This supplement provides details on the MFA models (Ap-
pendix A), the parameter selection (Appendix B), and additional
experimental results (Appendix C).

A DETAILS ON MFA MODELS

To fit an MFA model, a set of points is given with function values
observed at each point. Based on the mathematical formulations of
Sec. 4, we use MFA models of degree 4 (p = 4). We then tackle
the following key question: given an MFA model as the input, how
can we extract topological descriptors from the model, without re-
sorting to discretization or sampling?

In Tab. 1, we describe the MFA models representing four syn-
thetic (left) and five scientific datasets (right); in particular, we list
the number of spans used in each model.

Table 1: Details on the MFA models: the number of spans (#Span)
used in each model.

Model #Span ‘ Model #Span
Schwefel 71 x 71 S3D 136 x 104
Gaussian Mixture 46 x 71 Von Karman 156 x 16
Sinc 27 x 27 Boussinesq 46 x 146
Gaussian Pair 17 x 11 CESM 200 x 100
Hurricane Isabel 162 x 162

Schwefel MFA model. The (scaled) Schwefel function is a non-
convex benchmark function that can be defined in any dimension
[11]. In the 2D case, for a vector x = (z1, xg)T, the function is
defined as:

F(x) = % (418.9829d — a1 sin(+/ex]) — 2 sin(v/[2]))

(1
We create the Schwefel MFA model by fitting an MFA to a 2D

Schwefel function within the domain [—(10.57)?, (10.57)?] %,
Gaussian Mixture MFA model. The function associated with a
synthetic Gaussian mixture [9] is defined as

f(x) =exp [-8(z1 + 0.4)% — 4x§] + exp [—8(z1 — 0.5)% — 4x§]

+ exp [—Sx% —4(zo — 0.77)2} 2)
+ exp [—8:1’21" —4(zo — 1.5)2]
+0.2exp [—0.327 — 0.3(z2 — 0.5)°] , 3)

for x = (z1, l‘g)T. To generate the Gaussian mixture MFA model,
we fit an MFA to the original function in the domain [—1,1] x
[-0.8,2.3].

Sinc MFA model. We define a synthetic functions of x =
(x1,22) " by adding Sinc functions in each dimension:

Fx) = sin(5z1) + sin(5x2). @

X1 i)

To generate the Sinc MFA model, we fit an MFA to f(x) in the
domain [—27, 272

Gaussian Pair MFA model. We define a pair of synthetic functions
of x = (x1, xg)T, one is a Gaussian function, the other is a mixture
of two Gaussian functions:

o (z1 —0.5)% (22 —0.4)?
J(x) =025 - exp {* 0.02 002 |
B (x1—0.3) (w2 —0.2)?
9(x) =0.25 - exp {_ 002 002 ©)

(x1 —0.75)%  (z2 — 0.25)?
25 exp | — - .
0.25 - exp [ 0.02 0.0288

To generate the Gaussian Pair MFA model, we fit an MFA to the
original functions in the domain [0.1,0.9] x [0.0,0.6]. The MFA
model represents f and g using the same spans but with different
control points.

S3D MFA model. The dataset originates from an S3D turbulent
combustion simulation [2], which simulates the interaction between
a fuel jet combustion and an external cross-flow [3,4,7]. We use the
magnitude of the 3D velocity field as the scalar function of interest.
We extract a 2D slice from the dataset (defined on a grid) and fit an
MFA model to it, which we refer to as the S3D MFA model.

Von Karman Vortex Street MFA models. We work with a simu-
lated von Karman vortex street dataset [5, 10]. It originates from a
simulation of a viscous 2D flow around a cylinder, capturing veloc-
ity fields over 1501 time steps. For the Jacobi set computation, we
use the flow velocity magnitudes from two consecutive time steps
as scalar fields f and g defined on a 2D grid. Specifically, we focus
on time steps 1500 and 1501, where the vortex street is fully devel-
oped. We fit two MFA models to f and g respectively, which we
refer to as the Von Kdrmén Vortex Street MFA models.
Boussinesq Approximation MFA model. The Boussinesq approx-
imation dataset simulates a 2D flow generated by a heated cylin-
der [5, 10]. It consists of 2001 time steps. For the Jacobi set com-
putation, we use the flow velocity magnitudes from time steps 2000
and 2001 as scalar fields f and g. We replace these scalar fields
with MFA models as the surrogates.

CESM MFA model. The Community Earth System Model
(CESM) provides extensive global climate data [8]. In our exper-
iment, we focus on the FLDSC variable, which records the clear-
sky downwelling long-wave flux on the surface, as modeled by the
Community Atmosphere Model (CAM) developed at the National
Center for Atmospheric Research (NCAR) [8]. We fit an MFA
model to this dataset as the surrogate.

Hurricane Isabel MFA model. The Hurricane Isabel dataset gen-
erated using the Weather Research and Forecast (WRF) model [1]
provides a collection of 3D scalar fields and a velocity vector field.
These fields are defined over 48 time steps. For our analysis, we fo-
cus on the scalar fields of temperature and pressure at time step 30
with height 50. As shown in [6], at the height of 50, the hurricane
exhibits significant spatial expansion and displays many character-
istic structures. We again fit an MFA model to this dataset as the
surrogate.

