
Extremely Scalable Distributed Computation of Contour Trees via
Pre-Simplification

Mingzhe Li*
University of Utah

Hamish Carr†

University of Leeds
Oliver Rübel‡

Lawrence Berkeley National Laboratory
Bei Wang§

University of Utah

Gunther H. Weber¶

Lawrence Berkeley National Laboratory

ABSTRACT

Contour trees offer an abstract representation of the level set topol-
ogy in scalar fields and are widely used in topological data anal-
ysis and visualization. However, applying contour trees to large-
scale scientific datasets remains challenging due to scalability lim-
itations. Recent developments in distributed hierarchical contour
trees have addressed these challenges by enabling scalable compu-
tation across distributed systems. Building on these structures, ad-
vanced analytical tasks—such as volumetric branch decomposition
and contour extraction—have been introduced to facilitate large-
scale scientific analysis. Despite these advancements, such ana-
lytical tasks substantially increase memory usage, which hampers
scalability. In this paper, we propose a pre-simplification strategy to
significantly reduce the memory overhead associated with analyti-
cal tasks on distributed hierarchical contour trees. We demonstrate
enhanced scalability through strong scaling experiments, construct-
ing the largest known contour tree—comprising over half a trillion
nodes with complex topology—in under 15 minutes on a dataset
containing 550 billion elements.

Index Terms: Contour Tree, Computational Topology, Distributed
Algorithm, Branch Decomposition, Topological Data Analysis

1 INTRODUCTION

Scientific and engineering simulations have long been cornerstones
of supercomputing. However, as the scale and complexity of data
have continued to expand, the human capacity to assimilate and
comprehend such data has remained relatively static. As the band-
width of the human visual system remains inherently limited, the
need for advanced data analysis and visualization tools has become
increasingly pressing. One of the most successful tools in this do-
main to date has been computational topology, which leverages rig-
orous mathematical frameworks to enhance the visualization and
interpretation of complex data. As topology-based analysis and
visualization techniques have matured, attention has increasingly
turned toward their parallelization and distribution—key steps re-
quired to fully realize their potential at the exascale where they are
most critically needed.

One important topological descriptor is the contour tree, which
analyzes contours (level sets of scalar fields) to reveal relationships
between features defined by critical points, enables hierarchical
simplification based on geometric properties, and serves as a foun-
dational structure for isosurface-based visualization techniques.

*e-mail: mingzhe.li@utah.edu
†e-mail: h.carr@leeds.ac.uk
‡e-mail: oruebel@lbl.gov
§e-mail: beiwang@sci.utah.edu
¶e-mail: ghweber@lbl.gov

Recent work under the ECP ALPINE project [2] introduced effi-
cient parallel algorithms within the PRAM model (Parallel Random
Access Machine) for contour tree construction [14, 15], and meth-
ods for augmenting the contour tree and accelerating access to its
structure [8]. Advances have also been made in computing geomet-
ric properties, performing simplification, and supporting visualiza-
tion [26]. Building upon efficient on-node parallelism, subsequent
work has achieved additional performance gains by leveraging dis-
tributed parallelism—both for contour tree computation [7] and for
tasks such as augmentation, geometric property computation, and
visualization [29].

Despite its strengths, contour tree computation has constraints
that can limit the effectiveness of even the most advanced algo-
rithms. First, the memory footprint can be 100 ∼ 200 bytes per
cell for regular meshes, whose intrinsic format stores neighbor-
hood information implicitly. Second, because topological analy-
sis derives inherently global properties, substantial data exchange
is needed between machines in a cluster, leading to bottlenecks
in both inter-node communication and per-node storage. As a re-
sult, although the most recent work [29] achieved up to a 100×
speedup in distributed settings—on top of prior single-node gains of
up to 200×—the full analytic pipeline became impractical for data
sizes beyond 10243. This was the case even though the core con-
tour tree computation [7] successfully handled volumes as large as
2048×2048×4096 on a previous-generation system, and a related
but simpler computation of merge trees scaled to 81923 data [35].
Contribution. In this paper, we apply a novel pre-simplification
strategy that substantially reduces the memory overhead associ-
ated with analytical tasks on distributed hierarchical contour trees,
thereby enabling highly scalable computation. For simulation data,
the final stages of analysis and visualization typically rely on con-
tour tree simplification to separate features from noise. We en-
hance the existing implementation by performing simplification
both before and after the construction of the distributed contour
tree, thereby reducing per-node memory footprint as well as inter-
node communication cost.

Our framework enables contour tree analysis of the largest
dataset reported to date—81923 grid points, or approximately 550
billion elements, corresponding to 4 TiB (tebibytes) of data—in less
than 15 minutes using approximately 120 TiB of working memory
distributed across 512 nodes.
Overview. We review contour tree computation in Sec. 2 and in-
troduce pre-simplification for improved scalability in Sec. 3. Im-
plementation details are provided in Sec. 4, where our code is in-
tegrated into VTK-m [31] (recently renamed to Viskores). Results
are presented in Sec. 5, and conclusions are given in Sec. 6.

2 BACKGROUND

Large-scale simulations investigate physical phenomena by numer-
ically modeling physical properties, typically as continuous func-
tions defined over a spatial domain. This domain is usually dis-
cretized into a mesh composed of individual cells, most commonly
tetrahedral or cubic in shape. In this paper, we assume the data of



71

86

60a

36

3434

26

4e

4c

1e

1c11

0e

0c

4d

4b

1g

1f

0a

0b

0d

1a

1b

1d

3

4a

55

60b

63

91

Regular NodeSecondary Branch 2
Main BranchMain Branch Supernode0c

Minor Branch

LEGEND:

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0

0 0

0 0

1 136 9 6

30 39 46 42 34 35 27 16

30 53 4760 57 55

0a

5560a

0

0

0

0

0

0

7

28

860 0 0 30 53 5256 60 64 85

0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1

1 1 1

1 1

1

1

4

3 4

30 53 52

17 30 47

19 27 33

11 14

56 60

60

64 85

69

0

1

1

2

4

4

43

19

82

86

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

1

1

1 1 1

1 1

2

23

15 18 21

20 30 22

23 30 17

4

6 35 30

7 7 5 20 26 14

28 22 24 28 30 32 31 30 19 21 25

0b

0c 0d

1a

3

4a

11

26

34

36

46 30 30 37 49 47 47 5357 6086

0 0 0 0 0

1

1 1 1

1 1

1 1

1 1

1 1

12 3 2

4 4 4 4

4 4 4 4

4 2 3 3

1 2 3 4

46 30 30 37 49 47 47 53

30 40

43

19 25 33 42 54

8 11 18 30 42 40 32

18 30 33 29 16 13

6 6

57 60

60

56 60

58

62

60 61

63 61 61

60

82 67 61 89 72

80 85 69

66 79 90 75 64

0e1b

1c

1d

1e 1f

1g

4b 4c

4d

4e

60b 63 71

86

91

Block 0

Block 1

Block 2

Block 3

Fig. 1: Contour tree of a small dataset for the elevation of Vancouver, color-coded by topological zone/feature, with branch decomposition by
area measure approximated with vertex count. Lettered values indicate the sorting order under simulation of simplicity [19]. Figure adapted from
Li et al. [29, Fig. 2] © IEEE, with permission.

interest is given as a function f : M → R (where the manifold M
is a subset of R2 or R3) with a suitable discretization.

We start by introducing the contour tree and its utilization in vi-
sualization (Sec. 2.1). We then introduce the computation of con-
tour tree via serial (Sec. 2.2), locally parallel (Sec. 2.3), and dis-
tributed algorithms (Sec. 2.4).

