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Abstract
We propose a novel method for the computation of Jacobi sets in 2D domains. The Jacobi set is a topological descriptor based
on Morse theory that captures gradient alignments among multiple scalar fields, which is useful for multi-field visualization.
Previous Jacobi set computations use piecewise linear approximations on triangulations that result in discretization artifacts
like zig-zag patterns. In this paper, we utilize a local bilinear method to obtain a more precise approximation of Jacobi sets
by preserving the topology and improving the geometry. Consequently, zig-zag patterns on edges are avoided, resulting in
a smoother Jacobi set representation. Our experiments show a better convergence with increasing resolution compared to
the piecewise linear method. We utilize this advantage with an efficient local subdivision scheme. Finally, our approach is
evaluated qualitatively and quantitatively in comparison with previous methods for different mesh resolutions and across a
number of synthetic and real-world examples.

Keywords Jacobi set · Topological data analysis · Multi-fields · Visualization techniques

1 Introduction

There exist numerous methods for the analysis and visu-
alization of multi-fields. One particular approach is the
comparison of scalar fields via topological descriptors. The
understanding, interpretation, and computation of topologi-
cal descriptors remain a challenging task [30]. One of these
tools is the Jacobi set. The Jacobi set is based on Morse the-
ory and captures gradient alignments among multiple scalar
fields. Currently, Jacobi set computation is based on piece-
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wise linear approximations on triangulations [8]. Piecewise
linear interpolation typically produces non-smooth and inac-
curate results. In the case of edge-based Jacobi set extraction,
it leads to zig-zag patterns and discretization artifacts as illus-
trated in the top row of Fig. 1. These zig-zag patterns are even
preserved for higher resolutions since the traditional method
only extracts the edges of the underlying triangulation and
does not utilize the cell interior. To address these problems,
previous works explore the simplifications of Jacobi sets by
either simplifying the scalar functions (indirect methods)
or the extracted Jacobi sets (direct methods). While these
approaches may improve the Jacobi set representation, they
all rely on extracting edges that form the Jacobi set using a
piecewise linear approach.

In this paper, our main goal is to extend the piecewise
linear computation to a bilinear one to arrive at a more accu-
rate geometry of the extracted Jacobi set. To achieve this, we
introduce an equivalent formulation of the piecewise linear
method and then extend it to our higher-order approach. Our
contributions can be summarized as follows:

• We provide an equivalent formulation for the computa-
tion of Jacobi sets and embed the piecewise linearmethod
into this framework.

• Due to the reformulation, we introduce a novel Jacobi
set extraction that depends on bilinear interpolation,
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Fig. 1 Comparison of the traditional piecewise linear method (top) and
our local bilinear method (bottom) for a fixed resolution and different
zoom levels on a rectangular grid. The Jacobi set is marked in black and
the color-coding corresponds to the ground-truth gradient alignment
field (of two analytic functions). The color bar is ordered from positive

(top) to negative (bottom), where white indicates the zero. It can be
observed that the piecewise linear method results in zig-zag patterns
and discretization artifacts, whereas our method leads to a smoother
representation of the Jacobi set

leading to a smoother, non-edge-based Jacobi set
representation.

• We present an efficient local subdivision method that fur-
ther improves the extracted Jacobi set representation.

We compare our method to the piecewise linear method for
three different datasets: an analytic dataset, a dataset with a
von Kármán vortex street, and the Hurricane Isabel dataset.

The paper is structured as follows: After the introduction,
we review related work in Sect. 2. To lay the foundations,
Sect. 3 provides the theoretical background of Jacobi sets
as well as the piecewise linear method to calculate them. In
Sect. 4, we introduce the relevant concepts for our local bilin-
ear approach. Subsequently, we derive our approach in three
steps and present an efficient local subdivision scheme. Next,
Sect. 5 provides a thorough evaluation of ourmethod. Finally,
the conclusion with future research directions is presented in
Sect. 6.

