
Extracting Complex Topology from Multivariate Functional
Approximation: Contours, Jacobi Sets, and Ridge-Valley Graphs

Guanqun Ma*

University of Utah
David Lenz †

Argonne National Laboratory
Hanqi Guo ‡

Ohio State University
Tom Peterka §

Argonne National Laboratory
Bei Wang ¶

University of Utah

A B C

D E F

Figure 1: Extracting complex topological descriptors (highlighted in yellow) from MFA models. First, given an MFA model as input,
we extract contours at a fixed isovalue in (A) and a ridge-valley graph in (B) directly from the MFA model, without discretizing the
entire domain. Next, for a pair of MFA models, we extract the Jacobi set in (C), where the contours from each model are shown
in purple and red, respectively. Finally, we compare these topological descriptors with the contour (D), ridge-valley graph (E), and
Jacobi set (F) derived from discrete representations of the MFA models. Local maxima and saddles are indicated by blue and
orange dots in (C) and (F), respectively.

ABSTRACT

Implicit continuous models, such as functional models and implicit
neural networks, are an increasingly popular method for replacing
discrete data representations with continuous, high-order, and dif-
ferentiable surrogates. These models offer new perspectives on the
storage, transfer, and analysis of scientific data. In this paper, we in-
troduce the first framework to directly extract complex topological
features—contours, Jacobi sets, and ridge-valley graphs—from a
type of continuous implicit model known as multivariate functional
approximation (MFA). MFA replaces discrete data with continuous
piecewise smooth functions. Given an MFA model as the input, our
approach enables direct extraction of complex topological features
from the model, without reverting to a discrete representation of the
model. Our work is easily generalizable to any continuous implicit
model that supports the queries of function values and high-order
derivatives. Our work establishes the building blocks for perform-
ing topological data analysis and visualization on implicit continu-
ous models.

Index Terms: Implicit continuous model, topological data analy-
sis, contour, Jacobi set, ridge-valley graph.

1 INTRODUCTION

Implicit continuous models—functional models (e.g., spline repre-
sentations and radial basis functions) and implicit neural networks
(e.g., sinusoidal representation networks [49])—have gained grow-
ing interest in scientific data analysis and visualization. These im-
plicit models replace discrete data representations with continuous,

*e-mail: guanqun.ma@utah.edu
†e-mail: dlenz@anl.gov
‡e-mail: guo.2154@osu.edu
§e-mail: tpeterka@mcs.anl.gov
¶ e-mail: beiwang@sci.utah.edu

high-order, and differentiable data representations, thus improving
the flexibility and efficiency of scientific workflows [30,33,49] and
enabling complex analysis of scientific data [30, 36, 50].

A notable example of an implicit continuous model is the multi-
variate functional approximation (MFA) [39, 40]. An MFA model
represents discrete data by approximating it with a set of piecewise
smooth polynomial functions. It allows for the evaluation of both
function values and high-order derivatives at any point within the
domain. By utilizing a mesh-free, uniform representation, MFA en-
ables the remapping between different data representations and sup-
ports spatiotemporal analysis in a continuous setting. Supported by
the SciDAC RAPIDS Institute [2] of the U.S. Department of Energy
(DOE), MFA has found applications in high-energy physics [1] and
climate science [3]. It has proven effective as an intermediate data
representation for high-quality volume rendering [51].

Despite recent advancements, we are only beginning to explore
the potential of implicit continuous models in supporting topo-
logical data analysis and visualization. Topological descriptors
have been instrumental in enabling a number of scientific visual-
ization tasks, such as feature detection, tracking, and clustering;
see [17, 57] for surveys. However, existing topological methods
work with data represented on discrete grids. Naively applying
these methods to implicit continuous models requires discretiza-
tion of the entire domain. However, this discretization effectively
reduces the high-order model to a set of low-order features, which
can introduce aliasing artifacts.

We therefore tackle a key question: Given a continuous model
as the input, such as an MFA, how can we extract topological de-
scriptors directly from the model without resorting to discretization
of the entire domain? Recently, Ma et al. [29] extracted critical
points directly from an MFA model without discretization. Build-
ing on [29], we present a method for directly extracting more com-
plex features from MFA models: contours, Jacobi sets and ridge-
valley graphs.

Topological descriptors such as contours, ridge-valley graphs,
and Jacobi sets are important in studying scientific data. Given a
scalar function, a contour (or level set) represents a part of its do-
main that remains a constant value. Contours thus provide insights
into the structural information of data at user-specified thresh-
olds [27]. A ridge-valley graph delineates ridges and valleys of a
scalar function that are invariant under translations, rotations, uni-
form magnification, and monotonic transformations [37]. The Ja-
cobi set, on the other hand, arises from multiparameter data analy-
sis: given a pair of scalar functions, it identifies points where their
gradients are aligned. In particular, the Jacobi set reveals the rela-
tionship between a pair of functions by analyzing the critical points
of one function restricted to the contour of another [14].

The framework presented in this paper takes full advantage of
the continuous and differentiable representations afforded by MFA
models. Our contributions are summarized below.
• We present a framework for extracting contours directly from

continuous models—specifically, MFA models—without dis-
cretizing the entire domain. We utilize particle tracing along di-
rections perpendicular to the gradient to accurately locate con-
tours, by leveraging the ability of these models to query function
values and derivatives at any point in the domain.

• We extract Jacobi sets and ridge-valley graphs from MFA mod-
els by converting the problem to contour extraction from derived
functions. This approach simplifies and unifies the extraction
process across multiple topological descriptors.

2 RELATED WORK

Functional models and implicit neural networks. Implicit con-
tinuous models represent scalar functions in a smooth and differ-
entiable manner [7, 32]. Unlike discrete representations that may
suffer from limited resolution, continuous models can be evaluated
at any point in the domain. They support queries of function values
and high-order derivatives, which are essential for data analysis and
visualization [16, 29].

Implicit neural networks—a family of continuous models—have
gained significant attention in scientific machine learning [38, 49,
58]. These models enable the representation of complex shapes,
scenes, and signals without explicit discretization. One prominent
example of an implicit neural network is the sinusoidal represen-
tation network (SIREN) [49]. SIREN utilizes periodic activation
functions for implicit neural representations (INR) and has been
used in volumetric data compression [28].
Multivariate functional approximation. MFA has emerged as a
powerful method for representing scientific datasets using continu-
ous B-spline functions (see e.g., [24,39,40]). An MFA model could
be considered as a form of scattered data approximation (SDA) that
builds continuous functions to approximate spatial datasets [56].
Several SDA methods have been proposed with functional approxi-
mations based on splines [11], wavelets [20], and radial basis func-
tions [30].

An MFA model distinguishes itself from other SDA methods by
leveraging the properties of B-splines to achieve high-order conti-
nuity and efficient computation. It reduces storage due to its com-
pact representation and supports the computation of function values
and derivatives of any order at any point in the domain [24]. Lenz et
al. [24] used MFA to enable customizable approximations of com-
plex datasets. Sun et al. [51, 52] developed scalable volume visu-
alization techniques based on MFA representations, demonstrating
high-quality rendering with reduced computational overhead.

Ma et al. [29] introduced critical point extraction from an MFA
model. As critical points are the simplest forms of topological fea-
tures, their work could be considered as a first step toward extract-
ing complex topology from MFA.
Contour extraction is a fundamental task in scientific visualiza-
tion, allowing the exploration of complex functions by identify-

ing curves or surfaces along which the function matches a user-
specified constant [27]. Classic methods use the marching cubes
algorithm [27] and its variants [25,35] to extract contours from dis-
crete data on grids. For 3D (resp. 2D) data, the marching cubes
(resp. marching squares) algorithm examines how each contour
passes through a cube/square. Ju et al. [21] presented a dual con-
touring algorithm to extract contours from a signed grid, utilizing
gradient information to improve the extraction quality. While clas-
sic methods are based on discrete data, continuous implicit mod-
els give accurate evaluation of function values and derivatives. As
shown in this paper, utilizing implicit models could bypass the data
discretization step and improve accuracy.