2.1 Contour Trees
Given a function f : M → R, the level set f−1(a) defines a sub-
set of points in M at a given isovalue a; these are called isolines in
2D and isosurfaces in 3D. Each non-empty level set contains one
or more connected components called contours, and we can study
the function f by analyzing how these contours change as the iso-
value a varies. Two points x, y ∈ M are considered equivalent,
denoted x ∼ y, if they have the same isovalue and belong to the
same contour. Based on such an equivalent relation, we contract
each contour to a single point, giving rise to a quotient space M/ ∼
first described by Reeb [37]. This quotient space collapses the data
(M, f) to a skeletal structure—called the Reeb graph—which con-
nects local minima, local maxima, and saddles of f .

If a Reeb graph contains no cycles (i.e., when the domain M is
simply connected), it is a contour tree. The contour tree was orig-
inally defined independently as a data structure for efficient access
to polygonal contours stored in memory [6]. We show a small ex-
ample of a 2D contour tree in Fig. 1.

In a contour tree, supernodes occur at critical points of f (points
with zero gradient), which are connected by superarcs represent-
ing equivalence classes of contours that map to topological zones
in the input domain. Critical points where the number of contours
does not change are not supernodes, for example, when an isosur-
face changes its genus. Most algorithms in computing contour trees
begin by operating on simplicial meshes, where critical points are
guaranteed to lie at the mesh vertices [5].

A contour tree can be augmented with regular nodes—most
commonly the mesh vertices that are not critical points—as these
nodes are essential for computing the geometric properties of the
associated topological zones. If needed, these regular nodes are

connected by regular arcs that break up the parent superarcs. Anal-
ysis of contour tree algorithms therefore depends primarily on the
data size n (normally the same as the number of mesh vertices),
sometimes the number of edges in the mesh m (which is O(n) for
regular meshes but may be O(n2) for irregular meshes), and the
number of supernodes t in the contour tree.

The contour tree is used for terrain [6, 20, 21], to accelerate
isosurface extraction [27, 40, 10], and for feature extraction [13],
with variations adapted for volume rendering [41], protein molecule
comparison [43], and energy landscape analysis [24].

2.2 Serial Contour Tree Computation
van Kreveld et al. [40] reported a serial algorithm for computing a
contour tree. The algorithm performs a sweep of a contour through
the simplicial mesh from high to low isovalues, explicitly track-
ing the cells intersected by the contour and updating this set as the
sweep progresses through each mesh vertex. The algorithm has a
time complexity of O(m logm) in 2D and O(m2) in higher di-
mensions. Tarasov and Vyalyi [39] extended this framework to
O(m logm) in 3D with a complex three-sweep algorithm that re-
quires special processing at the boundaries as well as repeated sub-
division of the mesh to avoid topological problems.

Carr et al. [12] gave a serial algorithm that sweeps downwards
through the data to identify relationships between local maxima
and saddles, then upwards for local minima and saddles, produc-
ing two merge trees. Leaf edges are then transferred serially from
the merge trees to construct the contour tree recursively. With an
initial sorting and a modified union-find algorithm, the overall cost
is O(n logn+ α(m,n)), where α is the inverse Ackermann func-
tion. Later work [36] relaxed the initial assumption of a simplicial
mesh, allowing trilinear interpolation on cubical cells. A more gen-
eral approach [11] identified that the algorithm could use a topol-
ogy graph constructed for arbitrary meshes and interpolants, such
as the approximate trilinear interpolation from Marching Cube iso-
surfaces.

Computing the contour tree alone is insufficient for many ana-
lytical tasks such as branch decomposition, contour tree simplifica-



0a

0b

1d

55

60b

71

86

60a

26

4e4b

1g

1c

Block 0
Hierarchical

0a

0b

0d

1a

1b

1d

3

4a

55

60b

63

71

86

60a

26

4e4b

1g

1f

1c

Block 0
Augmented

0a

0b

1d

55

60b

71

86

60a

26

4e4b

1g

1c

Block 2
Hierarchical

0a

0b

0d

1a

1b

1d

3

4a

55

60b

63

71

86

60a

26

4e4b

1g

1f

1c

Block 2
Augmented

0a

0b

0d

1a

1d

3

4a

60b

71

86

36

34

26

4e4b

1g

1c11

0c

Block 1
Hierarchical

0a

0b

0d

1a

1b

1d

3

4a

55

60b

63

71

86

36

34

26

4e4b

1g

1c11

0c

Block 1
Augmented

0a

0b

1b

1d

60b

63

91 71

86

26

4e

4d

4b

1g

1f

4c

1e

1c

0e

Block 3
Hierarchical

0a

0b

0d

1a

1b

1d

3

4a

55

60b

63

91 71

86

26

4e

4d

4b

1g

1f

4c

1e

1c

0e

Block 3
Augmented

Shared Supernode1d

Attachment Point Stored Locally1b

Internal Supernode Stored Locally0e

LEGEND:

Fig. 2: Distributed hierarchical contour tree for Fig. 1, augmented for volume computation and branch decomposition. Augmentation increases
the number of shared vertices, which becomes a bottleneck for distributed storage and communication. Figure adapted from Li et al. [29, Fig. 3]
© IEEE, with permission.

tion, and contour extraction. For instance, contour tree simplifica-
tion recursively discards leaves representing insignificant features
to produce a branch decomposition [36]. This process is differ-
ent from the cancellation of critical point pairs [18], when complex
structures (so-called W-structures [25]) are present in the tree.

Geometric properties—such as contour surface area and en-
closed volume—are also useful for identifying significant isosur-
faces [4]. Subsequent work computed these properties for individ-
ual contours by sweeping inward through the contour tree [13], en-
abling their use as measures of importance for simplification. Fig. 1
shows the decomposition of the contour tree into branches based on
surface area, with more important branches shown as thicker lines.

While branches are often thought of as linear paths within the
contour tree, it is better to think of them as subtrees anchored to
a single parent branch or trunk. This is because a contour taken
just above the attachment point—where the branch connects to its
parent—encloses all regions within the corresponding subtree. For
instance, in Fig. 1, the branch 4d–1d connects to its parent at 1d,
and the contour at 1d + ϵ (for an arbitrarily small ϵ) encloses not
only the sequential regions 1d–1f , 1f–1g, 1g–4b, and 4b–4d along
the branch itself, but also the child branches 1g–4e and 4b–4c.

2.3 Parallel Contour Tree Computation

Although a distributed parallel algorithm was introduced relatively
early [36], the development of shared-memory parallel algorithms
for contour trees emerged only after a significant delay. Acharya

and Natarajan [1] used GPU parallelism to build monotone paths
between critical points, then used them as a topology graph for the
serial algorithm on CPU. Carr et al. [9] gave a distributed algorithm
for computing contour trees on GPU based on quantizing the mesh,
then contracting all contours in parallel with union-find. However,
this approach was difficult to validate and incurred a substantial
memory footprint, significantly limiting its practical utility.

Gueunet et al. [22, 23] segmented the mesh by isovalues, then
computed separate contour trees for each segment on individual
threads and merged them with a task-based approach, achieving
peak speedups of approximately 10×. Smirnov and Morozov [38]
used a task-based algorithm to add mesh edges incrementally, col-
lapsing redundant edges to build merge trees. Carr et al. [14] pre-
sented a PRAM algorithm that employs pointer-jumping to con-
struct monotone paths, which are then used to compute a topology
graph. The algorithm then identifies in parallel one superarc from
each remaining extremum to its governing saddle—i.e. the last sad-
dle at which a monotone path can reach another extremum instead.
Removing each extremum from the topology graph and redirecting
its paths to its governing saddle then constructs a smaller topology
graph in which some or all of the saddles become extrema. After a
logarithmic number of passes, all superarcs in the merge tree have
been identified.

