexivity, anti-symmetry, and transitivity of ≤P follow from the same
properties of set containment ⊆, so N(Γ ) is indeed a poset. Figure 6 illus-
trates five examples of Jordan curves (in white) on the plane. Curves in Fig-
ure 6(a), Figure 6(b), and Figure 6(d) are disjoint; while curves in Figure 6(c)
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and Figure 6(e) are semi-disjoint. For each set Γ , the nesting poset N(Γ ) is
visualized by its Hasse diagram: each vertex corresponds to an element in P (a
green shaded region); each arrow indicates a binary relation between adjacent
elements (that is, an arrow exists from pi to pj if and only if pi ≤ pj).

(a) (b)

(c) (d) (e)

Fig. 6 Poset structures of level sets of some Morse functions for two regular values (a, b),
and three critical values, (c, d, and e).

R

a0

a1

a2

a3

a4

t1

t2

t3

t4

im(ι) im(ι′)

Fig. 7 A Morse function factoring through two different embeddings ι, ι′, which are height
equivalent but not poset equivalent, as distinguished by their different nesting posets.
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4.1.2 Nesting Poset of Level Sets

Let f : S2 → R be a Morse function that factors through a smooth embedding
ι; that is, f is defined as the composition f = π ◦ ι, for S2 ι−→ R3 π−→ R.
Assuming M is smooth and compact, the level set f−1(a) is a (not necessarily
connected) 1-manifold without boundary for a regular value a ∈ R according
to the Implicit Function Theorem. The set ι ◦ f−1(a) is therefore a set of
disjoint Jordan curves in the plane π−1(a) ⊂ R3. For a = c a critical value of
f , the set ι ◦ f−1(a) contains either exactly one pair of semi-disjoint Jordan
curves or a point (together with other disjoint Jordan curves).

Definition 6 (Nesting Poset of Level Sets) For any a ∈ R, let Γ =
ι ◦ f−1(a) and P = π0(π−1(a) − Γ ). The nesting poset Na associated with a
is the nesting poset of Jordan curves Γ in the plane π−1(a). With an abuse of
notation, Na := N(Γ ) = (P,≤P ).

For example, Figure 6(a) and Figure 6(b) illustrate two sets of disjoint
Jordan curves (in white) that arise from level sets of two Morse functions f
and g at a shared regular value, respectively. Figure 7 describes these exam-
ples in the context of their corresponding Morse functions. Specifically, two
Morse functions f, g : S2 → R factor through embeddings ι, ι′ : S2 → R3 with
the same barcode, f = π ◦ ι and g = π ◦ ι′ in Figure 7. For any common
slicing a0 < a1 < a2 < a3 < a4, let Fi := π0

(
π−1(ai)− ι ◦ f−1(ai)

)
and

Gi := π0
(
π−1(ai)− ι′ ◦ g−1(ai)

)
; the map Fi → Gi is not a poset isomor-

phism for i = 2; in particular, regular value a2 gives rise to a poset structure
in Figure 6(a) for f and a different one in Figure 6(b) for g. By Definition 1,
f and g are not poset equivalent.

4.1.3 Circle Containment Order

A partially ordered set (P,≤) is called a circle containment order (Scheinerman
and Wierman, 1988), provided one can assign to each pi ∈ P a closed disc in
the plane oi ⊆ R2 satisfying pi ≤ pj if and only if oi ⊆ oj . Let α : P →
R2 denote such an assignment. If φ : R2 → R2 is an orientation-preserving
homeomorphism, then φ does not change the circle containment order, so that
α and φ ◦ α are equivalent circle containment orders.

The nesting poset structure of P = π0
(
π−1(a)− ι ◦ f−1(a)

)
, for any reg-

ular value a, could be understood in terms of a circle containment order. As
illustrated in Figure 6(a), each bounded element in a poset (a green shaded
region) pi ∈ P (where i > 0) can be assigned a closed disc in the plane, which
is the bounded interior component int(γi). The unbounded component p0 ∈ P
is assigned a closed disc that enclose all other discs. Such an assignment im-
poses a circle containment order. Hence a nesting poset is a circle containment
order.
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4.2 A Morse-Theoretic Perspective on Nesting Posets

Now we provide theorems analogous to Theorems 1 and 2. As before, the
Morse function f : S2 → R factors through an embedding ι as f = π ◦ ι. Let
Lt := ι◦f−1(t) denote the embedding of its level sets. There are three types of
critical points in im(ι): local minima, saddles, and local maxima, with indices 0,
1, and 2, respectively. To study local structure surrounding the critical points,
we further classify the saddles into merging saddles and splitting saddles by
investigating the relation between level sets Lc−ε and Lc+ε as t crosses the
critical value c = f(p) of a saddle p. If ε > 0 is small enough, the intervals
[c− ε, c) and (c, c+ ε] contain no critical values.