Our approach is inspired by methods used in surface–surface in-
tersection for CAD models, with the distinction that one of the sur-
faces is derived from the gradient of the other. It also relates to the
literature on non-isolated root finding. For example, Dokken [12]
employed recursive subdivision techniques to compute intersec-
tions between a B-spline surface and a plane. While his method
is tailored to B-splines, our approach is adaptable to more general
classes of functions. Polynomial homotopy continuation [5] pro-
vides an alternative framework for solving systems of equations.
Theisel et al. [53] tracked critical points in a 2D time-dependent
vector field by integrating streamlines of a derived field. In a man-
ner similar to our method, they used a Runge–Kutta integration
scheme to ensure that the resulting critical lines are independent
of an underlying grid.
Jacobi sets capture the relationships among multiple scalar func-
tions by identifying points where their gradients are aligned [14].
Edelsbrunner and Harer [14] formalized the concept of Jacobi sets
for multiple Morse functions, exploring the topological properties
and applications. Jacobi sets and Reeb spaces are commonly used
topological descriptors for multiparameter data analysis. A Reeb
space captures the structure of a multiparameter mapping by com-
pressing the connected components of its level sets. Jacobi sets and
Reeb spaces are connected through a mapping between their sin-
gularities [8]. Such a mapping was studied by Chattopadhyay et
al. [9]. Klötzl et al. utilized a local bilinear method to approximate
a Jacobi set with good accuracy [22], and proposed a topological
connection method for Jacobi set computation [23], improving vi-
sual clarity while preserving topological structure.

Tierny and Carr [54] built on Jacobi set to compute the Reeb
space of a bivariate function defined on a tetrahedral mesh. Sharma
and Natarajan [47] used Jacobi sets to identify fiber surfaces.
Meduri et al. [31] proposed Jacobi set simplification for tracking
topological features in time-varying scalar functions.

A closely related concept is the Pareto set, which studies scalar
functions based on consensus or disagreement among their critical
points, ascending and descending manifolds, and connectivity [19].
Huettenberger et al. [18] explored the relationship between Pareto
sets and Jacobi sets, establishing subset and equivalence relations
between them.

Compared with discrete representations, continuous implicit
models enable precise identification of Jacobi sets without artifacts
from data discretizations. Leveraging the continuous and differ-
entiable nature of MFA models could improve the efficiency and
accuracy of Jacobi set extraction, benefiting multiparameter data
analysis and visualization.
Ridge-valley graphs. Damon [10] proposed ridge-valley-
connector-curves that describe the global structure of height ridges.
A point belongs to a height ridge if the scalar function has a local
maximum in the direction orthogonal to its gradient. Norgard and
Bremer introduced the ridge-valley graph [37] based on the notion
of Jacobi ridges, which behave similarly to the curves proposed
in [10]. Jacobi ridges are points where the gradient magnitude
has a local minimum along the level set [37]. However, unlike
height ridges [13], Jacobi ridges are invariant under monotonic

transformations, although their structures are similar and their
formulations coincide for quadratic functions [37]. A ridge-valley
graph is the Jacobi set of a function and its squared gradient
magnitude (see Sec. 3).

Later studies introduced different methods for extracting ridges.
For instance, Anisotropic Gaussian Kernel (AGK) is employed to
enhance sensitivity and robustness [26]. Reisenhofer and King [46]
refined local features by integrating the contrast-invariant phase
congruency measure with α-molecules.

3 TECHNICAL BACKGROUND

We provide the background of MFA, contours, Jacobi sets, and
ridge-valley graphs to support the understanding of our method.

3.1 Multivariate Functional Approximation
MFA models are tensor-product B-spline functions that approx-
imate a discrete dataset. We briefly review B-splines below;
see [11, 42] for a detailed presentation of B-spline theory.

A degree p B-spline curve is a piecewise-polynomial function.
It has p − 1 continuous derivatives and is composed of degree p
polynomial pieces. The junction points between these pieces are
referred to as knots, and the intervals between knots are knot spans
or simply spans. The shape of the curve is determined by a set of
control points distributed across the domain. Although the curve
loosely follows a polyline formed by these control points, it does
not necessarily pass through them; see Fig. 2.

Mathematically, a B-spline F is defined as a combination of ba-
sis functions Nj , weighted by the control point positions Pj :

F (u) =

n−1∑
j=0

Nj(u)Pj . (1)

In 1D, given a set of points located at {u0, . . . , um−1} ⊂ [0, 1],
where each ui is associated with a value fi, the best-fit B-spline
curve has optimal control points to minimize the pointwise error:

min
P

(
1

m

m−1∑
i=0

|fi −
n∑

j=0

Nj(ui)Pj |2
)1/2

. (2)

Figure 2: A 1D B-spline curve (left) and a 2D B-spline surface (right).
Pi and Pi,j are control points; control meshes are in black; approxi-
mated curves or surfaces are in red.

In this paper, we focus on MFA in the 2D case. A 2D B-spline
surface of degree p is defined using two sets of knots, {t(1)j1

}n1+p
j1=0

and {t(2)j2
}n2+p
j2=0 , corresponding to the u and v dimensions, respec-

tively. {Pj1,j2}
n1−1,n2−1
j1,j2=0 is the set of control points. The 2D

basis functions are constructed as the product of 1D basis func-
tions in each dimension: Nj1,j2(u, v) = N

(1)
j1,p

(u)N
(2)
j2,p

(v), where

N
(1)
j1,p

(u) and N
(2)
j2,p

(v) are 1D basis functions for the u and v di-
mensions. The resulting 2D B-spline surface is expressed as:

F (u, v) =

n1−1∑
j1=0

n2−1∑
j2=0

N
(1)
j1,p

(u)N
(2)
j2,p

(v)Pj1,j2 . (3)

Finally, a 2D span is simply the tensor product of 1D spans. For
example, a 2D span corresponds to a region:

[t
(1)
j1

, t
(1)
j1+1]× [t

(2)
j2

, t
(2)
j2+1].

3.2 Critical Point Extraction From an MFA Model

Since an MFA model is a piecewise-polynomial function, critical
points can be directly extracted from an MFA model following the
approach outlined by Ma et al. [29]:
1. Span filtration: Each span is constrained within the convex hull

of its corresponding control points. By analyzing the control
points of the first derivatives, we identify and exclude spans that
are impossible to contain critical points, thereby reducing the
spans we actually work with.

2. Critical point extraction: For the remaining spans, we use New-
ton’s method to compute critical points in each span. The itera-
tive update formula is given by:

xn+1 = xn −H(xn)
−1∇f(xn), (4)

where H(xn) is the Hessian matrix and∇f(xn) is the gradient
of the MFA model f evaluated at xn. Since MFAs are differen-
tiable functions, each of these queries is exact.

3. Deduplication: To ensure uniqueness, we remove duplicated
critical points using spatial hashing.

According to [29], the overall time complexity in a 2D domain is
O(imaxp

4n), where imax is the maximum number of iterations
using Newton’s method and n is the number of spans.

3.3 Particle Tracing

Particle tracing involves finding the trajectories of particles moving
through a vector field, essential in visualizing flow patterns such
as streamlines and pathlines [41]. The motion of a particle can
be described by an initial value problem (IVP) in the form of an
ordinary differential equation:

dx

dt
= v(t,x),x(t0) = x0, (5)

where x(t) represents the position of a particle at time t and v(t,x)
is the velocity at position x and time t. Particle tracing is performed
by numerically solving the IVP [43] in (5). To do so, numerical
integration methods such as the Runge-Kutta method are used.

The classic Runge-Kutta method (RK4) [44] is a fourth-order
method to approximate xn+1 from xn in (5):

xn+1 = xn +
s

6
(k1 + 2k2 + 2k3 + k4) , (6)

tn+1 = tn + s, (7)

where k1 = v (tn,xn), k2 = v
(
tn + s

2
,xn + s

2
k1

)
, k3 =

v
(
tn + s

2
,xn + s

2
k2

)
, and k4 = v (tn + s,xn + sk3), and s >

0 is the step size. RK4 yields xn+1 as an approximation to x at
time tn+1. The local truncation error per step is O(s5) and the total
accumulated error is O(s4) [44].

3.4 Jacobi Set

Studying natural phenomena often involves analyzing the relation-
ship between two functions defined on the same domain, such as
temperature distribution within a layer of constant salinity [14]. Ja-
cobi sets capture this relationship by analyzing the critical points of
one function restricted to the contours of the other.