A second phase replaced recursive leaf transfer from the merge
trees with batched alternating transfers of all upper or lower leaves,
using pointer-doubling to collapse vertical chains of vertices left by



removing leaves in each pass. This algorithm achieves a polyloga-
rithmic computational cost and demonstrates practical speedups of
nearly 50× over the standard serial implementation.

Later work [8] added an accelerating hyperstructure related to
rake-and-contract [30] to provide logarithmic access into the tree,
allowing efficient augmentation with regular nodes. Each hyperarc
in this hyperstructure captures a vertical chain collapsed in each
pass of the batched transfer, and stores the superarcs (and supern-
odes) on each hyperarc in sorted order, permitting binary search by
data value for rapid access into the tree.

Hristov et al. [26] employed segmented prefix-scan operations to
sum values along the hyperarcs, replacing serial sweeps through the
tree with parallelized hypersweeps over the hyperarcs to compute
geometric properties. They then extracted a branch decomposition
by using approximated volume as the measure, selecting the “most
important” up and down arcs at each vertex in parallel, and applying
pointer-jumping to collapse the branches.

Analytically, these algorithms run polylogarithmically in time,
except where W-structures are present in the contour tree [25]; how-
ever, the impact of these structures is minimal in practice.

2.4 Distributed Contour Trees

Pascucci and Cole-McLaughlin [36] presented a distributed algo-
rithm that computes individual contour trees for blocks of a dataset
and then unites them into a topology graph for the combined con-
tour tree. While effective in principle, the approach computes and
stores the final contour tree on a single node. Given the substan-
tial memory footprint discussed earlier, this limitation renders the
algorithm ineffective for distributed computation until a fully dis-
tributed data structure is developed.

Nigmetov and Morozov [35] modified a previous local task-
based parallel approach [33] with a triplet merge tree representa-
tion [38] to compute a distributed representation of the merge tree.
Landge et al. [28] gave an algorithm that discards local features of
merge tree, combining the remainder incrementatlly using a fan-
in process. However, these approaches did not exploit local par-
allelism, and only computed the merge trees, without any of the
secondary geometric or topological properties.

Carr et al. [7] adapted the previous distributed approach [36] by
removing interior forests of superarcs that only exist on a given
block from the contour tree at each stage of a fan-in process. The
interior forests are then reinserted during a fan-out phase to build
a distributed hierarchical contour tree (DHCT), which distributes
shared superarcs across multiple machines, in a layered version of
the hyperstructure. Peak speedups were reported of 70× compared
to the local PRAM algorithm, and maximum data size on NERSC’s
Cori supercomputer was 2048× 2048× 4096.

Recently, Li et al. [29] observed that certain geometric compu-
tations depend on the precise ordering of superarcs along a hyper-
arc. Because the distribution strategy for the contour tree treated
critical points with only local significance as regular points during
construction, they introduced an additional stage to augment the
tree with these points before implementing a distributed version of
the hypersweep and simplification; see Fig. 2 for augmented con-
tour trees corresponding to the example in Fig. 1. While this ap-
proach improved performance, the extra memory and communica-
tion required for all machines to process these supplementary at-
tachment points limited the largest dataset computed and analyzed
on NERSC’s Perlmutter supercomputer to 10243.

3 METHOD

In the work of Li et al. [29], the contour tree computation itself
scaled well, but secondary computations—such as geometric prop-
erty evaluation and simplification—did not, due to the memory
overhead of augmenting the local data structure with attachment

points for interior forests on other machines. In this paper, to re-
store scalability following [29], we focus on analytic tasks with
distributed contour trees, namely simplification and extraction.

The primary goal of the analysis is to extract a manageable set of
significant contours that capture the key features of the data. This is
commonly accomplished by simplifying the contour tree to a fixed
number b of branches or by applying a fixed threshold Λ on an
importance measure, which may—but need not—coincide with the
measure originally used for branch definition. For clarity, we as-
sume volume is used as the criterion for both branch decomposition
and simplification, with a predefined volume threshold delineating
the features of interest.

Since only a small number of important contours are selected,
and most augmenting vertices serve as attachment points for small
branches or subtrees, we simplify as many of these subtrees as pos-
sible prior to tree construction. This reduces the number of aug-
menting vertices and, in turn, lowers both memory footprint and
communication cost. We introduce an additional threshold λ to
designate subtrees as sufficiently unimportant to exclude from com-
munication with neighboring nodes. We refer to this step as pre-
simplification.

If λ ≤ Λ, pre-simplification does not affect the final selection of
contours for measures such as volume, which increase monotoni-
cally as one sweeps through the tree. Pre-simplifying a given sub-
tree is equivalent [13] to replacing the function value throughout the
subtree’s topological zone with the value of the saddle point—or, in
the case of a simplicial mesh, setting the values of all regular nodes
in that zone to the saddle value. Consequently, we can treat all such
nodes as belonging to the same superarc as the attachment point,
ensuring that their contribution to the parent subtree’s measure re-
mains unaffected by pre-simplification. As a result, any subtree
represented in the pre-simplified contour tree will retain the correct
volume, and the desired outcome follows.

Full Contour Tree Block 0 Pre-Simplified
Augmented Tree

71

86

60a

26

4e

1c

0a

0b

1d

55

60b

71

86

60a

36

3434

26

4e

4c

1e

1c11

0e

0c

4d

4b

1g

1f

0a

0b

0d

1a

1b

1d

3

4a

55

60b

63

91

Regular NodeSecondary Branch 2
Main Branch Supernode0c

Minor Branch

LEGEND:

Fig. 3: A branch with the wrong leaf. Vertex 4d lies within the in-
terior of a block and can thus be pre-simplified, whereas vertex 4e,
located on the block’s boundary, cannot. After pre-simplification and
augmentation, a branch will be selected from 1d − 4e rather than
1d − 4d. Nonetheless, the subtree rooted at 1d is accurately repre-
sented.

One side effect is that, although remaining subtrees maintain the
correct volume, the branch representing the subtree may have a dif-
ferent outer leaf in the pre-simplified contour tree. To understand
why this occurs, consider Fig. 3. In this case, vertex 4d would typi-
cally be selected as the outer leaf of a branch rooted at 1d, present-
ing the subtree containing 1f , 1e, 1g, 4e, 4b, 4c, and 4d. However,
since 4d lies within the interior of a block and 4e cannot serve as an
attachment point due to its position on the boundary, the algorithm
retains 4e and reports the branch 1d− 4e instead.



We outline the high-level steps for pre-simplified distributed
hierarchical contour tree computation and branch decomposition,
adapted from the pipeline in [29]:

1. Compute a distributed hierarchical contour tree;
2. Compute the correct volume for all superarcs in the tree;
3. For each block, list attachment points with measure > λ;
4. Augment the distributed tree with these attachment points;
5. Recompute the volumes for all superarcs in the tree;
6. Compute the distributed branch decomposition;
7. Simplify the contour tree to threshold Λ or to b branches;
8. Extract and render the contours.

Steps 1 and 2 remain unchanged, while Steps 7 and 8 are only min-
imally affected. The remaining steps require further explanation.

Step 3 (listing attachment points) identifies the subtrees of the in-
terior forest with measure > λ in a single logarithmic-cost PRAM
pass. At this stage, the internal logic must be substantially re-
vised to support augmentation [29]. The original goal in [29] was
to avoid explicitly representing the supernodes connecting interior
trees, thereby reducing communication costs in both fan-in and fan-
out operations. However, situations arise—such as at vertex 1d in
Fig. 1—where insertions occur at multiple levels of the hierarchy.