A saddle p is a merging saddle if a pair of disjoint Jordan curves in Lc−ε
merges into a single Jordan curve in Lc+ε as t crosses c. A saddle p is a splitting
saddle if a Jordan curve at Lc−ε splits into a pair of disjoint Jordan curves at
Lc+ε as t crosses c. A merging saddle is of nesting type if the Jordan curves
that merge at Lc+ε are nested at Lc−ε; otherwise, the saddle is of non-nesting
type. Similarly, we can define splitting saddles of nesting and non-nesting
types. Figures 8 - 12 illustrate the reasoning behind this terminology.

(a) (b) (c)

Lc+ε

Lc

Lc−ε

Fig. 8 A local minimum (a), a non-nesting (b) and a nesting (c) merging saddle with their
corresponding (partial) zero-dimensional interlevel persistence barcodes.

As before, let Γ = Lt = ι◦f−1(t) and Nt = N(Γ ) = (P,≤P ) be the nesting
poset. We now study how Nt changes as t ∈ R changes.

Theorem 4 If f has no critical values in the interval [a, b], then Na and Nb
are poset isomorphic, that is, Na ∼= Nb.

Proof This follows from a key observation in proving Theorem 1 from Morse
theory. Recall (Matsumoto, 1997, Theorem 2.31), that if f has no critical val-
ues in the interval [a, b], then M[a,b] := {x ∈M | a ≤ f(a) ≤ b} is diffeomorphic
to the product f−1(a) × [a, b]. Using the gradient-like vector field for f , the
proof of Theorem 2.31 in (Matsumoto, 1997) includes a construction of an
orientation-preserving diffeomorphism h : f−1(a)× [0, b− a] → M[a,b]. There-
fore, M[a,b] is diffeomorphic to f−1(a)×[0, b−a] and thus also to f−1(a)×[a, b].

However, we do not study f directly, we instead study the function π re-
stricted to im(ι) and sublevel sets L[a,b] := ι ◦ f−1[a, b]. Nonetheless, Theorem
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2.31 from (Matsumoto, 1997) still applies, that is, there exists a diffeomor-
phism h : La × [0, b− a] → L[a,b] implying L[a,b]

∼= La × [0, b− a]. The diffeo-
morphism h is orientation-preserving, therefore it does not change the circle
containment order moving from Na to Nb. Therefore Na ∼= Nb. ut

Denote an injective map of posets by ↪→ and a surjective map of posets

by �. If the injective map happens to be an isomorphism, we write
∼=
↪−→. The

conditions on f : S2 → R are as above.

Theorem 5 Let p be a critical point of f with critical value c := f(p). Then
for ε small enough, there exist zigzags of poset maps:

1. Nc−ε
∼=←−↩ Nc ↪→ Nc+ε if p is a local minimum;

2. Nc−ε ←↩ Nc
∼=
↪−→ Nc+ε if p is a local maximum;

3. Nc−ε
∼=←−↩ Nc � Nc+ε if p is a non-nesting merging saddle;

4. Nc−ε � Nc
∼=
↪−→ Nc+ε if p is a non-nesting splitting saddle;

5. Nc−ε
∼=←−↩ Nc ←↩ Nc+ε if p is a nesting merging saddle;

6. Nc−ε ↪→ Nc
∼=
↪−→ Nc+ε if p is a nesting splitting saddle.

As the behavior of nesting posets for local maxima and nesting/non-nesting
splitting saddles of f is the same as local minima and nesting/non-nesting
merging saddles, respectively, of the Morse function −f , we only prove State-
ments 1, 3, and 5 in Theorem 5.