A function is a Morse function if all its critical points are non-
degenerate and have distinct function values. Given two Morse
functions f, g : M → R defined on a manifold M, the Jacobi set
J = J(f, g) = J(g, f) is defined as the closure of the set of points
where the gradients of f and g are linearly dependent [14]:

J(f, g) = cl{x ∈ M | ∇f(x) + λ∇g(x) = 0 or
∇g(x) + λ∇f(x) = 0},

(8)

for some λ ∈ R. This condition implies that

J(f, g) = cl{x ∈ M | x is a critical point of f + λg or g + λf},
(9)

for some λ ∈ R [14]. Alternatively, let g−1(t) denote the level set
of g at t ∈ R, and let ft : g−1(k) → R be the restriction of f on
g−1(t), then J(f, g) can equivalently be defined [6] as

J(f, g) = cl{x ∈ M | x is a critical point of ft}. (10)

The critical points of ft are known as the restricted critical points of
f with respect to g. Symmetrically, we can define restricted critical
points of g with respect to f .

The Jacobi set J(f, g) is an embedded 1-manifold in M (i.e, a
set of curves) [14]. It includes all critical points of f and g. The
function ft is a Morse function except at a finite set of measure
zero, where ft changes in criticality at critical points of g [6]. The
alignment of restricted critical points changes at critical points of f
and g [6]. Examples of Jacobi sets are illustrated in Fig. 1 (C) and
(F). The Jacobi set J(f, g) is the zero level set of the comparison
measure κx = ||∇f(x)×∇g(x)|| [34].

3.5 Ridge Valley Graph

Ridges and valleys are highly sought-after features across diverse
fields, from image processing [48] to combustion simulations [45].
A ridge-valley graph is a complete description of all ridges and val-
leys in a scalar function f : M→ R [37]. It refers to Jacobi ridges
that satisfy all five desired invariants [37]. A ridge-valley graph of
f corresponds to a non-generic Jacobi set J(f, ||∇f ||2) formed by
f and its squared gradient magnitude [37]. Following [37], a ridge-
valley graph of f consists of nodes and arcs with the following
properties (see Fig. 1 (A)):

1. Arcs: Smoothly embedded curves in M.
2. Nodes: Valence-4 nodes correspond to the critical points of f .

Valence-2 nodes are the points where classification changes
(see below).

3. Classification: An arc is consistently classified as a (pseudo-)
ridge or a (pseudo-) valley. The classification depends on the
behavior of ||∇f ||2 along the contours of f and the behavior
of f in the direction tangent to these contours. A ridge (resp.
valley) point is one where ||∇f ||2 is minimal along a contour
and f is maximal (resp. minimal) tangent to the contour. A
pseudo-ridge (resp. pseudo-valley) point is one where ||∇f ||2
is maximal along a contour and f is maximal (resp. minimal)
tangent to the contour.

A ridge-valley graph is invariant under translations, rotations, and
uniform magnification in the spatial variables. Additionally, it is
defined locally and remains invariant under monotonic transforma-
tions of f [37]. Examples of ridge-valley graphs are illustrated
in Fig. 1 (B) and (E).

4 METHOD

To the best of our knowledge, we present the first framework for ex-
tracting contours, Jacobi sets, and ridge-valley graphs from contin-
uous implicit models. We demonstrate our framework using MFA
models; however, it is broadly applicable and can be adapted to any
implicit model that allows querying of function values and higher-
order derivatives.

4.1 Contour Extraction

Given a Morse function f : M→ R on a 2-manifold M, a contour
(level set) γa of f defined at a given threshold (isovalue) a ∈ R
is given by γ = γa := {x ∈ M | f(x) = a}. At any point
x = (x1, x2)

⊤ ∈ γ, the gradient is orthogonal to γ, meaning the
tangent direction m of γ at x is perpendicular to∇f(x). Let∇f =

(fx1 , fx2)
⊤ represent the gradient, then

m =
1

||∇f || (−fx2 , fx1)
⊤, (11)

where ||∇f || =
√

f2
x1

+ f2
x2

is the gradient magnitude.
Contour extraction can be formulated as a particle tracing prob-

lem, where a particle moves along the contour by following the
tangent direction m. To numerically integrate this trajectory, we
employ the RK4 method by setting v = m and ignoring time
(see Sec. 3.3). Let s > 0 be the step size.

xn+1 = xn +
s

6
(k1 + 2k2 + 2k3 + k4) , (12)

where k1 = m (xn), k2 = m
(
xn + s

2
k1

)
, k3 =

m
(
xn + s

2
k2

)
, and k4 = m (xn + sk3). Starting from an ini-

tial point p0 on the contour γ, we obtain a sequence of points
{x0,x1,x2, · · · } by iteratively applying the RK4 method, thereby
tracing the contour.

Our contour extraction method comprises three main steps:
1. Initialization: Identify a set of starting points on the contour.
2. Particle tracing: Utilize the RK4 method to trace the contour

from each starting point.
3. Connecting: Incorporate critical points and connect the traced

points to form continuous segments of the contour.
We discuss these steps in detail in Secs. 4.1.1 to 4.1.3.

4.1.1 Initialization
To find points satisfying f(x) = a for a given a, we convert the
problem into a root-finding problem. We define fa(x) := f(x)−a
and search for the roots of fa by setting fa = 0. We use a nor-
malized gradient descent method to solve the root-finding problem,
where the iteration formula is

xn+1 = xn − α
∇fa(xn)

||∇fa(xn)||
, (13)

with an adaptive step size α = fa(xn)
||∇fa(xn)|| .

In the context of MFA, the domain is partitioned into spans, each
representing a polynomial function. Within each span, we uni-
formly sample (p+3)d initial points, where p is the polynomial de-
gree and d = 2 is the dimension. From each initial point, we apply
the normalized gradient descent to find a starting point satisfying
f(x) = a (or equivalently, fa(x) = 0). To avoid redundancy, we
remove starting points that are closer than s to other starting points
(duplication removal). The root-finding process is confined within
the current span. Since each span is processed independently, this
step is naturally adapted to multithreading.

4.1.2 Particle Tracing
In the particle tracing step, we continue to treat each span indepen-
dently. Within a given span, we trace a piece of the contour (a tra-
jectory) using RK4 method (see Eq. (12)) from each starting point
obtained from the initialization step (Sec. 4.1.1). The procedure is
as follows:

1. Forward tracing: Trace the trajectory forward following m.
2. Boundary handling: If the trajectory exits within the current

span, stop tracing. To make sure the distance between the last
point inside the span and the first point in an adjacent span
does not exceed s, we set s ← s

2
and process with RK4 one

more time within the boundary.
3. Backward tracing: To capture the entire trajectory passing

through the starting point, if the trajectory does not form a
loop, we also trace backward from the starting point in the
opposite direction −m. If the trajectory returns to the start-
ing point (indicating that it forms a loop), backward tracing is
unnecessary.

When a trajectory reaches a critical point, the gradient magnitude
of f becomes negligible, and an RK4 update cannot proceed effec-
tively. In such cases, we stop tracing when ||∇f(xn)|| is smaller
than a threshold. In practice, as the trajectory approaches a critical
point, the step size ||xn+1−xn|| decreases significantly. Therefore,
in all the experiments, we stop tracing when ||xn+1−xn|| < 0.5s.
To prevent error accumulation during particle tracing, we utilize a
correction step at every point. If |f(xn) − a| > ϵ, where ϵ is the
threshold to control the accuracy, we adjust the point position using
the normalized gradient descent described in Eq. (13).

Since multiple starting points may trace the same trajectory, du-
plication removal is necessary. Even when we stop tracing near
critical points, it is possible for trajectories to skip over these crit-
ical points, leading to multiple recordings of the same trajectory.
We deal with various duplication scenarios as illustrated in Fig. 3.
If the distance between points from two different trajectories is less
than s, we consider these points as corresponding. The key idea
behind duplication removal is identifying duplicated segments by
searching for corresponding endpoints of two trajectories.

(1) (2) (3) (4)

(5) (6) (7)
Figure 3: Illustrations of duplicated trajectories as candidates for du-
plication removal. Two trajectories that contain duplicated segments
are shown in orange and blue respectively.

