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ABSTRACT

Vector field design on surfaces is originally motivated by applica-
tions in graphics such as texture synthesis and rendering. In this
extended abstract, we consider the idea of vector field design with a
new found motivation in computational topology. We are interested
in designing and visualizing vector fields to aid the study of Morse
functions in the persistence setting. To achieve such a goal, we
develop a new vector field design system that provides fine-grained
control over vector field geometry, enables the editing of vector field
topology, and supports a design process in a simple and efficient
way using elementary building blocks. Our system allows com-
putational topologists to explore the complex configuration space
of Morse functions constrained by persistence. Understanding the
space of such Morse functions will help us expand the application
of persistence for machine learning and visualization.

Index Terms: Morse vector fields, persistence, topological data
analysis, vector field design, visualization for mathematics

1 INTRODUCTION

The original motivation for vector field design on surfaces originates
from diverse applications in graphics (e.g. [6]). A designer vector
field is used to define texture orientation and scale in example-based
texture synthesis, to guide the orientation of brushes and hatches in
non-photorealistic rendering, and to simulate fluid flows on smooth
surfaces of arbitrary topology. Our work is additionally motivated
by advances in computational topology. We would like to design
and visualize vector fields to aid the exploration of Morse functions
that are considered equivalent under the persistence setting.

Persistent homology is a powerful tool in topological data analysis
that is applicable in both data summarization and simplification. In
its standard setting, persistent homology computes and summarizes
topological features of a space X equipped with a function f :X→R
across multiple scales. The importance of a feature can be quantified
via the notion of persistence, that is, the amount of change to f
necessary to eliminate it. Persistence is also useful in simplifying a
function f in terms of removing topological noise as determined by
its persistence diagram or barcode [2, 3].

We would like to explore and characterize the set of Morse func-
tions (via their corresponding Gradient vector fields) that give rise to
the same barcode. Specifically, we impose an equivalence relation
on the space of Morse functions that respect persistence, that is, two
Morse functions are considered equivalent if they have the same
barcode. We further study the dynamics of such Morse functions
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by exploring the configurations of their gradient vector fields. The
combinatorial structures of such an equivalent class can be used to
enrich the barcode of a Morse function for machine learning and
visualization.

We develop a vector field design system that supports not only
visualization and graphics researchers, but also applied and compu-
tational topologists. We consider an ideal vector field design system
to possess certain desirable traits. Such a system should:

1. Provide control over vector field topology, such as types and
locations of singularities, and geometry of the separatrices;

2. Generate a vector field with the exact topology as the user
intended;

3. Enable addition, detection and editing of the vector field topol-
ogy;

4. Support a design process in a simple and efficient way.

In addition, inspired by topological data analysis, our system will
encode and embrace the notion of persistence, in particular, it will:

1. Compute and visualize the barcode of a designer vector field
to offer a global summary of its features;

2. Support the adjustment of function values at each singularities
to explore diverse Morse functions, their gradient vector field
configurations and barcodes;

3. Create a one-to-one mapping between the topological features
in the domain with bars in the barcode to guide interactive
vector field simplification.

2 TECHNICAL BACKGROUND

Vector field topology. A (2D) vector field (flow) v is a smooth map-
ping v : M→ R2 defined on a 2-dimensional manifold M (surface).
In this paper, we only deal with smooth vector fields on a closed two-
dimensional sphere M := S2. Although this might seem restrictive,
the study of Morse vector field on the sphere under the persistence
setting is already nontrivial.

Singularities (or critical points) are locations where the vector
values are zero. A streamline is a line that is tangential to the
instantaneous velocity direction. A topological skeleton of a vector
field consists of singularities and separatrices, which are streamlines
connecting the singularities which divide the domain into areas of
different flow behavior.

Morse-Smale and Morse vector fields. Let TMp denote the tan-
gent space of M at p. A vector field v on M associates a vector
v(p) ∈ TMp to each point p ∈M. An integral curve of v through
a point p ∈M is a smooth map γ : I→M such that γ(0) = p and
γ ′(t) = v(γ(t)) for all t ∈ I. The image of an integral curve is called
a trajectory [5, page 10]. Two vector fields v1 : M1 → R2 and
v2 : M2→ R2 are considered topologically trajectory equivalent if
there is a homeomorphism h : M1→M2 that transforms the trajec-
tories of the vector field v1 into the trajectories of the vector field v2
preserving the orientations of the trajectories [4, Definition 1.1].