2 Related work

The context of this paper is the analysis and visualization of
multi-fields via the comparison of scalar fields. In the fol-
lowing, we will summarize previous works that address this
topic by extracting joint topological structures [17,30], some
of which are closely related to the notion of Jacobi sets

Simultaneous analysis of isosurfaces of several scalar
fields using a variation density function has been proposed

by Nagaraj et al. [23]. Tools studying multivariate data topo-
logically go one step further. Such methods are, in particular,
the piecewise linear computation of Jacobi set [8], the Reeb
space [11] and its variants [6], Pareto sets [19], and multi-
variate persistent homology [5]. The Reeb space compresses
the components of the level sets of a multivariate mapping
and obtains a summary representation of their relationships.
Instead of exploring Jacobi sets in the domain, Chattopad-
hyay et al. [7] studied multi-field topology by considering
projections of the Jacobi set into the Reeb space. Thus, these
two concepts are shown to be related as the image of the
Jacobi sets under the mapping corresponds to certain singu-
larities in the Reeb space [6].

Another related concept is that of Pareto sets [19]. Here,
a set of scalar fields is analyzed with respect to consensus or
disagreement among ascending and descending manifolds,
critical points, and their connectivity. A follow-up paper [18]
investigates the relation to Jacobi sets and derives subset and
equivalence relations between Jacobi sets and Pareto sets. In
addition, the mapper construction [28] and the joint contour
nets [6] can be considered as discrete variants of the Reeb
space.

All these previous works either introduce a different topo-
logical descriptor or establish connections to the concept of
Jacobi sets. In contrast, our approach aims to improve the
geometrical representation of Jacobi sets with a higher-order
interpolation scheme.

Aspart of topological data analysis tools, the Jacobi set can
be used to compare multiple scalar fields [10], track critical
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Local bilinear computation...

points [4,8], define silhouettes of objects [12], and extract
ridges in image analysis [26]. It has also been employed
in various scientific applications [1,2,8,20,22]. However, in
practice, the Jacobi set contains degeneracies and discretiza-
tion artifacts that can be reduced by simplification of the
Jacobi set. Bremer et al. [4] perform persistent simplification
of the scalar field to remove small loops of the Jacobi set that
lie entirely within successive time steps. Luo et al. [21] com-
pute the Jacobi set by approximating the gradients of a pair of
scalar fields. Nagaraj and Natarajan [24] simplify the Jacobi
set by explicitly reducing the number of components. Bha-
tia et al. [3] identify and remove unimportant portions of the
Jacobi set by determining how the pair of scalar fieldsmust be
modified locally. Our proposed work utilizes bilinear inter-
polation to obtain a smoother and more accurate geometric
representation of the Jacobi set (compared to the piecewise
linear approach), while preserving its topology. Therefore,
our work can be seen as a completely different approach.
To the best of our knowledge, the computation of Jacobi
sets under higher-order interpolation schemes has not been
explored and understood, and our investigation using bilinear
interpolation is the first step in this direction.

Another related concept is the general search for parallel
vectors in two fields, e.g., for the computation of ridgelines
or the detection of vortex cores in the flow. An introduction
to the parallel vectors operator has been given by Peikert
and Roth [27], formulated as a search for roots of the cross-
product of the two vector fields. As a computational solution,
they suggest an extraction via zero-level isolines for two-
dimensional vector fields, e.g., by using marching squares.
Further improvements for higher-dimensional fields were
presented by Theisel et al. [29] and van Gelder et al. [14],
who express the problem as a streamline integration problem
and make use of tracing algorithms.

While our approach alsoworkswith cross-products and an
extraction via zero-level isolines, we focus on an edge-based
identification of gradient alignments. To be more precise,
our Jacobi set extraction starts with scalar fields, computes
edge-based gradients in a local bilinear fashion, and identifies
the gradient alignments. This means that we do not extract
a global gradient field, which is necessary for the parallel
vectors operator. Furthermore, due to the preservation of the
topology of the piecewise linear method [8], our approach
guarantees several topological properties; in particular, it sat-
isfies the Even Degree Lemma [8], which is at the core of
our connection method.