4.1.3 Connecting

After removing duplications, we connect trajectories to form con-
tinuous contours.

1. Inserting critical points: Following Sec. 3.2, we identify and
insert critical points x satisfying ||f(x)− t|| < ϵ. These crit-
ical points can have valence > 2. Since particle tracing alone
cannot guarantee to find these points, we add them manually
to ensure completeness.

2. Connecting to critical points: For trajectories within a span,
we connect their endpoints to nearby critical points if they are
within a distance ≤ 2s. On a contour, the valence of a critical
point may be ≥ 2, whereas that of a regular point is 2, since
the gradient is nonzero at a regular point. Consequently, if a
trajectory contains more than one point, it can only connect to
another trajectory or a critical point.

3. Connecting trajectories across spans: To avoid duplication,
we only compare trajectories with those in adjacent spans with
higher span indices. If endpoints from different spans are
within a distance of 2s, we connect them.

4. Connecting trajectories within a span: We connect end-
points of trajectories within the same span if their distance
is < 2s.

5. Connecting within a trajectory: Within each trajectory, we
connect all points sequentially for continuity.

4.2 Jacobi Set Extraction

Following Eq. (8), a point x = (x1, x2)
⊤ belongs to the Ja-

cobi set J := J(f, g) if one of the following conditions holds:
∇f(x) = 0, ∇g(x) = 0, or the gradients ∇f(x) and ∇g(x)
are aligned (parallel). As noted in [15, 34], such points lie on
the zero level set of ||∇f(x) × ∇g(x)||. We take inspiration
from this formulation. In a 2D domain, the gradients are given
by ∇f = (fx1 , fx2)

⊤ and ∇g = (gx1 , gx2)
⊤. To utilize the cross

product, we extend these gradients to 3D by adding a zero com-
ponent: ∇f3 = (fx1 , fx2 , 0)

⊤ and ∇g3 = (gx1 , gx2 , 0)
⊤. To

identify x ∈ J, the following cross product must be zero:

∇f3(x)×∇g3(x) = (0, 0, fx1gx2 − fx2gx1)
⊤ = (0, 0, 0)⊤.

(14)

This condition implies that either ∇f(x) = 0, ∇g(x) = 0, or
∇f(x) and∇g(x) are parallel, which is consistent with the defini-
tion in Eq. (8). We then define

h = fx1gx2 − fx2gx1 . (15)

Extracting the Jacobi set J becomes equivalent to finding the con-
tour of h with a = 0 (i.e., the 0-contour). We then apply the contour
extraction described in Sec. 4.1 to determine the Jacobi set.

In MFA, f and g are constructed with the same span settings.
Their only difference lies in their control points. As f and g share
the same spans, h is also a polynomial function within each span.
Consequently, our Jacobi set extraction process can be seamlessly
integrated with our contour extraction method that treats each span
independently. In the final step, we extract the critical points of h.

To utilize the contour extraction method, we require the gradient
of h given by:

∇h =

(
hx1

hx2

)
=

(
fx1gx1x2 + gx2fx1x1 − fx2gx1x1 − gx1fx1x2

fx1gx2x2 + gx2fx1x2 − fx2gx1x2 − gx1fx2x2

)
.

(16)
In practice, we extract the critical points x of h that satisfy
||h(x)|| < ϵ and incorporate them into the result.

4.3 Ridge-Valley Graph Extraction
Following Sec. 3.5, a ridge-valley graph is a special type of Jacobi
set J(f, ||∇f ||2). Let g = ∥∇f∥2. The gradient of g is given by
∇g = 2H∇f , where H is the Hessian matrix of f .

Formally, H and∇g are derived as follows:

H =

(
fx1x1 fx1x2

fx1x2 fx2x2

)
, (17)

∇g = 2H∇f = 2

(
fx1x1fx1 + fx1x2fx2

fx1x2fx1 + fx2x2fx2

)
. (18)

The Hessian matrix of g, denoted by Hg , is given by

Hg =

(
gx1x1 gx1x2

gx1x2 gx2x2

)
, (19)

where

gx1x1 = 2(f2
x1x1

+ fx1x1x1fx1 + fx1x1x2fx2 + f2
x1x2

),

gx1x2 = 2(fx1x1x2fx1 + fx1x1fx1x2 + fx1x2x2fx2 + fx1x2fx2x2),

gx2x2 = 2(fx1x2x2fx1 + f2
x1x2

+ f2
x2x2

+ fx2x2x2fx2). (20)

We can express the condition for the ridge-valley graph as:

h̃ = fx1gx2 − fx2gx1

= 2(fx1(fx1x2fx1 + fx2x2fx2)− fx2(fx1x1fx1 + fx1x2fx2))

= 2((f2
x1
− f2

x2
)fx1x2 + fx1fx2(fx2x2 − fx1x1)) = 0. (21)

Similar to the Jacobi set extraction, since h̃ is derived from f and
its derivatives, the span setting remains the same. We can thus ap-
ply the contour extraction method by directly substituting f and
its derivatives with h̃ and its derivatives to extract the ridge-valley
graph. In the final step, according to [37], instead of computing the
critical points of h̃ where h̃ = 0, we compute the critical points of

f and incorporate them into the result. This approach ensures that
all critical points of f are included in the ridge-valley graph and it
is more efficient than computing critical points of h̃ directly. The
gradient∇h̃ can be obtained by substituting Eq. (20) into Eq. (16).

Following Sec. 3.5, we can classify whether a point on the ridge-
valley graph corresponds to a (pseudo-)ridge or a (pseudo-)valley
by checking the signs of the 2nd-order derivatives of f and g in
the direction tangent to the level set of f . The direction m tangent
to a contour of f is given by Eq. (11). The 2nd-order derivatives
of f and g in the m direction are fmm = m⊤Hm and gmm =
m⊤Hgm respectively. Tab. 1 summarizes the classification based
on the signs of fmm and gmm.

Table 1: Ridge-valley graph point classification based on the signs of
fmm and gmm.

Classification fmm gmm

Ridge point < 0 > 0
Valley point > 0 > 0

Pseudo-ridge point < 0 < 0
Pseudo-valley point > 0 < 0

4.4 Time Complexity
We work with 2D MFA models with degree-4 polynomials (p =
4). Let n denote the number of spans. Querying the function
value and the gradient at a given point takes O(p2). Using gra-
dient descent to locate the starting points for particle tracing takes
O(cmaxp

2), where cmax is the predefined maximum iteration num-
ber of gradient descent. In each span, as we set (p + 3)2 ini-
tial points for gradient descent, finding all starting points takes
O(cmaxp

4). Each application of RK4 computes four gradients and
takes O(p2). Assume we trace k points in a span, particle trac-
ing takes O(kp2). The overall time complexity for particle tracing
in a span is O(kp2 + cmaxp

4). The time complexity to locate all
critical points is O(imaxp

4n), where imax is the maximum num-
ber of iterations using the Newton’s method [29]. In a single span,
there are at most (p + 3)2 trajectories; and establishing the con-
nection among different trajectories and critical points takesO(p4)
per span. In summary, the overall time complexity for contour
extraction is O(nkp2 + n(cmax + imax)p

4). As Jacobi set and
ridge-valley graph extraction are based on contour extraction from
derived functions, their time complexity stays the same.

5 EXPERIMENTAL RESULTS

To evaluate our framework, we perform a number of experiments
with MFA models representing synthetic and scientific datasets; see
the supplement for details on these MFA models. We address the
following questions: Given an MFA model as input, is it possi-
ble to extract complex topological descriptors without discretizing
the entire domain? Furthermore, how does our method perform in
comparison to discrete methods that rely on model discretization?

For each MFA model, we extract contours, Jacobi sets, or ridge-
valley graphs from the model, and compare the results against cer-
tain discrete methods.
Implementation. The code is compiled using g++ version 11.4.0
with the -O3 optimization flag. Multithreading is achieved through
Threading Building Blocks (TBB), which dynamically balances the
workload across threads. The number of threads is configured to
match the number of hardware cores. All our experiments are con-
ducted on a desktop powered by an Intel i9 CPU (3.5GHz) with 8
hardware cores and 8 threads, paired with 32 GB of DDR4 RAM.