A vector field v is structurally stable if the topological behavior
of its trajectories is preserved under small perturbations of v (i.e. the
perturbed and the initial vector fields are trajectory topologically
equivalent) [4, Definition 1.2].

Suppose M is compact, there exists a global flow φ : R×M→M
determined by v such that φ(0, p) = p and φ ′(t, p) = v(φ(x, p)) [5,
Proposition 1.3]. For each t ∈ R, the map vt : M→M is defined
as vt(p) = φ(t, p). The ω-limit set of a point p ∈M, ω(p) = {q ∈
M | vtn(p)→ q for some sequence tn → ∞}. The α-limit set of p,
α(p) = {q ∈M | Xtn → q for some sequence tn→−∞}.

A vector field v on a closed two-dimensional surface is called a
Morse-Smale vector field [4, Definition 1.4] if

• v has finitely many singular points and periodic trajectories,
which are all hyperbolic;

• There are no trajectories from a saddle to a saddle;
• The α-limit set and the ω-limit set of each trajectory of v is

either a singular point or a periodic trajectory (a limit cycle).

A vector field is a Morse vector field if it is a Morse-Small vector
field without periodic trajectories.

A vector field is gradient like if it is topologically trajectory
equivalent to the gradient vector field grad f of a function f and
a Riemannian metric gi j on M. Morse vector fields are precisely
the gradient-like vector fields without saddle-saddle connections
(separatrices from a saddle to a saddle) [7].

3 VECTOR FIELD DESIGN

Elementary building blocks. Our method is based on understand-
ing how cells (generically as quadrangles) of a Morse vector field
(Fig. 1 top left) can fit together on a surface and how they change
when a pair of singularities is added to their interiors and boundaries;
such operations are referred to as elementary building blocks, which
originate from a forthcoming theoretic work [1]. As illustrated in
Fig. 1: adding a pair (of singularities) in the interior of a cell is a
face move (top row); adding a pair on an edge between two cells is
an edge move (middle row); and adding a pair to be colocated with
an existing singularity is a vertex move (bottom row).

Figure 1: Elementary building blocks. Top left corner: a cell from a
Morse vector field. First row: face-max and face-min moves. Second
row: edge-max and edge-min moves. Third row: vertex-max, vertex-
min moves.

Vector field construction. Once the user specifies the types and
locations of singularities via the elementary building blocks, we use
the framework of Zhang et al. [8] to construct an initial vector field.
We attach a basis vector field to each (user-specified) singularity; and
a designer vector field is constructed as the truncated sum of these ba-
sis vector fields. For instance, a basis vector field centered at a source

p0 = (x0,y0) is defined as: V (p) = e−d‖p−p0‖2
(

k 0
0 k

)(
x− x0
y− y0

)
,

for any point p = (x,y) ∈ R2. For sinks and saddles, we replace the

above matrix
(

k 0
0 k

)
with

(
−k 0
0 −k

)
and

(
k 0
0 −k

)
, respec-

tively.

Geometric control of the separatrices. To provide geometry con-
trol of separatrices, we approximate the geometry of the separatrices
using cubic cardinal splines. In addition to the initial vector field, we
also generate another auxiliary vector field which captures the flow
along separatrices using splines. The final vector field is a weighted
sum of the initial and the auxiliary vector fields.

(a)

(b)

(c)

(d)

Figure 2: An overview of our vector field design system.

Visualization Design. A layout of our design system is provided
in Figure 2, see the supplementary video for a demo. The system
contains a flow visualization panel (a) that provides capabilities
in modifying the geometry of separatrices via control points of the
splines; it also visualizes the dynamics of the underlying vector
field via animations. The various building blocks are listed on the
building block panel (b). Under the manual mode, a user connects
pairs of singularities manually and our system checks for feasible
configurations. Using the semi-automatic mode, edges are added
automatically, followed by user adjustments. The function control
panel (c) enables a user to modify the function values at singularities.
Finally, using the barcode panel (d), we provide persistence barcode
of the current vector field configuration; we also provide interactive
capabilities for persistence-based vector field simplification.
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