In the original DHCT, interior trees were stored by setting the
superarc of the attachment point to null, as with the root in the non-
distributed structure. A second array stored the superparent—the
superarc to which each regular node (including supernodes) be-
longed. For efficiency, each superarc was indexed by the ID of
its outer end; thus, supernodes normally had their superparent set
to their own ID.

For attachment points already in a higher layer, the superparent
could be assumed correct. Otherwise, the superarc ID into which
the attachment point was to be inserted was stored as the superpar-
ent, avoiding the need for an additional array.

In the augmented distributed tree [29], a new distributed struc-
ture was constructed rather than editing the existing one. All attach-
ment points were inserted from the outset, so the distributed hyper-
sweeps, branch decomposition, and simplification routines did not
need to check both superarc and superparent. With the introduction
of pre-simplification, however, these routines needed to handle the
possibility of uninserted attachment points, complicating Steps 4
through 7.

Step 4 (augmentation) proceeded largely as before, but with only
a subset of attachment points exchanged during fan-in. After aug-
mentation, the hierarchical tree’s supernode IDs often differed, re-
quiring recomputation of the volumes for each superarc and subtree
(Step 5).

Steps 6, 7, and 8 were also modified to use new representative
branch IDs. In the original approach [29], the correct extremum
for each branch was known, and the branch ID was taken to be the
outer end’s ID. The mislabeling introduced by pre-simplification
rendered this strategy unreliable. Instead, the saddle at the root
of the subtree was used as the representative, again necessitating
substantial changes in the detailed processing.

4 IMPLEMENTATION AND EXPERIMENTS

We begin with implementation details in Sec. 4.1, followed by a
description of the datasets in Sec. 4.2. We then present the experi-
mental setup in Sec. 4.3, and conclude with a parameter sensitivity
analysis of the pre-simplification threshold in Sec. 4.4.

4.1 Implementation Details

Our implementation is based on VTK-m [31], an open-source
library for efficient scientific visualization algorithms enhanced
with on-node SMP parallelism. For distributed computation, we

use the DIY [32] block-parallel library. We implement the pre-
simplification strategy on top of the distributed hierarchical con-
tour tree implementation in the VTK-m library. Specifically, we
modify the ContourTreeUniformDistributed filter to up-
date the pipeline with the pre-simplification strategy in Sec. 3. We
add a hypersweep computation to superarc volumes before the aug-
mentation, referred to as the pre-augmentation hypersweep. We
only augment the contour tree with attachment points whose corre-
sponding interior forest volume is higher than λ. In addition, we
update the SelectTopVolumeBranches filter to limit branch
selection in the simplified contour tree to branches with a volume
above λ (i.e., to ensure λ ≤ Λ). Our implementations are available
at https://github.com/Viskores/viskores.

4.2 Datasets
We experiment with two large datasets: Nyx and MICrONS. Nyx
is a 40963 dataset from cosmological simulations of particle mass
density [3]: we use matter density Ωm [34]) (the sum of baryon
density and dark matter density) as the scalar field in a 3D volume.

MICrONS [16] is a volume of Electron Microscopy (EM) image
data of a P60 mouse cortex with a volume of 1.4mm× 0.87mm×
0.84mm from the BossDB [42]. We work on a volume of 81923

voxels cropped from the original data.
Fig. 4 showcases visualizations for both datasets. In the 3D vi-

sualization for the Nyx dataset (1st and 2nd column), there are two
3D contours rendered in different colors, corresponding to the 68th
and 89th highest volume branch of the contour tree. These extracted
contours highlight the filamentary structures of matter density in the
universe. The 3rd and 4th columns of Fig. 4 show the visualizations
for 2D slices of the Nyx and the MICrONS dataset, respectively. In
the 2D image of the Nyx dataset, there are similar filamentary struc-
tures to the 3D contours. In contrast, the MICrONS image shows
many cell-structure shapes in the mouse cortex. The irregular and
intricate shapes of features in both datasets contribute to a contour
tree structure that is correspondingly large and complex.

4.3 Experimental Settings
Hardware configurations. All experiments are conducted on the
National Energy Research Scientific Computing Center (NERSC)’s
Perlmutter supercomputer with 3, 072 CPU-only and 1, 792 GPU-
accelerated nodes. Our experiments were conducted on CPU-only
nodes, each with two 2.45 GHz (up to 3.5 GHz) AMD EPYC 7763
(Milan) CPUs with 64 cores per CPU and two hardware threads per
physical core, and 512 GB of DDR4 memory per node.
Computational parameter configurations. For all the experi-
ments, we fix one data block per MPI rank and one MPI rank per
CPU node. This is to reduce the number of volume subdivisions
to minimize the size of boundary information that has to be shared
across blocks, which leads to a scalability bottleneck in the dis-
tributed hierarchical contour tree framework [7]. For each compute
node, we use 128 threads with OpenMP [17] for thread parallelism.
Algorithmic configurations. We retain the b branches with the
largest volumes to simplify the contour tree based on the branch
decomposition, fixing b = 100 for all experiments. Li et al. [29]
showed that the runtime of contour tree simplification is insensi-
tive to b; we select a small value so that no branch retained in the
simplified contour tree is subject to pre-simplification. Parameter
sensitivity with respect to λ is analyzed in Sec. 4.4. We omit con-
tour extraction runtimes—reported in [29]—as they depend primar-
ily on contour size rather than contour tree structure, and thus their
scalability lies outside the scope of this work.
Runtime evaluation configuration. We report runtime of different
pipeline phases: the first three phases, namely (1) computing the lo-
cal contour tree, (2) fan-in, and (3) fan-out, contribute to the contour
tree construction, which are the same as in the previous work [29].
The subsequent phases are the analytical tasks, including (4) the

https://github.com/Viskores/viskores


min max
Fig. 4: Visualizations of the Nyx and MICrONS datasets using our framework. Left: two 3D contours of high-volume features extracted from a
10243 subvolume of the Nyx dataset. Right: 2D slices of the Nyx dataset and the MICrONS dataset respectively.

newly introduced pre-augmentation hypersweep, (5) augmentation,
(6) post-augmentation hypersweep, (7) branch decomposition, and
(8) extraction of the top-volume branches. Any remaining compu-
tational costs are grouped as “Other.”

To collect runtime statistics, we place synchronization barriers
after each phase. Due to the sequential nature of the pipeline, these
barriers do not introduce significant overhead. For each phase, we
report maximum runtime observed across all MPI ranks. Note that
inter-rank communication occurs during the fan-in phase (Phase 2)
and throughout the analytical computation stages (Phases 4–8).

Nyx (20483)

Nyx (10243) MICrONS (10243)

MICrONS (20483)

Fig. 5: Overall runtime using 16 nodes for the 10243 and 20483 sub-
volumes of the Nyx (left column) and the MICrONS (right column)
datasets, respectively, with λ ranging from 0 to 105.

4.4 Parameter Sensitivity Analysis

Recall that we only exchange attachment points whose subtree vol-
umes are higher than λ during augmentation, reducing the overall
communication cost for augmentation and subsequent steps. In the-
ory, the correctness of the final selection and extraction of contours
is guaranteed if λ < Λ, which is the volume for the branch with the
b-th highest volume. Here, we conduct a parameter sensitivity anal-
ysis for λ to observe the performance on reducing communication
costs and to provide a summary on choosing λ.
Configurations. We use 16 CPU-only nodes for the analysis,
evaluating performance for λ ∈ {0, 1, 10, 102, 103, 104, 105} (all
smaller than Λ for both datasets). When λ = 0, there is no pre-
simplification, leaving the pipeline unchanged [29].