A naive strategy for extracting topology from a continuous
model is to sample it into a discrete representation and then ap-
ply established discrete methods. For comparative analysis, we dis-
cretize the MFA model onto a mesh to obtain a discrete represen-
tation. After triangulation, we use ParaView [4] to extract contours

and the Topology ToolKit (TTK) [55] to extract Jacobi sets and
ridge-valley graphs from the resulting discrete representation. Par-
aView and TTK work with piecewise-linear (PL) interpolations of
scalar functions defined over triangulated meshes. In particular, we
use Contour and TTKJacobiSet filters to extract contours and Ja-
cobi sets from discrete representations, respectively. The Contour
filter in ParaView implements the marching squares algorithm [27]
to extract the contour. We note that TTKJacobiSet typically in-
cludes the entire domain boundary in the resulting Jacobi set, even
though these boundary elements may not genuinely belong to it;
hence, we exclude domain boundaries from the Jacobi set compar-
isons. We use TTKJacobiSet to extract the ridge-valley graph as
a special type of Jacobi set. We refer to our approach as the MFA
continuous method, and refer to the methods based on discrete rep-
resentations collectively as the discrete method.
Experimental setup. The goal of our experiments is to assess
whether our MFA continuous method can effectively extract con-
tours, Jacobi sets, and ridge-valley graphs from a continuous model,
especially considering that the ground truth for these topological
descriptors is typically unavailable. We compare our results to those
obtained using the discrete method, which processes a discrete sam-
ple drawn from the same MFA model. The outputs from these dis-
crete methods serve as a reference, not the ground truth, because
these discrete methods operate on a PL approximation generated
from a discretization of the MFA model, rather than on the MFA
model itself. Despite these methodological differences, these dis-
crete methods provide a meaningful benchmark for assessing how
closely our results align with an established discrete pipeline. Fig. 4
illustrates an overview of contour extraction using both methods.

Continuous
MFA model

Contour

Discrete
Representation

Contour

MFA continuous method

Discrete method

Marching
SquaresSampling

Particle Tracing

Figure 4: Overview of the MFA continuous method vs. the discrete
method.

Our experimental procedure is summarized as follows:
1. Given an MFA model as the input, we apply our MFA continu-

ous method to extract topological descriptors—contours, Jacobi
sets, and ridge-valley graphs—from the model.

2. For comparative analysis, we generate a discrete representation
by sampling points from the MFA model and apply ParaView
or TTK to their PL interpolation to extract the corresponding
topological descriptors.

3. We evaluate the results using metrics detailed below.
Evaluation metrics. Since both approaches are derived from the
same MFA model, we can assess the quality of the contours ex-
tracted by each method by measuring the difference between the
MFA function value f(x) and the prescribed isovalue a at each
point x in the domain,

e(x) = |f(x)− a|. (22)

For Jacobi set extraction, we reformulate the task into a 0-
isovalue contour extraction of function h as shown in Eq. (15),
resulting in the difference measure e(x) = |h(x)|. Similarly,
for ridge-valley graph extraction, the discrepancy is computed as
e(x) = |h̃(x)|, where h̃(x) is given by Eq. (21). We report both
the maximum difference emax and average difference eavg across
all points x. To quantitatively evaluate the extracted topological de-
scriptors, we report the number of loops (#Loop) and the number
of connected components (#CC).

5.1 An Overview of MFA Models
1. Contour: Applied to Sinc, S3D, and Schwefel.
2. Jacobi set: Applied to Gaussian pair, von Kármán vortex

street, Hurricane Isabel, and Boussinesq approximation.
3. Ridge-valley graph: Applied to Gaussian mixture and CESM.
Here, experiments in bold are described in this section and others
are included in the supplement.

We explore four synthetic MFA models (Schwefel, Sinc, Gaus-
sian pair, and Gaussian mixture) and five scientific MFA models
(S3D, von Kármán vortex street, Hurricane Isabel, Boussinesq ap-
proximation, and CESM); see the supplement for details. We use
synthetic MFA models to validate the accuracy of our results, and
scientific MFA models to demonstrate the efficacy of our frame-
work. The computation time is listed in Tab. 2. With 8 threads, our
method achieves a speedup of approximately 7× to 8×, highlight-
ing its parallel efficiency. Although our method is slower than the
discrete approach, it avoids model discretization and enables direct
analysis on the continuous model. This represents a fundamentally
different strategy that offers improved fidelity for downstream topo-
logical analysis.

Table 2: Computation time in seconds.

MFA Models
MFA

Continuous Method Discrete Method

Single Thread 8 Threads Single Thread

Step Size s = l/4, Sampling Ratio 4

Schwefel (Contour, a = 100) 8.97 1.24 0.0466
Sinc (Contour, a = 0.33) 1.49 0.201 0.0411
Gaussian Pair (Jacobi set) 1.61 0.233 0.0530

Gaussian Mixture
(Ridge-valley graph) 50.6 6.43 0.310

Step Size s = l/16, Sampling Ratio 16

S3D (Contour, a = 50) 17.7 2.37 5.71

Step Size s = l/32, Sampling Ratio 32

Kármán (Jacobi set) 131 17.7 10.9
Boussinesq (Jacobi set) 557 76.6 23.2

CESM (Ridge-valley graph) 3218 408 115

Step Size s = l/64, Sampling Ratio 64

Hurricane (Jacobi set) 6289 857 394

5.2 Sinc: Contour Extraction
Parameter selection via ablation studies. We select our
parameters—step size s, accuracy threshold ϵ, and trajectory con-
nection threshold γ—based on a series of ablation studies. Recall
from Sec. 3.1 that the span length l is the distance in the MFA model
between knots and corresponding control points. All the MFA mod-
els in this study have a uniform span length across the entire model.
Table 3: Sinc model: evaluation of contour extraction with various
isovalues (a). GT denotes the ground truth.

a emax eavg #Loop GT#Loop #CC GT#CC

0.33 9.8e−11 5.5e−12 40 40 60 60
0.79 9.9e−11 5.1e−12 28 28 32 32

For all synthetic and scientific MFA models, we use a model-
specific step size in each experiment, selected based on an ablation
study. We decrease step size s ∈ {l/2, l/4, l/8, . . . , l/2p, . . . } un-
til both #Loop and #CC reach convergence. The accuracy thresh-
old is chosen at ϵ = 1e−10 for all experiments. Trajectories are
connected when the distance between them is within a connection
threshold γ = 2s as described in Sec. 4.1.3; see the supplement for
further details on parameter selection.

Figure 5: Sinc model: contour extraction with isovalues a = 0.33
(yellow) and a = 0.79 (pink). Results are shown in different views.

l/2 l/4 l/8 l/16
Step size s

0

10

20

30

#Loop

#CC

1e−6 1e−8 1e−10 1e−12

Accuracy threshold ε

0

10

20

30

#Loop

#CC

1.0s 1.5s 2.0s 2.5s
Connection threshold γ

0

10

20

30

#Loop

#CC

Figure 6: Contour extraction of Sinc model at a = 0.79. Number
of loops and connected components vs. step size s (left), accuracy
threshold ϵ (middle), and trajectory connection threshold γ (right).

When constructing a discrete representation from an MFA
model, we set the grid spacing equal to the chosen step size s. This
ensures that the edge lengths of the PL contour in the discrete rep-
resentation remains consistent with those extracted from the contin-
uous representation. For example, a grid spacing of l/4 results in
sampling 4 points per dimension within each span, corresponding
to a sampling ratio of 4.

In Fig. 5, contours are extracted from the Sinc model using iso-
values a = 0.33 and a = 0.79. The original Sinc function serves
as the ground truth. Tab. 3 shows that the errors at all nodes are
below the threshold ϵ = 1e−10. The numbers of loops and con-
nected components align exactly with those of the ground truth. In
Fig. 6, we illustrate the results for varying step sizes (s), thresholds
(ϵ), and connection thresholds (γ) at a = 0.79. For the Sinc model,
step size s = l/4 is sufficient to ensure convergence for the number
of connected components and loops. Under these conditions, the
results demonstrate robustness with respect to variations in ϵ and γ.