3 Background

In this section, we review the underlying theory of Jacobi
sets and outline the piecewise linear computation of Jacobi
sets by Edelsbrunner and Harer [8].

3.1 Jacobi sets andMorse theory

The Jacobi set is defined for a pair of Morse functions on
a smooth d-manifold M. For the purpose of this paper, we
restrict our attention to a subset M ⊂ R

2 of the Euclidean
space R2. Given a smooth function f : M → R, the gradi-
ent ∇ f (x) at the point x ∈ M is well-defined by its partial
derivatives. The point x is a critical point if the gradient
vanishes; otherwise it is a regular point. A critical point x
is non-degenerate if the Hessian (i.e., the matrix of second-
order derivatives) is invertible. The function f is a Morse
function if every critical point is non-degenerate and the crit-
ical points have distinct function values [9, page 128].

Given two Morse functions f , g : M → R, the Jacobi set
J( f , g) is defined as the set of points where the gradients of
both functions are linearly dependent [8], that is

J( f , g) :={x ∈ M | ∇ f (x) + λ∇g(x) = 0

or λ∇ f (x) + ∇g(x) = 0, λ ∈ R}
={x ∈ M | x is a critical point of f (x) + λg(x)

or of λ f (x) + g(x), λ ∈ R}.

In other words, points in the Jacobi set are referred to as the
simultaneous critical points of f and g [8]. For any value
t ∈ R, we consider the restriction of f to the level sets
g−1(t) of g, ft : g−1(t) → R. J( f , g) can be alternatively
formulated as the closure of the set of critical points of ft ,
that is

J( f , g) =cl{x∈M | x critical point of ft , for some t ∈R}.

The Jacobi set is symmetric, i.e., J( f , g) = J(g, f ). Fur-
thermore, it is a smoothly embedded 1-manifold inM [8].

3.2 Piecewise linear computation of Jacobi sets

We now describe the traditional piecewise linear compu-
tation of Jacobi sets following the work of Edelsbrunner
and Harer [8]. Let K be a triangulation of M and let
φ,ψ : Vert(K ) → R be functions defined on the vertices
of K , Vert(K ). They consider the functions f and g to be
the piecewise linear extensions of φ and ψ , respectively,
f , g : |K | → R. Then, theymodel both of these functions as
the limits of a series of smooth functions, limn→∞ fn = f
and limn→∞ gn = g. The Jacobi set is constructed as the
limit, J( f , g) := limn→∞ J( fn, gn).

The computation of J( f , g) is performed by tracing the
critical points of the 1-parameter family of functions hλ =
f + λg along the edges of K . To be more precise, the algo-
rithm determines for each edge ab the value λ, such that
hλ(a) = hλ(b). This leads toλ = λab = ( fb− fa)/(ga−gb).
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Fig. 2 Critical edge test for 2-dimensional complexes. The reverse
transformation line from a quadratic {av1bv2}-cell between v1 and v2
is marked by the dotted lines

To determine whether such an edge ab is critical (i.e.,
belonging to the Jacobi set), the algorithm examines the link
of ab. Recall that the star of a simplex τ ∈ K is the collection
of simplices that contains τ ; and the link includes simplices
in the closure of the star, i.e., St(τ ) = {σ ∈ K | τ ≤ σ }
and Lk(τ ) = {ν ∈ Cl(St(τ )) | ν ∩ τ = ∅}. The lower star
of a vertex a consists of all simplices in the star that have a
as their highest vertex, while the lower link is the portion of
the link that bounds the lower star. The lower link of ab is
the subcomplex of vertices vi whose hλab function values are
smaller than the ones from a and b.

Let l be the restriction of hλab to the link of ab. The com-
putation relies on the following lemma.

Critical Edge Lemma An edge ab belongs to J if and
only if vertex a is a critical point of l. Moreover, the mul-
tiplicity of ab in J is the multiplicity of a as critical point
of l.