Nyx (20483)Nyx (10243)

Fig. 6: The communication workload of attachment points (1st row,
log-log), best up/down volume information (2nd row, log-log), and
the branch information (3rd row, log-linear) for the 10243 and 20483

subvolumes of the Nyx dataset, respectively, with λ between 0 and
105. Each statistic is collected on the rank with the highest workload.

Evaluation metrics. To evaluate the runtime and communica-
tion workload for attachment points, we consider statistics for
three types of communication workload: the highest number of at-
tachment points received by a block, which depends on the pre-
simplification thresholding process; the highest number of best
up/down volume information received, which tracks the number of
supernodes in the largest augmented contour tree of other blocks;
the highest number of received branch outer end information, re-
flecting the highest number of branches in other blocks.
Nyx dataset. We examine parameter sensitivity for the Nyx dataset
using subvolumes with 10243 and 20483 voxels. The statistics for
runs on the 20483 subvolume with λ ∈ {0, 1} are incomplete be-
cause these runs failed midway because the data size during branch
decomposition exceeded the MPI communication size limit.

Fig. 5 (top left) shows that runtime on the 10243 Nyx subvolume
is stable for λ ≥ 10. Similarly, on the 20483 subvolume of Nyx
(Fig. 5 bottom left), runtime stabilizes after λ = 10.

Fig. 6 shows communication statistics for the Nyx dataset at
two subvolume sizes (10243 and 20483). As the pre-simplification
threshold λ increases, the number of attachment points exchanged
decreases nearly linearly (1st row), while the amount of best



MICrONS (10243) MICrONS (20483)

Fig. 7: Communication workload of attachment points (1st row, log-
log), best up/down volume information (2nd row, log-log), and branch
information (3rd row, log-linear) for 10243 and 20483 subvolumes of
MICrONS, with λ ranging from 0 to 105. Each statistic is collected on
the rank with the highest workload.

up/down information plateaus beyond λ = 100 (2nd row). The
amount of branch information exchanged decreases only slightly,
showing minimal sensitivity to λ (3rd row). Among the three
metrics, the number of attachment points becomes less important
because it is consistently smaller than the number of supernodes,
which reflects the amount of best up/down information.

Improvements in both runtime and communication cost fall off
after λ = 100, which is consistent across both subvolumes of dif-
ferent sizes. The consistency arises because the increase in data
size primarily reflects a larger observable domain, while the typical
feature volume remains relatively stable. Therefore, increasing λ
for larger subvolumes of the Nyx dataset is unnecessary.
MICrONS dataset. We apply the same evaluations to MICrONS:
runtime performance is in the right column of Fig. 5, and communi-
cation cost in Fig. 7. As with Nyx, we observe the bottleneck effect
for the speed and communication cost improvement at λ = 100 for
both the 10243 and 20483 subvolumes.
Summary. In summary, we can choose λ ≥ 100 for the optimal
performance on both datasets. If users can estimate Λ (the volume
of the smallest preserved feature), they can choose λ with any value
in [100,Λ). Otherwise, without knowledge of the data to determine
Λ, one would choose a small λ. Unless otherwise specified, for
the remaining experiments on both datasets, we choose λ = 100,
which is very small for the domain of size 10243 or larger. In addi-
tion, we provide a discussion for choosing λ in the appendix.

5 RESULTS AND EVALUATION

In this section, we give experimental results and evaluate scalabil-
ity. We start with our largest computed contour tree in Sec. 5.1, fol-
lowed by the performance improvement in speed and data size com-
pared to previous work in Sec. 5.2, then evaluate the algorithm’s
scalability in Sec. 5.3 using strong scaling and weak scaling.

5.1 Performance Evaluation
We compute a distributed hierarchical contour tree and its volumet-
ric branch decomposition with pre-simplification on a 81923 sub-
volume (roughly 550 billion of voxels) of MICrONS, in less than
15 minutes; see Fig. 8 (right). We use 512 CPU-only nodes and
approximately 120 TiB of memory. We apply λ = 1000 for pre-

simplification, 10× higher than indicated by the parameter sensitiv-
ity analysis. We produce a contour tree with more than half a trillion
regular nodes, which is, to the best of our knowledge, the largest
computed contour tree in the literature that supports advanced ana-
lytic tasks such as branch decomposition.

5.2 Performance Comparison

Existing implementations. We compare our distributed compu-
tation with pre-simplification to some existing implementations of
contour tree computation and volumetric branch decomposition, in
particular the standard serial algorithm—Sweep and Merge [12]—
and the state-of-the-art shared-memory parallel implementation—
Parallel Peak Pruning (PPP) [8, 26], as well as the distributed im-
plementations with [29] and without pre-simplification.

All experiments are conducted on the same type of nodes on the
Perlmutter supercomputer; see Sec. 4.3 for configurations. Due to
memory limits, all shared-memory experiments use the 10243 sub-
volume of MICrONS. We collect runtime and memory costs, with
the number of threads ranging from 1 to 128 for the PPP shared-
memory implementation. We do not include runtime for top branch
extraction (Phase 8, see Sec. 4.3) in the comparison because shared-
memory implementations do not include this step.
Runtime performance. Fig. 9 gives performance results for all
shared-memory implementations. The PPP implementation in se-
rial is 2.08× faster than the serial implementation due to algorith-
mic improvements and the internal optimization of VTK-m.

In parallel, however, runtime performance of PPP reaches up to
about 11× speedup with 128 threads compared to serial runs. On
top of shared-memory parallelism, the distributed contour tree im-
plementation provides additional improvements. Fig. 10 (right)
presents the runtime performance of distributed computation with-
out (λ = 0) and with (λ = 100) pre-simplification on the same sub-
volume of MICrONS. Using 64 nodes, runs without and with pre-
simplification spent 26.52 seconds and 16.09 seconds, respectively.
Therefore, on the 10243 subvolume of MICrONS, our implementa-
tion with pre-simplification reaches an estimated speedup of nearly
334× over the Sweep and Merge serial version and roughly 160×
that of the PPP implementation with one thread. Compared to the
parallel run with 128 threads, our distributed computation with pre-
simplification reaches about 14.4× speedup.

While memory limits prevent a single serial run for comparison,
we can estimate serial runtime for a 81923 volume, assuming suf-
ficient memory. We know that serial time complexity is dominated
by the O(n logn) term from sorting, and recall the runtime for size
n = 230 (10243) from in Fig. 9. A volume of 239 (81923) voxels is
512× larger, with an increased log factor of 39/30 = 1.3, and we
therefore estimate runtime for the Sweep and Merge implementa-
tion and the PPP (one thread) implementation to be approximately
3.58× 106 seconds and 1.72× 106 seconds, respectively. Our dis-
tributed computation with pre-simplification instead completes in
871.72 seconds; see Fig. 8 right column. The estimated speedup
of our distributed implementation with pre-simplification is thus up
to 4100× over the Sweep and Merge implementation and roughly
1970× that of the PPP implementation in serial.

While Li et al. [29] showed significant speedup of distributed
computation over shared-memory, our pre-simplification process
further reduces the communication cost for the distributed analytic
computations; see Sec. 4.4. We demonstrate runtime improvement
on the 10243 subvolumes of Nyx and MICrONSs in Fig. 10, in
which we compare the runtime of experiments via the grouped bar
charts. For each group of the bar plot in Fig. 10, the left bar shows
the run without pre-simplification (λ = 0), and the right bar is the
runtime with pre-simplification (λ = 100).

We can see the speed improvement on both datasets using pre-
simplification under all node/rank configurations. Specifically, the
runtime for analytical computation phases (all phases after fan-out)



Nyx (40963) MICrONS (40963) MICrONS (81923)

Fig. 8: Runtime performance using OpenMP on Perlmutter for the 40963 volume of Nyx (left), the 40963 subvolume of MICrONS (middle), and
the 81923 volume of MICrONS (right), respectively.