5.3 S3D: Contour Extraction
Tab. 4 presents an evaluation of our MFA continuous method with a
step size of s = l/16 alongside the discrete method with a sampling
ratio of 16, using the original continuous MFA model as a reference.
The discrete method differs primarily due to discretization artifacts.
At a = 50, it misses a small loop that is visible in the black block
of Fig. 7 (1) but absent in Fig. 7 (2). In Fig. 7, the three contours at
isovalues a = 30, 50, 60 from the S3D model are displayed using
both continuous and discrete representations.

In Fig. 8, results are visualized for different step sizes (s), thresh-
olds (ϵ), and connection thresholds (γ) at a = 50. A step size of
s = l/16 is chosen to guarantee convergence of both connected
components and loops. This selection yields robust results with
respect to variations in ϵ. Additionally, γ = 2s is adopted for con-
sistency across experiments and to ensure convergence.

Table 4: S3D model: contour extraction with step size s = l/16 and
a sampling ratio 16.

MFA Continuous Method Discrete Method

a emax eavg #Loop #CC emax eavg #Loop #CC
30 1.0e−10 5.6e−12 21 23 0.25 8.5e−3 21 23
50 1.0e−10 4.5e−12 18 22 0.23 1.1e−2 17 21
60 1.0e−10 1.0e−11 13 21 0.22 6.4e−3 13 21

Figure 7: S3D model: contour extraction using isovalues a = 30 (red), a = 50 (yellow), and a = 60 (pink). (A, C): results from MFA continuous
method with a step size of s = l/16, viewed from the top and the side; (B, D): results from discrete method with a sampling ratio of 16, viewed
from the top and the side. (1) and (2) provide the zoomed-in views of the white blocks in (C) and (D), respectively.

l/2 l/4 l/8
l/16

l/32
l/64

l/128
l/256

Step size s

0

10

20

#Loop

#CC

1e−6 1e−8 1e−10 1e−12

Accuracy threshold ε

0

10

20

#Loop

#CC

1.0s 1.5s 2.0s 2.5s
Connection threshold γ

0

10

20

#Loop

#CC

Figure 8: Contour extraction of S3D model at a = 50. Number of
loops and connected components vs. step size s (left), accuracy
threshold ϵ (middle), and connection threshold γ (right).

Table 5: Jacobi set extraction of MFA models.

MFA Continuous Method Discrete Method

emax eavg #Loop #CC emax eavg #Loop #CC

Gaussian Pair, Step Size s = l/4, Sampling Ratio 4

6.8e−11 4.3e−12 0 2 0.31 2.2e−2 161 2

Kármán, Step Size s = l/32, Sampling Ratio 32

1.0e−10 2.2e−11 82 124 1.3 1.5e−2 5039 559

Hurricane, Step Size s = l/64, Sampling Ratio 64

1.0e−10 2.9e−11 1901 2015 1.0 4.2e−3 4.1e5 1956

5.4 Gaussian Pair: Jacobi Set Extraction

Given a pair of scalar functions f and g represented by MFA mod-
els, Fig. 1 presents the Jacobi sets J := J(f, g) extracted from both
the continuous Gaussian pair model (C) and its discrete representa-
tion (F). The scalar functions f and g are depicted as purple and red
contours, respectively. Results from discrete representations exhibit
visible artifacts due to discretization: most notably, they exhibit nu-
merous zigzag patterns, in comparison with significantly smoother
results from the continuous MFA model.

Quantitative evaluation is presented in Tab. 5. Due to artifacts
arising from discretizing a continuous model, the discrete method
exhibits significantly larger error compared to the MFA continu-
ous method. Specifically, zig-zag patterns result in numerous small
triangles, causing the discrete method to generate many spurious
loops.

5.5 Von Kármán Vortex Street: Jacobi Set Extraction

Fig. 9 presents a visualization of the von Kármán vortex street MFA
model at time step 1500. The step size is s = l/32, and the sam-
pling ratio is 32. Due to resolution limitations, the discrete repre-
sentation (B) exhibits pronounced zigzag patterns, while the contin-
uous representation (A) is significantly smoother. These differences

A

B

1

2

21

a

a b

b

Figure 9: Von Kármán vortex street model: Jacobi set extraction us-
ing MFA continuous method (A) and discrete method (B). (1) and (2):
zoomed-in views of blue blocks in (A) and (B), respectively. (a) and
(b): zoomed-in views of purple blocks in (1) and (2), respectively.

are highlighted in zoomed-in views of (1) and (2), where zigzag pat-
terns from the discrete representation are clearly visible in block (b)
of (2), c.f., block (a) of (1). In Tab. 5, the error of the MFA contin-
uous method remains below ϵ = 1e−10, whereas the error from the
discrete method is much larger. The discrete representation gener-
ates many spurious loops due to these zig-zag patterns.

5.6 Hurricane Isabel: Jacobi Set Extraction

In Fig. 10, we present the Jacobi set extracted from the Hurricane
Isabel model computed between temperature and pressure fields.
Results are shown for the region [125, 375]× [120, 330]. We select
a slice of the model at a height of 50, where the hurricane exhibits
significant spatial expansion and displays many characteristic struc-
tures [22]. The step size for MFA continuous method is s = l/64,
and the corresponding sampling ratio is 64. The results from the
continuous representation in blocks (1) and (2) are smoother than
the results from the discrete representations in blocks (3) and (4),
respectively. Zig-zag patterns, like those in the purple block of (4),
contribute to the high number of loops in the discrete representa-
tion, as shown in Tab. 5.

Figure 10: Hurricane Isabel model: Jacobi set extraction using MFA
continuous method (A) and discrete method (B). (1-4): zoomed-in
views of the white (1,3) and red (2,4) blocks, respectively. Purple
insets further magnify the highlighted regions indicated by arrows.

Table 6: Ridge-valley graph extraction from MFA models.

MFA Continuous Method Discrete Method

emax eavg #Loop #CC emax eavg #Loop #CC

Gaussian Mixture, Step Size s = l/4, Sampling Ratio 4

9.9e−11 5.9e−12 2 1 1.4 4.3e−1 970 1

CESM, Step Size s = l/32, Sampling Ratio 32

1.0e−10 1.9e−11 3402 860 4.2e2 2.7e2 2.1e5 751

5.7 Gaussian Mixture: Ridge-Valley Graph Extraction
Fig. 1 presents the results of ridge-valley graph extraction using the
MFA continuous method (B) and the discrete method (E). Based
on a convergence study, the step size for (B) is set to s = l/4,
and the sampling ratio for (E) is 4. While the overall ridge-valley
graph structures align for both methods, the discrete representation
in (E) exhibits pronounced zigzag patterns and generates hundreds
of spurious loops (see #Loop in Tab. 6). Moreover, the discrete
method shows a significantly larger error compared to the original
MFA model (see emax and eavg in Tab. 6).

By utilizing the advantages of a continuous representation that
allows access to second-order derivatives, our method enables the
classification of any point on the ridge-valley graph based on its
position; see Tab. 1. In Fig. 11, we present the classification of arcs
from the extracted ridge-valley graph.

Figure 11: Gaussian mixture model: Ridge-valley graph extraction
and classification with 3D (left) and 2D (right) views. Local maxima
(orange) and saddles (purple) are connected by ridges (yellow), val-
leys (red), pseudo-ridges (white), or pseudo-valleys (blue).

5.8 CESM: Ridge-Valley Graph Extraction
Fig. 12 presents the results of ridge-valley graph extraction, with a
step size s = l/32 for the MFA continuous method and a sampling
ratio of 32 for the discrete method. Our method yields smoother
results compared to the discrete representation, which introduces
zigzag artifacts and numerous loops, as reported in Tab. 6. These

Figure 12: CESM model: Ridge-valley graph extraction for block
[2087, 2411] × [1367, 1691] using MFA continuous method (left) and
discrete method (right).

Figure 13: CESM model: Ridge-valley graph extraction and clas-
sification with 3D (left) and 2D (right) views. Local maxima (or-
ange), saddles (purple), and local minima (pink) are connected
by ridges (yellow), valleys (red), pseudo-ridges (white), or pseudo-
valleys (blue).

discrepancies between the continuous model and its discretization
contribute significantly to the error observed for the discrete method
in Tab. 6. In Fig. 13, we present the classification of arcs from the
extracted ridge-valley graph based on the MFA continuous method.