An edge ab with the vertices v1 and v2 in its link Lk(ab)

(see Fig. 2) is a Jacobi edge or critical if and only if
[25]

hλab(a) > hλab(v1) and hλab(a) > hλab(v2), (1)

or hλab(a) < hλab(v1) and hλab(a) < hλab(v2). (2)

We differentiate between the criticality of the edges: if
Eq. 1 holds, the edge is maximal; if Eq. 2 holds, the
edge is minimal. These inequalities may lead to degen-
erate cases, which are resolved by using the Simula-
tion of Simplicity [13]. We refer to Natarajan [25] for
details.

Recall that the degree of a vertex is the number of edges
that contain the vertex.After computing a set of critical edges,
the next step of the algorithm is to construct the 1-manifold
J. Based on the Even Degree Lemma by Edelsbrunner
and Harer [8], stated below, the algorithm concatenates the
edges in pairs, thus forming the 1-manifold J. Our proposed
approach builds upon the above edge-based Jacobi set extrac-
tion under bilinear interpolation.

Even Degree Lemma The degree of a vertex in J is even.

4 Our approach

In this section, we first outline the motivation for our
approach by establishing a new perspective on the piecewise
linearmethod.This lays the foundation for our proposed local
bilinearmethod that preserves the topology of Jacobi set from
[8] and extracts the Jacobi set locally with a bilinear interpo-
lation scheme. Thus, the restriction to an edge-based Jacobi
set representation is avoided and the geometry is enhanced.
Finally, an appropriate local subdivision method for an effi-
cient Jacobi set extraction is presented.

4.1 Motivation and derivation

The piecewise linear computation of Jacobi sets by Edels-
brunner and Harer [8] has several limitations. One of these
is that only the edges of the underlying triangulation can
be identified as components of the Jacobi set. This leads to
zig-zag patterns, poor convergence for increasing mesh res-
olution, and an imprecise Jacobi set representation. To avoid
these issues, the natural way is to use a higher-order interpo-
lation scheme, which is the core of our approach.

To apply this, we propose to use an equivalent formulation
of Jacobi sets, that is

J( f , g) = {x ∈ M | ∇ f (x) × ∇g(x) = 0} . (3)

In our setting, whereM is a smooth 2-manifold embedded in
R
3, the cross-product of ∇ f (x) and ∇g(x) can be expressed

with the help of the unit vectors ei and the determinant

∇ f (x) × ∇g(x) = det

⎛
⎝
e1 ∂1 f (x) ∂1g(x)
e2 ∂2 f (x) ∂2g(x)
e3 ∂3 f (x) ∂3g(x)

⎞
⎠ .

Assuming that M lies in the xy-plane, the cross-product is

∇ f (x) × ∇g(x) = (
∂x f (x)∂yg(x) − ∂y f (x)∂x g(x)

) · e3.

We define κx, called gradient alignment value, as

κx( f , g) := ∂x f (x)∂yg(x) − ∂y f (x)∂x g(x). (4)

The gradient alignment value κx characterizes the linear inde-
pendence of the gradients at the point x ∈ M. This leads to
the scalar field κx : M → R as a function of x, which we
call the gradient alignment field. According to the Jacobi set
definition, the point x belongs to the Jacobi set J( f , g) if and
only if κx( f , g) = 0.

Our next step is to examine how the (smooth) gradi-
ent alignment field κx( f , g) behaves for both linearly and
bilinearly interpolated functions f and g, the corresponding
gradient alignmentfields are denotedκ li

x andκbi
x , respectively.
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Fig. 3 Illustration of the scalar
field f over two connected
triangles abv1 and av2b

We assume f to be linear in each of the triangles {abv1}
and {av2b} (for the notation, see Fig. 3). For the triangle
{abv1}, we use the formula fabv1(x, y) := a f

00+a f
10x+a f

01y,
which leads to the following system of linear equations:

⎛
⎝
1 xa ya
1 xb yb
1 xv1 yv1

⎞
⎠ ·

⎛
⎜⎝
a f
00

a f
10

a f
01

⎞
⎟⎠ =

⎛
⎝

fa
fb
fv1

⎞
⎠ , (5)

where fa = f (xa, ya), fb = f (xb, yb), fv1 = f (xv1 , yv1).
The analytical solution leads to the following gradient of
fabv1 :