B PARAMETER SELECTION

Recall that we select our parameters—step size s, accuracy thresh-
old ¢, and trajectory connection threshold v—based on a series of
ablation studies. The span length [ is the distance in the MFA model
between knots and corresponding control points. All the MFA mod-
els in this study have a uniform span length across the entire model.

We first discuss the selection of step size s for particle tracing

and the number of initial points needed to find starting points for
particle tracing.
Step size. Particle tracing is performed independently within each
span. To ensure particle tracing can be performed in every span,
the step size s must satisfy s < % To determine the proper
step size, we run a series of experiments with different step sizes
across each MFA model. In particular, we decrease step size
s € {1/2,1/4,1/8,...,1/2P, ...} until both #Loop (the number
of loops) and #CC (the number of connected components) reach
convergence.

For experiments involving synthetic MFA models, as shown in
Figs. 1 to 4, 8 and 12, both #Loop and #CC converge when s = [ /4.
Therefore, we set the step size s = /4. On the other hand, scien-
tific MFA models exhibit greater variability, so we select an opti-
mal step size individually for each model-task pair based on anal-
ogous convergence criteria. The chosen step sizes are summarized
in Tab. 2.



Table 2: Step sizes for MFA model-task pairs.

MFA Model Step Size s
Schwefel (Contour) 1/4
Sinc (Contour) /4
Gaussian Pair (Jacobi set) 1/4
Gaussian Mixture (Ridge-valley graph) /4
S3D (Contour) 1/16
Kérman (Jacobi set) 1/32
Boussinesq (Jacobi set) 1/32
CESM (Ridge-valley graph) 1/32
Hurricane (Jacobi set) 1/64

Number of initial points for particle tracing. Particle tracing for
contour extraction requires a set of starting points. In each span,
MFA is a polynomial function and there could be multiple trajec-
tories belonging to different parts of the same contour. We aim to
find at least one starting point for each trajectory. We use gradi-
ent descent to locate the starting points (i.e., roots of polynomial
functions) from a set of initial points. The contour at a fixed iso-
value is a continuous curve that contains infinite number of points;
in practice, we could only sample a finite set of starting points for
trajectories within a span and connect them across spans.

For an MFA model, as the degree p increases, the contours could
become more complex. To account for this, we set the number of
initial points to be (p + 3)? for a polynomial of degree p. Specifi-
cally, in each dimension, we select (p+ 3) initial points: two points
placed on the boundary and (p + 1) points sampled uniformly. We
assume that this sampling strategy allows us to find at least one
starting point on each trajectory through gradient descent.

When extracting the Jacobi set J(f, g), we convert the problem
to a contour extraction at isovalue 0 of function h. The degree of h
depends on degrees of f and g and is given by pr, = py + pg — 1.
Therefore, we set the number of initial points for Jacobi set extrac-
tion to be (pr, + 3)% = (py + pg + 2)%

Similarly, for ridge-valley graph extraction, we convert it to a
contour extraction problem at isovalue O of h. The degree of h is
p;, = 3py — 1. Consequently, we set the number of initial points to
be (pj, +3)* = (3ps +2)°.

Accuracy threshold. We control contour extraction accuracy via a
tolerance ¢, so that points satisfy: f(z) — a < e. Both the Jacobi
set and the ridge—valley graph can be reformulated as level O con-
tour extraction problems; their accuracies are similarly governed by
tolerances h < € and h < ¢, respectively. To determine an appro-
priate value, we evaluate ¢ € {107%,107%,107*%,107"2} across
all MFA models. According to the following ablation study, we find
that e = 1e~'° consistently provides sufficient precision, and thus
use it for all our experiments.

Trajectory connection threshold. We connect trajectories whose
endpoints are within a connection threshold «y. Since the step
size determines the spacing between points, it also influences
the distance between trajectories. Therefore, we evaluate v €
{s,1.5s,2.0s,2.5s} across all MFA models. Based on results from
synthetic models, we find that v = 2s is a suitable choice for
achieving correct connectivity.

B.1 Ablation Study

Schwefel: contour extraction. We extract contours from the
Schwefel MFA model at two isovalues, a = 100 and 500 respec-
tively. According to the convergence plots in Figs. 1 and 2, our
method accurately recovers the ground truth when s < [/4. Fixing
s = 1/4, we further investigate the sensitivity of the contour extrac-
tion algorithm w.r.t. parameters ¢ and . We use € = 1.0e~'? and
~v = 2.0s in our experiment based on these convergence plots.

Sinc: contour extraction. We perform contour extraction at differ-
ent isovalues @ = 0.33 (Fig. 3) and a = 0.79 (Fig. 4). Based on the
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Figure 1: Schwefel model: Contour extraction at a = 100.
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Figure 2: Schwefel model: Contour extraction at a = 500.
observed convergence behavior, we choose a step size of s = /4.

Additionally, we set ¢ = 1.0¢™'* and v = 2.0s based on these
convergence plots.
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Figure 3: Sinc model: Contour extraction at a = 0.33.
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Figure 4: Sinc model: Contour extraction at a = 0.79.