Fig. 9: Performance metrics by number of threads for shared-
memory implementations on the 10243 subvolume of MICrONS.

Nyx (10243) MICrONS (10243)

Fig. 10: Grouped bar charts for distributed runtime on 10243 subvol-
umes of Nyx and MICrONS. The left and right bars of each group
show runtime with λ = 0 and λ = 100, respectively.

is improved by a large margin compared to the runs without pre-
simplification. For Nyx, the largest total runtime improvement is
about 2.58× using 64 nodes. Similarly, for MICrONS, the largest
total runtime improvement is about 1.60×.
Maximum feasible data size. The maximum feasible data size for
shared-memory implementations is limited by the available mem-
ory per compute node. As shown in Fig. 9, the contour tree for a
10243 subvolume takes 103 ∼ 129 GiB of memory. Given a limit
of 512 GB (≈ 476 GiB) per CPU-only node, linear memory growth
would predict an upper limit around 15823 ∼ 17003 voxels. In
contrast, our distributed approach with pre-simplification success-
fully processes a much larger volume of 81923 voxels, which is
difficult to process on existing shared-memory platforms.

While previous work [7, 29] significantly increased data scale
through distributed computation, this came at the cost of memory
overhead due to augmentation, which reduced the maximum data
size that can be processed under fixed memory constraints.

We examine maximum data size due to pre-simplification with
(λ = 100) and without (λ = 0) pre-simplification, by gradually

Fig. 11: The left column shows exchanged information size for best
up/down volume data of supernodes w.r.t. data volume size. The
right column shows approximate total data memory compared to data
volume size. Top and bottom rows are for Nyx and MICrONS, respec-
tively. Vertical dotted lines indicate the largest feasible data volume
size for the corresponding λ choices using 16 nodes.

increasing the subvolume size from 10243 to 40963 in steps of 100
or 104 (≈ 0.1×1024, while the boundary size needs to be divisible
by 4) for both datasets. We fix the number of nodes at 16. We
measure the communication size for the best up/down volume data
information during the branch decomposition computation and the
total memory consumed by the run reported by Perlmutter.

Fig. 11 demonstrates the statistics of evaluated metrics for Nyx
in the top row and MICrONS in the bottom, in which the vertical
dotted lines represent the maximum feasible data size for the two
experimental configurations. Without pre-simplification (λ = 0),
the framework can only compute a subvolume of up to 17403 vox-
els for Nyx and 21523 for MICrONS. In contrast, as we apply the
pre-simplification with λ = 100, the largest feasible data size we
can compute grows to 32763 for Nyx and 33803 for MICrONS.
The maximum feasible volume size increase owing to the pre-
simplification is roughly 6.67× for Nyx and 3.87× for MICrONS.

For the runs without pre-simplification, the data communica-
tion size grows significantly faster than that of the runs with pre-
simplification for our implementation; see Fig. 11 left column. The
runs without pre-simplification crashed after exceeding the one-
time MPI communication limit. For finished runs without pre-
simplification, their memory consumption (magenta line) is con-
sistently higher than that of the runs with pre-simplification (cyan
line); see Fig. 11 right column.

Lastly, we discuss memory efficiency by evaluating the footprint



per input voxel for all implementations. In a distributed hierarchi-
cal contour tree, each block stores a copy of the shared contour tree
structure, increasing the total memory footprint. In addition, aug-
mentation exchanges attachment points across blocks, leading to
multiple copies of attachment points in the memory. Therefore, it
is expected that the distributed implementations would have lower
memory efficiency than the shared-memory ones.

Following Fig. 9, shared-memory requires approximately 103 ∼
129 bytes per voxel in the input mesh on MICrONS. For distributed
computations, the memory footprint needed for each voxel is re-
flected in Fig. 11 right column. On MICrONS, the run without
pre-simplification on the 21523 subvolume needs 2273 GiB; the
average memory footprint per input voxel is roughly 244 bytes. In
contrast, with pre-simplification, the distributed computation on the
33803 subvolume consumes 7199 GiB; the average memory usage
for each input voxel is approximately 200 bytes. In other words,
while the pre-simplification strategy improves the overall memory
efficiency, the extent of the improvement is moderate. Regardless
of pre-simplification, the memory usage for distributed contour tree
computation is roughly twice as much as the shared-memory imple-
mentations. Such sacrifice in memory efficiency is acceptable since
we can increase the total memory size by adding compute nodes.

5.3 Scalability Evaluation

Strong scaling. We evaluate strong scaling of the pre-simplified
pipeline by measuring performance at a fixed problem size while
varying the number of compute nodes. For this, we use fixed input
volumes of size 40963 for both Nyx and MICrONS. The num-
ber of nodes is increased from the minimum feasible option for
each dataset—64 nodes for Nyx and 32 nodes for MICrONS—up
to 1024 nodes, with one MPI rank assigned per node.

Fig. 8 demonstrates the strong scaling plot for the runtime per-
formance of our framework on the 40963 volume of both datasets.
The stacked box plots separate the overall runtime by the pipeline
phases. As we add more nodes, the runtime on both datasets con-
sistently decreases, reaching the near-optimal value at 512 nodes.

Among the runtime of phases, all but the fan-in phase have
gained a noticeable amount of speedup as the number of nodes in-
creases for both datasets. Recall that the analytical computation
phases require communication, the size of which is heavily affected
by the number of attachment points. Without pre-simplification, Li
et al. [29] have shown the scalability limitation of these analytical
computation steps due to attachment points (reflected in Fig. 10).
With the pre-simplification strategy, the limitation in scalability is
largely mitigated. While there is still communication overhead for
the shared tree structure, the analytical computation steps are no
longer the scalability bottleneck.

With pre-simplification, the bottleneck of scalability becomes
the fan-in operation, which is a critical step in constructing the con-
tour tree. In this step, shared boundary information needs to be
exchanged between adjacent blocks to construct the shared contour
tree structure that goes across the block boundary. We are unsure
whether this can be optimized, so we leave it for future work.
Weak scaling. We provide the weak scaling analysis for the op-
timized framework. For both Nyx and MICrONS, we start with a
subvolume of 1024×1024×512 voxels. As we increase the number
of nodes and blocks, we simultaneously grow the subvolume size
accordingly so that each compute node is assigned a subvolume at
a fixed size.

We report the runtime and the weak scaling efficiency in Fig. 12.
Among all the phases, only the local contour tree computation has a
roughly constant runtime. All other phases become increasingly ex-
pensive as the number of nodes grows. This is because the amount
of work to communicate and process the data for the shared tree
structure naturally increases, leading to increasing communication
overheads and a drop in the weak scaling efficiency [7]. On the

Fig. 12: Runtime performance with a growing number of nodes (and
blocks) and data size, while each node is assigned a 1024× 1024×
512 subvolume (weak scaling) with one MPI rank per node. The top
and bottom rows are for Nyx and MICrONS, respectively.

other hand, the runtime growth for all the analytical computation
phases is comparable to or slower than that of the fan-in phase. In
other words, with our pre-simplification strategy, such analytical
computations are not the bottlenecks of the algorithm’s scalability.

6 CONCLUSION

We introduce a pre-simplification strategy to optimize the analytical
computation for distributed hierarchical contour trees. First, with
the pre-simplification process, we generate the largest known con-
tour tree on a volume of size 81923 with complex topology within
15 minutes. Second, we demonstrate a runtime speedup of up to
334× over the serial computation and 14.4× over the parallel im-
plementation on a 10243 dataset. Assuming there is enough mem-
ory for the serial computation on the data volume of size 81923,
our performance is expected to reach up to 4100× speedup over
the serial version in theory. Moreover, our pre-simplification strat-
egy enables 1.60 ∼ 2.58× speedup for the distributed computation
and supports 3.87 ∼ 6.67× larger size of data volume with a fixed
number of compute nodes. Lastly, our pre-simplification strategy
has largely mitigated the scalability issue of the distributed contour
tree computations in [29].