Proof By the Morse Lemma, there exists a neighborhood V of p such that on
V , f(x) = f(p) ± x21 ± x22. The function f is excellent, so there exists some
ε > 0 such that f−1[c − ε, c + ε] contains only one critical point of f , namely
p. Let U := f−1[c − ε, c + ε] ∩ V . Then ∇f provides a diffeomorphism from
f−1(c− ε)\U to f−1(c+ ε)\U . By Theorem 4, the nesting poset is unchanged
outside of U , hence the proof is reduced to a local computation of the nesting
poset of U for each case.

For every t ∈ [c−ε, c+ε], let Lt := ι(f−1(t)∩V ) and let L :=
⋃
t∈[c−ε,c+ε] Lt.

Take a contractible neighborhood W of L, and without loss of generality as-
sume that L ⊆ π−1[c − ε, c + ε] and Wt := π−1(t) ∩ W is non-empty and
contractible for every t ∈ [c − ε, c + ε]. Note that ι ◦ f−1[c − ε, c + ε] may
contain more than one connected component. This proof proceeds functori-
ally, by describing for every t 6 s ∈ [c − ε, c + ε] a map of posets Nt → Ns
induced by the topological inclusions Wt − Lt ↪→ (W − L) ∩ π−1[t, s] and
Ws − Ls ↪→ (W − L) ∩ π−1[t, s].

For Statement 1, the function f has index 0 and so f(x) = f(p) + x21 + x22
in V . As in Figure 9, assign labels to the connected components of the three
(subsets of) level sets Wc−ε ⊆ π−1(c−ε), Wc−Lc ⊆ π−1(c), and Wc+ε−Lc+ε ⊆
π−1(c + ε). The topological inclusion A′ ↪→ A and the natural injective map
A′ ↪→ A′′ that widens the hole of A′ induce analogous maps on the nesting
posets Nc → Nc−ε and Nc → Nc+ε, respectively. The poset elements are given
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Wc−ε

Wc − Lc

Wc+ε − Lc+ε

A

Wc−ε

A

Nc−ε

A′

Wc − Lc

A′

Nc

A′′

B′′

Wc+ε − Lc+ε

B′′ A′′

Nc+ε

A 7→A′ A′ 7→ A′′

∼=

Fig. 9 Topological construction and labelling for Statement 1.

the same labels as the connected components to which they correspond, and
their relation is defined in Definition 6.

For Statements 3 and 5, the function f has index 1 and so f(x) = f(p)−
x21 + x22 up to diffeomorphism. As in Figure 10, assigning labels coherently to
the connected components of the three (subsets of) level sets is ambiguous,
as some may connect beyond W . It is necessary to clarify this, as we want an
injective map from the nesting poset constructed from Wt −Lt to the nesting
poset constructed from π−1(t)− ι(f−1(t)).

To resolve this, take a larger neighborhood W ′ ⊇ W so that W ′t :=
W ′∩π−1(t) contains some connected components of the embedded 1-manifold
ι(f−1(t)), for every t ∈ [c− ε, c+ ε] a regular value (and contains an embedded
S1 ∨ S1 for t a critical value). There are 4 unique embeddings, up to diffeo-
morphism, as shown in Figure 13, among which Figure 13(a) corresponds to
Statement 3 and Figure 13(c) corresponds to Statement 5.

For Statement 3, as in Figure 11, assign labels to the connected components
of the (subsets of) level sets W ′c−ε− ι(f−1(c− ε)), W ′c− ι(f−1(c)), and W ′c+ε−
ι(f−1(c+ε)). The topological inclusionsA′ ↪→ A,B′

∼=
↪−→ B, and C ′

∼=
↪−→ C induce

an analogous nesting poset Nc → Nc−ε. Similarly, the topological surjections
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Wc−ε − Lc−ε

Wc − Lc

Wc+ε − Lc+ε

A

B C

Wc−ε − Lc−ε

A′

D′

B′ C′

Wc − Lc

A′′

B′′

D′′

Wc+ε − Lc+ε

Fig. 10 Ambiguity in coherent component labeling of (subsets of) level sets near a saddle.

A′
∼=−→→ A′′, B′

∼=−→→ B′′, and C ′
∼=−→→ B′′ induce an analogous nesting poset map

Nc → Nc+ε.