6 CONCLUSION AND DISCUSSION

We present a novel framework for extracting contours, Jacobi sets,
and ridge-valley graphs directly from continuous implicit models
that allow queries of function values and high-order derivatives. In
our experiments, we focus on MFA models as examples of continu-
ous implicit models. Our framework directly works on MFA mod-
els without requiring discretization, and leverages multithreading
for enhanced performance. We demonstrate the effectiveness of our
framework across various scientific datasets, showcasing its capa-
bility to support topological data analysis with continuous implicit
models. In the future, we would like to extend our framework to
extract other topological descriptors such as Morse/Morse–Smale
complexes, which are similar but not quite the same as the ridge-
valley graphs. Furthermore, extending these features to 3D domains
is a promising and impactful direction for future research.
Limitations. During particle tracing, we identify multiple trajec-
tories within each span that need to be connected. Our connect-
ing strategy may introduce incorrect connections when trajectories
are close enough, and the tracing process may produce undesirable
gaps between trajectories. Reducing the step size until convergence
of the number of connected components and loops will mitigate
these issues, as shown by the ablation studies. Finally, the selection
of initial points (for locating starting points during particle tracing)
may affect the results. For certain MFA models, a greater number
of initial points may be required within a span to ensure that starting
points exist for every piece of the contours in that span. Developing
a clear strategy with such guarantees is left for future work.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy
(DOE), Office of Science, Office of Advanced Scientific Comput-
ing Research, under contract numbers DE-AC02-06CH11357, DE-
SC0023157, and DE-SC0022753, program manager Hal Finkel. It
was also supported in party by National Science Foundation (NSF)
grant DMS-2301361.

REFERENCES

[1] HepOnHPC. https://computing.fnal.gov/hep-on-hpc/. Ac-
cessed: 2025-6-16. 1

[2] RAPIDS2. https://rapids.lbl.gov/. Accessed: 2025-6-16. 1
[3] Seahorce. https://seahorce-scidac.github.io/. Accessed:

2025-6-16. 1
[4] J. Ahrens, B. Geveci, and C. Law. ParaView: An end-user tool for

large data visualization. In Visualization Handbook. Elesvier, 2005.
ISBN 978-0123875822. 6

[5] E. L. Allgower and K. Georg. Numerical continuation methods: an in-
troduction, vol. 13 of Springer Series in Computational Mathematics.
Springer, 2012. doi: 10.1007/978-3-642-61257-2 2

[6] H. Bhatia, B. Wang, G. Norgard, V. Pascucci, and P.-T. Bremer. Local,
smooth, and consistent Jacobi set simplification. Computational Ge-
ometry, 48(4):311–332, 2015. doi: 10.1016/j.comgeo.2014.10.009 4

[7] J. Bloomenthal and B. Wyvill. Introduction to Implicit Surfaces. Mor-
gan Kaufmann series in computer graphics and geometric modeling.
Morgan Kaufmann Publishers Inc., 1997. 2

[8] H. Carr and D. Duke. Joint contour nets. IEEE Transactions on Vi-
sualization and Computer Graphics, 20(8):1100–1113, 2014. doi: 10
.1109/TVCG.2013.269 2

[9] A. Chattopadhyay, H. Carr, D. Duke, and Z. Geng. Extracting Jacobi
structures in Reeb spaces. EuroVis - Short Papers, 2014. doi: 10.
2312/eurovisshort.20141156 2

[10] J. Damon. Generic structure of two-dimensional images under Gaus-
sian blurring. SIAM Journal on Applied Mathematics, 59(1):97–138,
1998. doi: 10.1137/S0036139997318032 2

[11] C. De Boor. A practical guide to splines, vol. 27 of Applied Math-
ematical Sciences. Springer-Verlag New York, revised ed., 2001. 2,
3

[12] T. Dokken. Finding intersections of b-spline represented geometries
using recursive subdivision techniques. Computer Aided Geometric
Design, 2(1):189–195, 1985. doi: 10.1016/0167-8396(85)90024-X 2

[13] D. Eberly, R. Gardner, B. Morse, S. Pizer, and C. Scharlach. Ridges
for image analysis. Journal of Mathematical Imaging and Vision,
4:353–373, 1994. doi: 10.1007/BF01262402 2

[14] H. Edelsbrunner and J. Harer. Jacobi sets of multiple Morse functions.
Foundations of Computational Mathematics, Minneapolis, 8:35–57,
2002. doi: 10.1017/CBO9781139106962.003 2, 3, 4

[15] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Local and
global comparison of continuous functions. In IEEE Visualization
2004, pp. 275–280, 2004. doi: 10.1109/VISUAL.2004.68 5

[16] A. Gomes, I. Voiculescu, J. Jorge, B. Wyvill, and C. Galbraith. Im-
plicit Curves and Surfaces: Mathematics, Data Structures and Algo-
rithms. Springer Publishing Company, Incorporated, 1st ed., 2009.
2

[17] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani,
G. Scheuermann, H. Hagen, and C. Garth. A survey of topology-based
methods in visualization. Computer Graphics Forum, 35(3):643–667,
2016. doi: 10.1111/cgf.12933 1

[18] L. Huettenberger and C. Garth. A comparison of Pareto sets and Ja-
cobi sets. Topological and Statistical Methods for Complex Data, pp.
125–141, 2015. doi: 10.1007/978-3-662-44900-4 8 2

[19] L. Huettenberger, C. Heine, H. Carr, G. Scheuermann, and C. Garth.
Towards multifield scalar topology based on Pareto optimality. Com-
puter Graphics Forum, 32:341–350, 2013. doi: 10.1111/cgf.12121 2

[20] M. Jansen and P. Oonincx. Second generation wavelets and applica-
tions. Springer, London, 2005. doi: 10.1007/1-84628-140-7 2

[21] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of her-
mite data. In Proceedings of the 29th annual conference on Computer

graphics and interactive techniques (SIGGRAPH ’02), pp. 339–346,
2002. doi: 10.1145/566570.566586 2

[22] D. Klötzl, T. Krake, Y. Zhou, I. Hotz, B. Wang, and D. Weiskopf.
Local bilinear computation of Jacobi sets. The Visual Computer,
38(9):3435–3448, Sept. 2022. doi: 10.1007/s00371-022-02557-4 2,
8

[23] D. Klötzl, T. Krake, Y. Zhou, J. Stober, K. Schulte, I. Hotz, B. Wang,
and D. Weiskopf. Reduced connectivity for local bilinear Jacobi sets.
In 2022 Topological Data Analysis and Visualization (TopoInVis), pp.
39–48, 2022. doi: 10.1109/TopoInVis57755.2022.00011 2

[24] D. Lenz, R. Yeh, V. Mahadevan, I. Grindeanu, and T. Peterka. Cus-
tomizable adaptive regularization techniques for B-spline modeling.
Journal of Computational Science, 71:102037, 2023. doi: 10.1016/j.
jocs.2023.102037 2

[25] T. Lewiner, H. Lopes, A. W. Vieira, and G. Tavares. Efficient im-
plementation of marching cubes’ cases with topological guarantees.
Journal of Graphics Tools, 8(2):1–15, 2003. doi: 10.1080/10867651.
2003.10487582 2

[26] C. Lopez-Molina, G. V.-D. De Ulzurrun, J. M. Baetens, J. Van den
Bulcke, and B. De Baets. Unsupervised ridge detection using sec-
ond order anisotropic gaussian kernels. Signal Processing, 116:55–67,
2015. doi: 10.1016/j.sigpro.2015.03.024 3

[27] W. E. Lorensen and H. E. Cline. Marching cubes: A high res-
olution 3D surface construction algorithm. In Proceedings of the
14th Annual Conference on Computer Graphics and Interactive Tech-
niques(SIGGRAPH ’87), pp. 163–169. Association for Computing
Machinery, New York, NY, USA, 1987. doi: 10.1145/37401.37422
2, 6

[28] Y. Lu, K. Jiang, J. A. Levine, and M. Berger. Compressive neural rep-
resentations of volumetric scalar fields. Computer Graphics Forum,
40(3):135–146, 2021. doi: 10.1111/cgf.14295 2