∇ fabv1(x, y) =
(
a f
10

a f
01

)

= 1

Aabv1

(
( fb − fa)yv1 + ( fa − fv1)yb + ( fv1 − fb)ya
( fa − fb)xv1 + ( fv1 − fa)xb + ( fb − fv1)xa

)
,

where Aabv1 = xa(yb − yv1) + xb(yv1 − ya) + xv1(ya −
yb) describes the area of the parallelogram spanned by the
edges v1a and v1b. An analogous calculation can be done
for fav2b, gabv1 , and gav2b. According to Equation 4, the
gradient alignment value at the vertex v1 is given by

κ li
v1( f , g) = ∇ fabv1(v1) × ∇gabv1(v1)

= ( fb − fa)gv1 + ( fa − fv1)gb + ( fv1 − fb)ga
Aabv1

.

(6)

Analogously, for the triangle {av2b}, we compute the gradi-
ent alignment value at the vertex v2 via

κ li
v2( f , g) = (∇ fav2b(v2) × ∇gav2b(v2))

= ( fa − fb)gv2 + ( fv2 − fa)gb + ( fb − fv2)ga
Aav2b

.

(7)

These calculations show that the resulting values κ li
v1( f , g)

and κ li
v2( f , g) stem from the gradient alignment field κ li

x , that
is constant on each triangle (because the gradients ∇ f and
∇g are constant on each triangle). With these observations
and the fact that the Jacobi set is equal to the zero-level set

of κx, it is possible to identify critical edges via a change of
sign with respect to κ li

v1( f , g) and κ li
v2( f , g).

Comparing these considerations with the approach of
Edelsbrunner and Harer [8], we will notice that the two
approaches are equivalent. To show this, we consider an edge
ab with Lk(ab) = {v1, v2}. For the edge ab to be critical,
either Eq. 1 or Eq. 2 needs to be true. Let us assume that Eq. 1
holds. We can reformulate it in terms of κ li

v1 and κ li
v2 :

hλab(a) > hλab(v1) and hλab(a) > hλab(v2)

⇔ 0 > hλab(v1) − hλab(a) and 0 > hλab(v2) − hλab(a)

⇔ 0 >
( fb − fa)gv1 + ( fa − fv1)gb + ( fv1 − fb)ga

ga − gb

and 0 <
( fa − fb)gv2 + ( fv2 − fa)gb + ( fb − fv2)ga

ga − gb
.

⇔ 0 >
κ li
v1 · Aa,b,v1

ga − gb
and 0 <

κ li
v2 · Aa,v2,b

ga − gb
.

An analogous calculation can be done for Eq. 2with swapped
signs for both conditions. As a result, the following relations,
which explicitly show the connection between the approach
of Edelsbrunner and Harer and the gradient alignment field,
can be established:

Eq1: hλab(a) > hλab(v1) and hλab(a) > hλab(v2)

⇔
{
if ga−gb > 0 : 0>κ li

v1 Aabv1 and 0<κ li
v2 Aav2b,

if ga−gb < 0 : 0<κ li
v1 Aabv1 and 0>κ li

v2 Aav2b,

Eq.2: hλab(a) < hλab(v1) and hλab(a) < hλab(v2)

⇔
{
if ga−gb > 0 : 0<κ li

v1 Aabv1 and 0>κ li
v2 Aav2b,

if ga−gb < 0 : 0>κ li
v1 Aabv1 and 0<κ li

v2 Aav2b,

where the term ga − gb determines whether an edge ab is
maximal or minimal.