ACKNOWLEDGMENTS

This research was supported by the U.S. Department of Energy
(DOE), Office of Science, Advanced Scientific Computing Re-
search (ASCR) program and the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the DOE Office of Science
and the National Nuclear Security Administration under Contract
No. DE-AC02-05CH11231 to the Lawrence Berkeley National
Laboratory. This research used resources of the National Energy
Research Scientific Computing Center (NERSC), a Department of
Energy Office of Science User Facility using NERSC award ASCR-
ERCAP0026937. Additionally, Mingzhe Li and Bei Wang were
partially supported by DOE DE-SC0021015 and National Science
Foundation (NSF) IIS-2145499. Hamish Carr was supported by the
University of Leeds.



REFERENCES

[1] A. Acharya and V. Natarajan. A parallel and memory efficient al-
gorithm for constructing the contour tree. In Proceedings of the
2015 IEEE Pacific Visualization Symposium (PacificVis), pp. 271–278.
IEEE, New York, 2015. doi: 10.1109/PACIFICVIS.2015.7156387 3

[2] J. Ahrens, M. Arienti, U. Ayachit, J. Bennett, R. Binyahib, A. Biswas,
P.-T. Bremer, E. Brugger, R. Bujack, H. Carr, et al. The ECP ALPINE
project: In situ and post hoc visualization infrastructure and analysis
capabilities for exascale. International Journal of High Performance
Computing Applications (IJHPCA), 39(1):32–51, 2025. doi: 10.1177/
10943420241286521 1

[3] A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Lukić, and E. Van An-
del. Nyx: A massively parallel AMR code for computational cosmol-
ogy. The Astrophysical Journal, 765(1):39, 2013. doi: 10.1088/0004
-637X/765/1/39 5

[4] C. L. Bajaj, V. Pascucci, and D. R. Schikore. The contour spectrum.
In Proceedings of Visualization 1997, pp. 167–173. IEEE, New York,
1997. doi: 10.1109/VISUAL.1997.663875 3

[5] T. F. Banchoff. Critical Points and Curvature for Embedded Poly-
hedra. Journal of Differential Geometry, 1:245–256, 1967. doi: 10.
4310/jdg/1214428092 2

[6] R. L. Boyell and H. Ruston. Hybrid techniques for real-time radar
simulation. In Proceedings of the 1963 Fall Joint Computer Confer-
ence, pp. 445–458. ACM, New York, 1963. doi: 10.1145/1463822.
1463869 2

[7] H. Carr, O. Rübel, and G. H. Weber. Distributed hierarchical contour
trees. In 2022 IEEE 12th Symposium on Large Data Analysis and
Visualization (LDAV), pp. 1–10. IEEE, New York, 2022. doi: 10.1109/
LDAV57265.2022.9966394 1, 4, 5, 8, 9

[8] H. Carr, O. Rübel, G. H. Weber, and J. Ahrens. Optimization and
augmentation for data parallel contour trees. IEEE Transactions on
Visualization and Computer Graphics, 28(10):3471–3485, 2022. doi:
10.1109/TVCG.2021.3064385 1, 4, 7

[9] H. Carr, C. Sewell, L.-T. Lo, and J. Ahrens. Hybrid Data-Parallel
Contour Tree Computation. Technical Report LA-UR-15-24579, Los
Alamos National Laboratory, 2015. 3

[10] H. Carr and J. Snoeyink. Path seeds and flexible isosurfaces: Using
topology for exploratory visualization. In Proceedings of Eurograph-
ics Visualization Symposium 2003, pp. 49–58, 285, 2003. doi: 10.
5555/769922.769927 2

[11] H. Carr and J. Snoeyink. Representing interpolant topology for con-
tour tree computation. In H.-C. Hege, K. Polthier, and G. Scheuer-
mann, eds., Topology-Based Methods in Visualization II, Mathematics
and Visualization, pp. 59–73. Springer, Berlin, Heidelberg, 2009. doi:
10.1007/978-3-540-88606-8 5 2

[12] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in
all dimensions. Computational Geometry Theory and Applications,
24(2):75–94, 2003. doi: 10.1016/S0925-7721(02)00093-7 2, 7

[13] H. Carr, J. Snoeyink, and M. van de Panne. Flexible isosurfaces: Sim-
plifying and displaying scalar topology using the contour tree. Com-
putational Geometry: Theory and Applications, 43(1):42–58, 2010.
doi: 10.1016/j.comgeo.2006.05.009 2, 3, 4

[14] H. Carr, G. H. Weber, C. Sewell, and J. Ahrens. Parallel peak pruning
for scalable SMP contour tree computation. In 2016 IEEE 6th Sym-
posium on Large Data Analysis and Visualization (LDAV), pp. 75–84.
IEEE, New York, 2016. doi: 10.1109/LDAV.2016.7874312 1, 3

[15] H. A. Carr, G. H. Weber, C. M. Sewell, O. Rubel, P. Fasel, and J. P.
Ahrens. Scalable contour tree computation by data parallel peak prun-
ing. IEEE Transactions on Visualization and Computer Graphics,
27(4):2437–2454, 2021. doi: 10.1109/TVCG.2019.2948616 1

[16] M. Consortium, J. A. Bae, M. Baptiste, A. L. Bodor, D. Brittain,
J. Buchanan, D. J. Bumbarger, M. A. Castro, B. Celii, E. Cobos,
F. Collman, N. M. da Costa, S. Dorkenwald, L. Elabbady, P. G. Fahey,
T. Fliss, E. Froudarakis, J. Gager, C. Gamlin, A. Halageri, J. Heb-
ditch, Z. Jia, C. Jordan, D. Kapner, N. Kemnitz, S. Kinn, S. Kool-
man, K. Kuehner, K. Lee, K. Li, R. Lu, T. Macrina, G. Mahalingam,
S. McReynolds, E. Miranda, E. Mitchell, S. S. Mondal, M. Moore,
S. Mu, T. Muhammad, B. Nehoran, O. Ogedengbe, C. Papadopou-
los, S. Papadopoulos, S. Patel, X. Pitkow, S. Popovych, A. Ramos,

R. C. Reid, J. Reimer, C. M. Schneider-Mizell, H. S. Seung, B. Silver-
man, W. Silversmith, A. Sterling, F. H. Sinz, C. L. Smith, S. Suckow,
M. Takeno, Z. H. Tan, A. S. Tolias, R. Torres, N. L. Turner, E. Y.
Walker, T. Wang, G. Williams, S. Williams, K. Willie, R. Willie,
W. Wong, J. Wu, C. Xu, R. Yang, D. Yatsenko, F. Ye, W. Yin, and S.-c.
Yu. Functional connectomics spanning multiple areas of mouse visual
cortex. Nature, 640(8058):435–447, 2025. doi: 10.1038/s41586-025
-08790-w 5

[17] L. Dagum and R. Menon. OpenMP: an industry standard API for
shared-memory programming. IEEE Computational Science and En-
gineering, 5(1):46–55, 1998. doi: 10.1109/99.660313 5

[18] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological Per-
sistence and Simplification. In Proceedings of the 41st Annual Sympo-
sium on Foundations of Computer Science, pp. 454–463. IEEE, 2000.
doi: 10.1109/SFCS.2000.892133 3