A

B C

W ′c−ε − ι(f−1(c− ε))

A

B

C

Nc−ε

A′

B′ C′

W ′c − ι(f−1(c))

A′
B′

C′

Nc

A′′

B′′

W ′c+ε − ι(f−1(c+ ε))

B′′ A′′

Nc+ε

A 7→A′
B 7→B′
C 7→C′

A′ 7→ A′′

B′ 7→ B′′

C′ 7→ B′′

∼=

Fig. 11 Topological construction and labelling for Statement 3.

For Statement 5, as in Figure 12, assign labels to the connected components
of the (subsets of) level sets W ′c−ε− ι(f−1(c− ε)), W ′c− ι(f−1(c)), and W ′c+ε−
ι(f−1(c+ε)). The topological inclusionsA′ ↪→ A,B′

∼=
↪−→ B, and C ′

∼=
↪−→ C induce

an analogous nesting poset Nc → Nc−ε. Similarly, the topological inclusions
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B

A C

W ′c−ε − ι(f−1(c− ε))

ABC

Nc−ε

B′

A′ C′

W ′c − ι(f−1(c))

A′B′C′

Nc

B′′

A′′

W ′c+ε − ι(f−1(c+ ε))

B′′ A′′

Nc+ε

A 7→A′
B 7→B′
C 7→C′

A′ 7→A′′
B′ 7→B′′

∼=

Fig. 12 Topological construction and labelling for Statement 5.

A′′
∼=
↪−→ A′ and B′′

∼=
↪−→ B′ induce an analogous nesting poset map Nc+ε → Nc.

ut

Note that the maps in Statements 1 - 4 all have a zigzag structure Nc−ε ←
Nc → Nc+ε, but Statements 5 and 6 do not. One may enforce such maps on
Statements 5 and 6, and following Figure 12 we have two choices. One choice is
to map C ′ and A′ both to A′′, following the induced topology, but that would
collapse the poset down to a single point, as we require order-preservation.
The second choice is to map C ′ and B′ both to B′′, but that would break
functoriality and not follow the topology of the neighborhood.

Remark 5 We mention some observations from this section so far.

1. The nesting poset doesn’t see the critical value in [c− ε, c] if c is merging
or a minimum, because the interiors have not merged yet.

2. Functoriality seems to hold from the category of topological spaces Top
to the category of posets and order-preserving maps. However, we only
assigned poset maps to particular topological inclusions, not all of them,
as mentioned in the comment after the proof of Theorem 5, so functoriality
may hold for an appropriately defined subcategory of Top.

3. In Figures 9, 11, 12 there was always a largest poset element, and in fact
Nt always has a maximal element representing the unbounded component
of π−1(t)− ι(f−1(t)). The poset maps always send the maximal element to
the maximal element, so it does not contain any interesting information.

For completeness, we include in Figure 13 an exhaustive description, up to
diffeomorphism, of all of the choices presented by the ambiguous connected
component labelling from Figure 10.
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(a) non-nesting
merging saddle,
corresponding to

statement 3

W ′c−ε − ι(f−1(c− ε)) W ′c − ι(f−1(c)) W ′c+ε − ι(f−1(c+ ε))

(b) non-nesting
splitting saddle,
corresponding to

statement 4

(c) nesting
merging saddle,
corresponding to

statement 5

(d) nesting
splitting saddle,
corresponding to

statement 6

Fig. 13 Larger neighborhoods W ′ ⊇W corresponding to Statements 3-6 of Theorem 5.

4.3 The Zigzag of Posets

4.3.1 Combinatorial Barcode

We now have a zigzag structure along R of the nesting posets of f . This new
data will allow us to augment the data of the barcode with a new type of
barcode that combinatorially describes a Morse function factoring through an
embedding by a height projection.

Corollary 1 Given a slicing a0 < t1 < a1 < · · · < tn < an, there is a zigzag
of posets

Na0
ϕ−0←→ Nt1

ϕ+
0←→ Na1

ϕ−1←→ Nt2
ϕ+

1←→ · · · ϕ−n←→ Ntn
ϕ+

n←→ Nan , (4)

where the direction of each ϕ±i is defined by Theorem 5.
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This follows directly from Theorem 5. Note that every backwards map ϕ
in the zigzag (4) can be reversed using the Galois connection construction
(Roman, 2008, Chapter 3) with

ϕ†(y) := max{x : ϕ(x) ≤ y}, (5)

though we are only guaranteed ϕ†(ϕ(x)) ≥ x. That is, while we do get a
diagram

Na0 −→ Nt1 −→ Na1 −→ · · · −→ Ntn −→ Nan (6)

of posets, it does not capture splitting saddles (neither nesting nor non-nesting).
Hence we instead explore a combinatorial barcode with k-algebras correspond-
ing to posets in a persistence module.