At this point, the consequences are twofold. Firstly, the
gradient alignment values κ li

v1( f , g) and κ li
v2( f , g) charac-

terize a new Jacobi set condition for the edge ab via

ab ∈ J( f , g) ⇔ sgn
(
κ li
v1( f , g)

) �= sgn
(
κ li
v2( f , g)

)
. (8)

Secondly, we observe that the piecewise linear approach by
Edelsbrunner and Harer is also equivalent to the condition in
Eq. 8. In fact, the conditions only differ in a scaling factor:
whereas the gradient alignment field for linearly interpolated
functions f and g (on each triangle) encodes both the topol-
ogy and geometry in the condition (due to the scaling Aabv1
and Aav2b), the approach by Edelsbrunner and Harer solely
relies on topological relations.

Now, the next step is to investigate how the gradient
alignment field κx( f , g) behaves for bilinearly interpolated
functions f and g. To this end, let f and g be given on the
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Fig. 4 Overview of our local bilinearmethodwith one subdivision step:
critical edges (red), Jacobi set points (blue dots), the connected Jacobi
set via line segments (blue), and resulting T-nodes (orange). After the
detection of critical edges via edge-based (linear) gradient alignment
values (a), the Jacobi set points are computed via (bilinear) gradient

alignment values at locations indicated by the dotted lines (b). Then,
the Jacobi set points are connected using the underlying connectivity
of the critical edges (c). The last illustration shows the result after one
subdivision step, including the resulting T-nodes (d)

quadrilateral {av1bv2}-cell (for the notation, see Fig. 3) by
the coefficients b f

i j and bgi j , respectively, and the formula

f (x, y) = b f
00 + b f

10x + b f
01y + b f

11xy,

g(x, y) = bg00 + bg10x + bg01y + bg11xy.

The coefficients can be analogously computed to Eq. 5 via a
systemof linear equations.However, in this case the gradients
are not constant and are given by

∇ f (x, y) =
(
b f
10 + b f

11y

b f
01 + b f

11x

)
, ∇g(x, y) =

(
bg10 + bg11y
bg01 + bg11x

)
.

Hence, the gradient alignment field κx is linear as the follow-
ing general calculation shows:

κbi
x ( f , g) = ∇ f (x, y) × ∇g(x, y)

=
(
b f
10b

g
01 − b f

01b
g
10

)
+

(
b f
10b

g
11 − b f

11b
g
10

)
x

+
(
b f
11b

g
01 − b f

01b
g
11

)
y. (9)

This aspect enables the computation of the zero-level set in
the quadrilateral, instead of identifying critical edges of the
underlying triangulation. In fact, the method by Edelsbrun-
ner and Harer can be extended using a bilinear interpolation
scheme. To be more precise, the gradient alignment values
κ li
v1 and κ li

v2 (see Eq. 6 and Eq. 7) are used for the topological
identification of critical edges, whereas for the geometrical
identification a bilinear interpolation scheme is used.

To this end, the gradient alignment values κbi
v1 and κbi

v2 in
the case of bilinearly interpolated f and g are given by the
following formulas (we skip the technical details):

κbi
v1 = 1

D
·
(
Aabv1 · κ li

v1 · (
xv2 yv1 + xv1 yv2 − xv2 yv2

)

+ Aav2v1 · κ li
a · (

xv1 yb+xbyv1 −xbyb
)+Aav2b · κ li

v2 · (
xv1 yv1

)

+ Abv1v2 · κ li
b · (

xv1 ya + xayv1 − xaya
))

, (10)

κbi
v2 = −1

D
·
(
Aav2b · κ li

v2 · (
xv1 yv1 − xv1 yv2 − xv2 yv1

)

+ Aav2v1 · κ li
a · (

xbyv2 +xv2 yb−xbyb
)+Aabv1 · κ li

v1 · (xv2 yv2)

+ Abv1v2 · κ li
b · (

xaya − xayv2 − xv2 ya
))

. (11)

The values κ li
a and κ li

b are given by

κ li
a ( f , g) := ( fv1− fv2)ga+( fv2 − fa)gv1+( fa− fv1)gv2

Aav2v1

κ li
b ( f , g) := ( fv2− fv1)gb+( fv1− fb)gv2+( fb− fv2)gv1

Abv1v2

with the area for counter-clockwise sorted p1,p2, and p3:

Ap1p2p3 := det

⎛
⎝
xp1 xp2 xp3
yp1 yp2 yp3
1 1 1

⎞
⎠

= xp1(yp2−yp3)+xp2(yp3−yp1)+xp3(yp1−yp2).