[19] H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: A tech-
nique to cope with degenerate cases in geometric algorithms. ACM
Transactions on Graphics, 9(1):66–104, 1990. doi: 10.1145/77635.
77639 2

[20] H. Freeman and S. P. Morse. On Searching A Contour Map for a Given
Terrain Elevation Profile. Journal of the Franklin Institute, 284(1):1–
25, 1967. doi: 10.1016/0016-0032(67)90568-6 2

[21] C. Gold and S. Cormack. Spatially Ordered Networks and Topo-
graphic Reconstruction. In Proceedings of the 2nd International ACM
Symposium on Spatial Data Handling, pp. 74–85, 1986. doi: 10.1080/
02693798708927800 2

[22] C. Gueunet, P. Fortin, and J. Jomier. Contour forests: Fast multi-
threaded augmented contour trees. In 2016 IEEE 6th IEEE Symposium
on Large Data Analysis and Visualization (LDAV), pp. 85–92. IEEE,
New York, 2016. doi: 10.1109/LDAV.2016.7874333 3

[23] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based augmented
merge trees with Fibonacci heaps. In 2017 IEEE 7th Symposium on
Large Data Analysis and Visualization (LDAV), pp. 6–15. IEEE, New
York, 2017. doi: 10.1109/LDAV.2017.8231846 3

[24] W. Harvey and Y. Wang. Topological landscape ensembles for vi-
sualization of scalar-valued functions. Computer Graphics Forum,
29(3):993–1002, 2010. doi: 10.1111/j.1467-8659.2009.01706.x 2

[25] P. Hristov and H. Carr. W-structures in contour trees. In I. Hotz,
T. Bin Masood, F. Sadlo, and J. Tierny, eds., Topological Methods in
Data Analysis and Visualization VI, pp. 3–18. Springer, Cham, 2021.
doi: 10.1007/978-3-030-83500-2 1 3, 4

[26] P. Hristov, G. H. Weber, H. Carr, O. Rübel, and J. Ahrens. Data par-
allel hypersweeps for in situ topological analysis. In 2020 IEEE 10th
Symposium on Large Data Analysis and Visualization (LDAV), pp. 12–
21. IEEE, New York, 2020. doi: 10.1109/LDAV51489.2020.00008 1,
4, 7

[27] T. Itoh and K. Koyamada. Isosurface generation by using extrema
graphs. In Proceedings Visualization ’94, pp. 77–83, 1994. doi: 10.
1109/VISUAL.1994.346334 2

[28] A. G. Landge, V. Pascucci, A. Gyulassy, J. C. Bennett, H. Kolla,
J. Chen, and P.-T. Bremer. In-situ feature extraction of large scale
combustion simulations using segmented merge trees. In SC14: Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1020–1031, Nov. 2014. doi: 10.1109/SC.
2014.88 4

[29] M. Li, H. Carr, O. Rübel, B. Wang, and G. H. Weber. Distributed
Augmentation, Hypersweeps, and Branch Decomposition of Contour
Trees for Scientific Exploration. IEEE Transactions on Visualization
and Computer Graphics (TVCG), 31(1):152–162, 2025. doi: 10.1109/
TVCG.2024.3456322 1, 2, 3, 4, 5, 6, 7, 8, 9

[30] G. L. Miller and J. H. Reif. Parallel Tree Contraction Part I: Funda-
mentals. Advances in Computing Research, 5:47–72, 1989. 4

[31] K. Moreland, C. Sewell, W. Usher, L. ta Lo, J. Meredith, D. Pugmire,
J. Kress, H. Schroots, K.-L. Ma, H. Childs, M. Larsen, C.-M. Chen,
R. Maynard, and B. Geveci. VTK-m: Accelerating the visualization
toolkit for massively threaded architectures. IEEE Computer Graphics
and Applications, 36(3):48–58, 2016. doi: 10.1109/MCG.2016.48 1,
5

[32] D. Morozov and T. Peterka. Block-parallel data analysis with DIY2.
In 2016 IEEE 6th Symposium on Large Data Analysis and Visualiza-



tion (LDAV), pp. 29–36. IEEE, New York, 2016. doi: 10.1109/LDAV.
2016.7874307 5

[33] D. Morozov and G. Weber. Distributed merge trees. In Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 93–102. ACM, New York, 2013. doi: 10.
1145/2442516.2442526 4

[34] NASA / LAMBDA Archive Team. LAMBDA - Matter Density, 2019.
Accessed Apr 10th, 2025, https://lambda.gsfc.nasa.gov/
education/graphic_history/matterd.html. 5

[35] A. Nigmetov and D. Morozov. Local-Global Merge Tree Computa-
tion with Local Exchanges . In SC19: International Conference for
High Performance Computing, Networking, Storage and Analysis, pp.
1–13. IEEE Computer Society, Los Alamitos, CA, USA, Nov 2019.
doi: 10.1145/3295500.3356188 1, 4

[36] V. Pascucci and K. Cole-McLaughlin. Parallel computation of the
topology of level sets. Algorithmica, 38(1):249–268, 2003. doi: 10.
1007/s00453-003-1052-3 2, 3, 4

[37] G. Reeb. Sur les points singuliers d’une forme de Pfaff complètement
intégrable ou d’une fonction numérique. Comptes Rendus de
l’Acadèmie des Sciences de Paris, 222:847–849, 1946. 2

[38] D. Smirnov and D. Morozov. Triplet merge trees. In Topological
Methods in Data Analysis and Visualization V. TopoInVis 2017., Math-
ematics and Visualization, pp. 19–36. Springer, Cham, 2020. doi: 10.
1007/978-3-030-43036-8 2 3, 4

[39] S. P. Tarasov and M. N. Vyalyi. Construction of Contour Trees in 3D
in O(n logn) steps. In Proceedings, 14th ACM Symposium on Com-
putational Geometry, pp. 68–75, 1998. doi: 10.1145/276884.276892
2

[40] M. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. R.
Schikore. Contour trees and small seed sets for isosurface traversal.
In Proceedings of the 13th ACM Symposium on Computational Ge-
ometry, pp. 212–220. ACM, New York, 1997. doi: 10.1145/262839.
269238 2

[41] G. Weber, S. Dillard, H. Carr, V. Pascucci, and B. Hamann. Topology-
controlled volume rendering. IEEE Transactions on Visualization and
Computer Graphics, 13(2):330–341, 2007. doi: 10.1109/TVCG.2007
.47 2

[42] B. Wester, W. Gray-Roncal, S. Hider, T. Gion, J. Matelsky, J. Downs,
D. Xenes, T. Rose, K. Romero, L. Kitchell, D. Ramsden, M. Sanchez,
and D. Moore. The brain observatory storage service & database
(BossDB). Accessed March 30th, 2022, https://bossdb.org/
project/microns-minnie. 5

[43] X. Zhang, C. L. Bajaj, and N. Baker. Fast matching of volumetric
functions using multi-resolution dual contour trees. Technical report,
Texas Institute for Computational and Applied Mathematics, Austin,
Texas, 2004. 2

https://lambda.gsfc.nasa.gov/education/graphic_history/matterd.html
https://lambda.gsfc.nasa.gov/education/graphic_history/matterd.html
https://bossdb.org/project/microns-minnie
https://bossdb.org/project/microns-minnie

	Introduction
	Background
	Contour Trees
	Serial Contour Tree Computation
	Parallel Contour Tree Computation
	Distributed Contour Trees

	Method
	Implementation and Experiments
	Implementation Details
	Datasets
	Experimental Settings
	Parameter Sensitivity Analysis

	Results and Evaluation 
	Performance Evaluation
	Performance Comparison
	Scalability Evaluation

	Conclusion