Remark 6 The zigzag (4) is reminiscent of diagrams in zigzag persistence
(Carlsson and de Silva, 2010), and at first glance it seems possible to recover
(4) by taking the nesting posets of spaces whose homology is taken to compute
zigzag persistence. However, in zigzag persistence the considered spaces are of
the sort f−1[t, s], whereas in our case we compute the nesting poset of (a sub-
set of) f−1(t). For such t, there does not always exist ε > 0 such that f−1(t±ε)
is the same nesting poset as for f−1(t), and so computing the nesting poset
of an interlevel set does not make sense in our context. Nonetheless, there are
modifications (Kim and Memoli, 2018) of this approach that hold promise for
applications.

For a poset P , an interval I in P is a connected subposet I ⊆ P such that
for any x, y ∈ I, x ≤ t ≤ y implies t ∈ I. When the poset if finite, an interval I
is generated by two endpoints, and we write I = [a, b] := {t ∈ P : a ≤ t ≤ b}.
The following definition comes from Charalambides (2019).

Definition 7 The incidence algebra kP of a poset P is the free vector space
over k generated by set of intervals I of P . Multiplication × : kP × kP → kP
is given by concatenation of compatible intervals

[c, d]× [a, b] =

{
[a, d] if b = c

0 else,

and multiplication is 0 for unconcatenable intervals, making kP a k-algebra.

Conjecture 1 There is a zigzag module of k-algebras

kNa0 ↔ kNt1 ↔ kNa1 ↔ kNt2 ↔ · · · ↔ kNtn ↔ kNan ,

with arrow direction given by Corollary 1, that decomposes into a sum of
interval indecomposables of the form

kI(t) =

{
k{∗} if t ∈ I
0 if t /∈ I.

Furthermore, this collection of interval indecomposables determines f up to
poset equivalence.
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This approach follows the vein of foundational persistent homology results
(Crawley-Boevey, 2015; Botnan, 2017) about decomposition of barcodes into
fundamental parts. We call this collection of interval indecomposables the
combinatorial barcode of f .

5 Counting Morse Functions

The observations of the previous section, specifically Figure 8, hint to a method
of counting Morse functions by their barcode. In this section, instead of an-
alyzing the local behavior around critical values as before, we start with a
global picture of a complete barcode, and use Figure 14 as motivation. As
before, f : S2 → R factors as π ◦ ι, for ι : S2 → R3 a smooth embedding.

(a) Given

barcode

ι1

(b) 1st bar: one

embedding

(c) 2nd bar: two

embeddings

ι11 ι12

(d) 3rd bar: four

embeddings from ι11

ι111 ι112 ι113 ι114

(e) 3rd bar: four

embeddings from ι12

ι121 ι122 ι123 ι124

Fig. 14 A motivating example.
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Example 1 Suppose f has 6 critical values and a known zero-dimensional bar-
code consisting of 3 bars nested inside each other, as in Figure 14(a). Construct
all embeddings ι of f by considering the effect of each bar on the embedding
separately, following the nesting/non-nesting poset approach of Section 4. Be-
gin with the largest bar of the barcode, then add bars in their nesting order.
The second bar gives 2 nesting choices. Each of the 2 nesting choices gives 4
more nesting choices, when the smallest bar of the barcode is added.

Example 1 leads immediately to several observations. First note that the
types of critical points associated with closed endpoints of barcodes are decided
(local minimum at the highest points, local maximum at the lowest points).
Second, we see that simply choosing nesting or non-nesting-type at the open
barcode endpoints does not give all the embeddings. For example, ι111 and
ι113 have identical critical value types in the same order. Finally, note that the
relation between the number of bars and number of embeddings depends upon
containment relations among the bars. That is, by considering bars largest to
smallest, for every bar contained in a larger one, the number of embeddings
computed up to that point doubles. This is more precisely described by Con-
jecture 2.