The denominator D is computed via

D = (
(xa − xv1) · (xb − xv2)

) · (
yayv1 + ybyv2

)

+ (
(xa − xb) · (xv2 − xv1)

) · (
yayb + yv1 yv2

)

+ (
(xa − xv2) · (xv1 − xb)

) · (
yayv2 + ybyv1

)
.

4.2 Algorithm

An overview of our local bilinear method is given in Fig. 4,
and the algorithm can be divided into three steps:

1. Computation of linear gradient alignment values κ li
x with

the identification of critical edges.
2. Computation of Jacobi set points via the bilinear gradient

alignment values κbi
x .

3. Generation of the Jacobi set representation J( f , g).
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4.2.1 Identification of critical edges

In the previous subsection, we formulated a method (com-
pare Eq. 8), that is topologically equivalent to the one of
Edelsbrunner and Harer [8] in terms of the (linear) gradient
alignment values κ li

v1 and κ li
v2 . We use these values to identify

critical Jacobi set edges. This is the first part of our method
and also the initial step in Algorithm 1. To be more precise,
given edges E = (ei ), we iterate over each edge ei (line 2),
identify v1 and v2 as the lower link of ei (line 3), and com-
pute the gradient alignment values κ li

v1 and κ li
v2 via Eq. 6 and

Eq. 7 (line 4). Afterward, the critical edge test via the change
of sign method is performed (line 5).

While the piecewise linear approach stops here (identify-
ing critical edges of the underlying triangulation), the next
step of our method is to determine a geometrically more pre-
cise Jacobi set representation via Jacobi set points.

4.2.2 Computation of Jacobi set points

In contrast to the piecewise linear computation by Edels-
brunner and Harer, we avoid marking critical edges of the
underlying triangulation by introducing Jacobi set points.
As illustrated in Fig. 4a, a Jacobi set point is conceptually
assigned to a critical edge ab and lies on the line segment
that connects the vertices v1 and v2 viam (compare Fig. 2).

Algorithm 1: Computation of Jacobi set points
Input: Scalar fields f and g, edges E = (ei )
Output: J E = (ei ,pi ): List of critical edges ei with

corresponding Jacobi set points pi
1 begin
2 for ei ∈ E do
3 Find v1, v2 ∈ Lk(ei )
4 Compute κ li

v1, κ
li
v2 // Eq. 6 and Eq. 7

5 if sgn(κ li
v1) �= sgn(κ li

v2) then
6 Compute κbi

v1, κ
bi
v2 // Eq. 10 and Eq. 11

7 if sgn(κbi
v1) �= sgn(κbi

v2) then
8 λ = κbi

v1/(κ
bi
v2 − κbi

v1)

9 else
10 λ = κ li

v1/(κ
li
v2 − κ li

v1)

11 m = a + (b − a)/2
12 if λ < 1/2 then
13 pi = v1 + 2λ(m − v1)

14 else
15 pi = m + (1 − 2λ)(m − v2)

16 add (ei ,pi ) to J E

Given the fact that bilinearly interpolated functions f and
g result in a linear gradient alignment field on the quadrilat-
eral {av1bv2}-cell, there is only one zero on this line segment
if the signs of the values κv1 and κv2 differ. In this context,
the zero of the line segment is given by

0 = κv1 + λ · (κv2 − κv1) ⇔ λ = − κv1

κv2 − κv1
,

where λ is the weighting coefficient that characterizes the
location of the zero via

pi =
{
v1 + 2λ · (m − v1) if λ < 1/2,

m + (1 − 2λ) · (m − v2) if λ ≥ 1/2.
(12)

Thus, the main idea is that the collection of all Jacobi
set points approximates the Jacobi set (see Fig. 4b and c).
The computation of Jacobi set points is the second part of
Algorithm 1 (starting with a critical edge ei in line 6) and
will be explained in the following in more detail.