S3D: contour extraction. We perform contour extraction at three
different isovalues a = 30 (Fig. 5), a = 50 (Fig. 6), and a =
60 (Fig. 7). In these experiments, we adopt s = [/16, as both
#Loop and #CC begin to stabilize at this point. These convergence
plots also demonstrate the robustness of the accuracy threshold e.
Consistent with all other experiments, we use ¢ = 1.0e™'° and
v = 2.0s.

Gaussian Pair: Jacobi set extraction. Fig. 8 displays convergence
plots of #Loop and #CC for step size, showing convergence start-
ing from s = [/4. These plots also show stable convergence for
e < 1.0 x 107'°. Moreover, the plots demonstrate the robust-
ness of extraction results w.r.t. variations in the trajectory connec-
tion threshold ~.

Von Kiarméan Vortex Street: Jacobi set extraction. Fig. 9
presents convergence plots for varying step sizes. We use s = [/32,
marking the onset of convergence. Convergence remains stable for
€ < 1.0 x 108, Additionally, these plots demonstrate the robust-
ness of extraction results against variations in the trajectory connec-
tion threshold ~.

Hurricane Isabel: Jacobi set extraction. Similar to previous
MFA models, convergence plots are shown in Fig. 10. The chosen
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Figure 5: S3D model: Contour extraction at a = 30.
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Figure 6: S3D model: Contour extraction at a = 50.
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Figure 7: S3D model: Contour extraction at a = 60.
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Figure 8: Gaussian pair model: Jacobi set extraction.
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Figure 9: Von Karman Vortex Street model: Jacobi set extraction.
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Figure 10: Hurricane Isabel model: Jacobi set extraction.

step size is s = [/64. These plots demonstrate that our extracted
results are robust w.r.t. variations in € and .

Boussinesq Approximation: Jacobi set Extraction. Fig. 11
shows convergence plots of Jacobi set extraction with various step
sizes. Our experiments use s = /32, e = 1.0e™'°, and v = 2.0s.
Gaussian Mixture: ridge-valley graph extraction. We illustrate
convergence plots for ridge-valley graph extraction in Fig. 12. A
step size of s = /4 is employed. In this experiment, a large -y may
introduce additional loops; this effect is illustrated in the case of
v = 2.5s. We set € = 1.0e~'? and v = 2.0s in our experiment.
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Figure 11: Boussinesq Approximation model: Jacobi set extraction.
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Figure 12: Gaussian mixture model: Ridge-valley graph extraction.

CESM: ridge-valley graph extraction. We show the convergence
plots in Fig. 13. The step size is chosen to be s = [/32. Addition-
ally, we set e = 1.0e % and v = 2.0s.

—o— loop —o— Jloop |
4000 '\\‘_‘_h-_‘ 5000] “\ 4cc | 5000 o HCC

—o— #loop
2500 5
2000 —=— #CC il 2500
0 0 0
LAk 1® 20 o Do el e 1e ! 1 10s 155 2.0s 25s
RUateaY WPPAY \\\’q’\\q’ Accuracy threshold ¢ Connection threshold
Step size s

Figure 13: CESM model: Ridge-valley graph extraction.

C ADDITIONAL EXPERIMENTAL RESULTS
C.1 Schwefel: Contour Extraction

As shown in Fig. 14, we extract contours from the Schwefel MFA
model with isovalues a = 100 and a = 500. Since the closed-form
function that the Schwefel model approximates is known, we use it
as the ground truth. In Tab. 3, all errors are below € = le™ 9. Ad-
ditionally, the number of loops and connected components matches
that of the ground truth.

Figure 14: Schwefel model: contour extraction with isovalues a =
100 (yellow) and a = 500 (pink), shown from side and top viewpoints.

C.2 Boussinesq Approximation: Jacobi Set Extraction

In Fig. 15, we display the Boussinesq approximation model at time
step 2000, with the extracted Jacobi set highlighted in yellow us-
ing step size s = [/32. Because our framework operates on a



Table 3: Schwefel model: Evaluation of contour extraction with vari-
ous isovalues (a). GT denotes the ground truth.

a | emax €avg #Loop GT#Loop #CC GT#CC
100 | 9.9e~ 11  3.5e12 32 32 39 39
500 | 1.0e710 3512 21 21 22 22

continuous representation, the results remain smooth; see blocks
(1). In contrast, the discrete method produces zigzag patterns; see
block (2). The evaluation metrics in Tab. 4 indicate that the discrete
method generates a large number of spurious loops.

Figure 15: Boussinesq approximation model: Jacobi set extraction
using MFA continuous method (A) and discrete method (B). (1) and
(2): zoomed-in views of the purple blocks in (A) and (B), respectively.

Table 4: Boussinesq approximation model: Jacobi set extraction of
MFA models with step size s = 1/32 and sampling ratio 32.

MFA Continuous Method |
emax avg #LoOp #CC |emax €avg #Loop #CC
1.0e710 1.6e~!1 398 479 | 103 2.7e72 43888 9651

Discrete Method
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