[29] G. Ma, D. Lenz, T. Peterka, H. Guo, and B. Wang. Critical point
extraction from multivariate functional approximation. 2024 IEEE
Topological Data Analysis and Visualization (TopoInVis), pp. 12–22,
Oct. 2024. doi: 10.1109/TopoInVis64104.2024.00006 1, 2, 3, 6

[30] Z. Majdisova and V. Skala. Radial basis function approximations:
comparison and applications. Applied Mathematical Modelling,
51:728–743, 2017. doi: 10.1016/j.apm.2017.07.033 1, 2

[31] D. Meduri, M. Sharma, and V. Natarajan. Jacobi set simplification for
tracking topological features in time-varying scalar fields. The Visual
Computer, 40(7):4843–4855, 2024. doi: 10.1007/s00371-024-03484
-2 2

[32] E. Mello Rella, A. Chhatkuli, E. Konukoglu, and L. V. Gool. Neural
vector fields for implicit surface representation and inference. Inter-
national Journal of Computer Vision, 2024. doi: 10.1007/s11263-024
-02251-z 2

[33] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng. NeRF: Representing scenes as neural radiance fields
for view synthesis. Communications of the ACM, 65(1):99–106, Dec.
2021. doi: 10.1145/3503250 1

[34] S. N and V. Natarajan. Simplification of Jacobi Sets, pp. 91–102.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. doi: 10.1007/
978-3-642-15014-2 8 4, 5

[35] G. Nielson. On marching cubes. IEEE Transactions on Visualization
and Computer Graphics, 9(3):283–297, 2003. doi: 10.1109/TVCG.
2003.1207437 2

[36] M. Niemeyer and A. Geiger. GIRAFFE: Representing scenes as
compositional generative neural feature fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 11448–11459, June 2021. doi: 10.1109/CVPR46437.
2021.01129 1

[37] G. Norgard and P.-T. Bremer. Ridge–valley graphs: Combinatorial
ridge detection using Jacobi sets. Computer Aided Geometric Design,
30(6):597–608, 2013. Foundations of Topological Analysis. doi: 10.
1016/j.cagd.2012.03.015 2, 3, 4, 5

[38] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove.
DeepSDF: Learning continuous signed distance functions for shape
representation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 165–174, 2019. doi:
10.1109/CVPR.2019.00025 2

https://computing.fnal.gov/hep-on-hpc/
https://rapids.lbl.gov/
https://seahorce-scidac.github.io/

[39] T. Peterka, Y. Nashed, I. Grindeanu, V. Mahadevan, R. Yeh, and
D. Lenz. Multivariate functional approximation of scientific data. In
Situ Visualization for Computational Science, pp. 375–397, 2022. doi:
10.1007/978-3-030-81627-8 17 1, 2

[40] T. Peterka, Y. S. Nashed, I. Grindeanu, V. S. Mahadevan, R. Yeh, and
X. Tricoche. Foundations of multivariate functional approximation for
scientific data. In 2018 IEEE 8th Symposium on Large Data Analysis
and Visualization (LDAV), pp. 61–71, 2018. doi: 10.1109/LDAV.2018
.8739195 1, 2

[41] T. Peterka, R. Ross, B. Nouanesengsy, T. Y. Lee, H. Shen, W. Kendall,
and J. Huang. A study of parallel particle tracing for steady-state
and time-varying flow fields. In 2011 IEEE International Parallel
& Distributed Processing Symposium, pp. 580–591, 2011. doi: 10.
1109/IPDPS.2011.62 3

[42] L. Piegl and W. Tiller. The NURBS book. Springer-Verlag, 2 ed., 1997.
doi: 10.1007/978-3-642-59223-2 3

[43] D. Pokrajac and R. Lazic. An efficient algorithm for high accuracy
particle tracking in finite elements. Advances in Water Resources,
25(4):353–369, 2002. doi: 10.1016/S0309-1708(02)00012-X 3

[44] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-
merical Recipes 3rd Edition: The Art of Scientific Computing. Cam-
bridge University Press, USA, 3 ed., 2007. doi: 10.5555/1403886 3

[45] R. Reisenhofer, J. Kiefer, and E. J. King. Shearlet-based detection
of flame fronts. Experiments in Fluids, 57(41), 2016. doi: 10.1007/
s00348-016-2128-6 4

[46] R. Reisenhofer and E. J. King. Edge, ridge, and blob detection
with symmetric molecules. SIAM Journal on Imaging Sciences,
12(4):1585–1626, 2019. doi: 10.1137/19M1240861 3

[47] M. Sharma and V. Natarajan. Jacobi set driven search for flexible
fiber surface extraction. In 2022 Topological Data Analysis and Visu-
alization (TopoInVis), pp. 49–58, 2022. doi: 10.1109/TopoInVis57755
.2022.00012 2

[48] G.-S. Shokouh, B. Magnier, B. Xu, and P. Montesinos. Ridge detec-
tion by image filtering techniques: A review and an objective analysis.
Pattern Recognition and Image Analysis, 31(3):551–570, 2021. doi:
10.1134/S1054661821030226 4

[49] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein.
Implicit neural representations with periodic activation functions. Ad-
vances in Neural Information Processing Systems, 33:7462–7473,
2020. 1, 2

[50] V. Sitzmann, M. Zollhöfer, and G. Wetzstein. Scene representation
networks: Continuous 3D-structure-aware neural scene representa-
tions. Advances in Neural Information Processing Systems, 32, 2019.
1

[51] J. Sun, D. Lenz, H. Yu, and T. Peterka. Scalable volume visualization
for big scientific data modeled by functional approximation. In 2023
IEEE International Conference on Big Data (BigData), pp. 905–914,
2023. doi: 10.1109/BigData59044.2023.10386434 1, 2

[52] J. Sun, D. Lenz, H. Yu, and T. Peterka. MFA-DVR: Direct volume
rendering of MFA models. Journal of Visualization, 27(1):109–126,
Oct. 2024. doi: 10.1007/s12650-023-00946-y 2

[53] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Stream line
and path line oriented topology for 2d time-dependent vector fields. In
IEEE Visualization 2004, pp. 321–328, 2004. doi: 10.1109/VISUAL.
2004.99 2

[54] J. Tierny and H. Carr. Jacobi fiber surfaces for bivariate Reeb space
computation. IEEE Transactions on Visualization and Computer
Graphics, 23(1):960–969, 2017. doi: 10.1109/TVCG.2016.2599017
2

[55] J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux.
The topology toolkit. IEEE Transactions on Visualization and Com-
puter Graphics, 24(1):832–842, Jan. 2018. doi: 10.1109/TVCG.2017
.2743938 6

[56] H. Wendland. Scattered Data Approximation, vol. 17 of Cambridge
Monographs on Applied and Computational Mathematics. Cambridge
University Press, 2004. doi: 10.1017/CBO9780511617539 2

[57] L. Yan, T. B. Masood, R. Sridharamurthy, F. Rasheed, V. Natara-
jan, I. Hotz, and B. Wang. Scalar field comparison with topologi-
cal descriptors: Properties and applications for scientific visualization.
Computer Graphics Forum, 40(3):599–633, 2021. doi: 10.1111/cgf.

14331 1
[58] Z. Yu, S. Peng, M. Niemeyer, T. Sattler, and A. Geiger. MonoSDF:

Exploring monocular geometric cues for neural implicit surface re-
construction. Advances in Neural Information Processing Systems,
35:25018–25032, 2022. 2

	Introduction
	Related Work
	Technical Background
	Multivariate Functional Approximation
	Critical Point Extraction From an MFA Model
	Particle Tracing
	Jacobi Set
	Ridge Valley Graph

	Method
	Contour Extraction
	Initialization
	Particle Tracing
	Connecting

	Jacobi Set Extraction
	Ridge-Valley Graph Extraction
	Time Complexity

	Experimental Results
	An Overview of MFA Models
	Sinc: Contour Extraction
	S3D: Contour Extraction
	Gaussian Pair: Jacobi Set Extraction
	Von Kármán Vortex Street: Jacobi Set Extraction
	Hurricane Isabel: Jacobi Set Extraction
	Gaussian Mixture: Ridge-Valley Graph Extraction
	CESM: Ridge-Valley Graph Extraction

	Conclusion and Discussion