Let B be the barcode of f , viewed as a set of subintervals I1, . . . , IN of R.
For every j = 1, . . . , N , let µB(Ij) be the number of bars Ik in B such that
Ij ( Ik.

Conjecture 2 The number of ways the Morse function f factors through R3,
up to height-equivalence, is bounded below by

2N−1
N∏
j=2

µB(Ij). (7)

We leave this conjecture open for future work, and make two observations
about why Example 1 is not a generic example.

– The barcode in the example has a single interval whose highest endpoint is
closed. Given more than one such interval, the count given in Conjecture
2 would miss such embeddings.

– The barcode in the example does not give rise to embeddings whose branches
might be “twisted” in a non-trivial manner. That is, given a barcode with
more bars, the count from Conjecture 2 would miss the embeddings with
“twists”.

6 Discussions

We have characterized the moduli space of classes of Morse functions on the
sphere under both functional and dynamic settings. Using persistence as a
constraint, we have defined equivalence relations between Morse functions and
have studied the combinatorial structure of Morse functions on a sphere mod-
ulo such relations. Our approach describes structures in detail, and therefore
provides a fruitful ground for continued research in several directions.
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6.1 Realizing Preimages of a Barcode

Conjecture 2 considers a counting argument that is only at the beginning of
addressing Objective 3 from Section 1. This is given in the context of finding
a representative of the preimage of the persistence map

{Morse functions on S2} → {Barcodes}, (8)

where a barcode is viewed as a multiset of intervals of R. To further answer
Objective 3, we may ask: given a barcode B, find an embedding ι : S2 → R3

such that B is the barcode of f := π ◦ ι under level set persistence in degree
zero. Note that some barcodes cannot be realized as height-embedded Morse
functions on S2, for example B = {[0, 3] , (1, 2)}, as any open interval or a
closed interval nested in another closed interval is forbidden for the sphere.
However, if B has a single closed bar inside which all other bars are contained,
we can easily construct a Reeb graph RB , which in turn may be associated to
a diagram of 1-spheres and wedges of 1-spheres, which may then be assembled
into an embedding of a 2-sphere, as in Figure 15.

barcode Reeb graph diagram in Top

∗

S1 ∨ S1

∗

∗

S1 ∨ S1

∗

S1

S1

S1

S1

S1

realized embedding of S2

Fig. 15 Constructing a 2-sphere embedding from a barcode.

This construction suggests an algorithmic approach to constructing em-
beddings ι : S2 → R3 such that the barcode of the height function on im(ι)
will produce the barcode B. That is, every vertex of the Reeb graph of degree
n > 3 corresponds to a wedge of n − 1 spheres, every vertex of degree 1 cor-
responds to a point, and every edge between vertices corresponds to a zigzag
X ← S1 → Y in Top. We leave the formalization and extension of these ideas
open for further research.
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6.2 Extending the Nesting Poset

Theorem 5 and its proof used arguments based on including smaller topological
spaces into larger ones. Using the critical values of f , every open interval of R
containing at most one critical value can be uniquely associated with a nesting
poset. Then the maps described in Theorem 5 correspond to restriction to a
subset or containment in a superset, the former case described in Figure 16,
following Figure 11.

R · · · · · ·
U V

W

F(U) = = F(V )

= F(W )

Fig. 16 Associating poset maps to set restrictions.

What we have described suggests the structure of an R-constructible sheaf
encoding the nesting poset. More detail is given by Curry and Patel (2016) as
well as by MacPherson and Patel (2018) but we do not explore this here and
leave it open for further research.

6.3 Keeping Track of Critical Values

The techniques we have described here are concerned with the relative or-
der of critical values, and only as a consequence of other structural changes.
Using the order of critical values as a primary motivator opens up new direc-
tions of research, some of which are addressed by ongoing work in vector field
design (Zhou et al., 2019) and existing literature on distances for topologi-
cal invariants Di Fabio and Landi (2016); Bauer et al. (2018); d’Amico et al.
(2010).

In addition, specifying function values on singularities would allow for an
additional measure on how “far apart” two functions are: one could use the
number of moves together with the difference of function values to measure
their differences. The “complexity” of a Morse function f could then be given
by measuring the difference between f and a baseline function, such as the
height function h on the standard embedding of S2 in R3.
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