To compute a Jacobi set point, we compute the bilinear
gradient alignment values κbi

v1 and κbi
v2 (line 6). Then, we per-

form the change of signmethod for κbi
v1 and κbi

v2 (line 7). In the
case of different signs, the weighting coefficient λ character-
izing the Jacobi set point is computed via bilinear gradient
alignment values κbi

v1 and κbi
v2 (line 8). Otherwise, linear gra-

dient alignment values κ li
v1 and κ li

v2 are used (line 10). Finally
the exact location of the Jacobi set point is computed via
Eq. 12 (line 11–15) and added to the list of pairs (ei ,pi ) of
Jacobi set points pi and critical edges ei (line 16).

4.2.3 Connection of Jacobi set points

Given a collection of Jacobi set points computed by Algo-
rithm 1, our goal is to connect them in a way such that they
geometrically approximate the Jacobi set J( f , g). To achieve
this, we utilize the preserved topological properties of the
(linear) gradient alignment values (from Edelsbrunner and

Algorithm 2: Connection of Jacobi set points
Input: J E = (ei ,pi ): List of critical edges ei with

corresponding Jacobi set points pi
Output: J S = {lk = (pki ,pk j )}: Jacobi set lines

1 begin
2 for ei do
3 Find critical edges ei1 , . . . , eid that share a

vertex with the edge ei
4 for ei j do
5 add line segment l = (pi ,p j ) to J S
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Harer, see Eq. 8) to apply the Even Degree Lemma. Accord-
ing to the lemma, the vertices a and b of a Jacobi edge ab
have an even degree. It implies that a Jacobi edge ab is con-
nected to an even number of other Jacobi edges. This is due
to the fact that the degrees of a and b are even and since both
degrees include the edge ab as well, the number of Jacobi
edges connected to ab equals (degr(a)− 1)+ (degr(b)− 1).
The important consequence of this is:

Each Jacobi set point is connected to an even number
(greater than zero) of Jacobi set points and, in particular,
there are no isolated Jacobi set points.

Based on this result, we can describe a method to connect
Jacobi set points. An illustration of this method is presented
in Fig. 5, and a detailed description is given by Algorithm 2,
which will be explained in the following. Given the list of
pairs (ei ,pi ) of Jacobi set points pi that are related to critical
edges ei , we iterate over each critical edge ei (line 2) to find
all critical edges ei j that share a vertex with ei (line 3). These
are used to construct line segments l = (pi ,p j ) with the
respective Jacobi set points pi and p j (line 4-5). This method
produces a collection of line segments that geometrically
approximates the Jacobi set while preserving the topology.

Algorithm 2 could be considered as a “dualization” pro-
cess where each critical edge is replaced by its corresponding
Jacobi set point (as its “dual”); in fact, two Jacobi set points
are connected by a line segment if their corresponding crit-
ical edges share the same vertex. This aspect is visualized
in Fig. 5, where we use a color-coding and numbering to
highlight the connectivity. In the top, the pairs of critical
edges and Jacobi set points are represented (the dotted lines
emphasize the pairs). The bottom image shows the Jacobi
set representation with our connection method. The effect
of our connection method is that the adjacency of critical
edges (e.g., edge 1 is connected to the edges 0, 2, 3 and 5)
is reflected by the connectivity of Jacobi set points (see the
respective Jacobi sets points). In this way, the topology of the
piecewise linear method is preserved. We provide a formal
proof of the homotopy equivalence in Appendix.

4.3 Local subdivisionmethod

One of the advantages of our local bilinear approach is the
usage of a geometricallymore precise extraction of the Jacobi
set. This typically leads to better convergence properties
compared to piecewise linear schemes. Therefore, we pro-
pose a local subdivision scheme that makes use of the already
identified critical edges by only doing computations in these
locations. Given a critical edge ei = ab and the related
Jacobi set point pi within a {av1bv2}-cell (see Fig. 6), we
now describe a single subdivision step for the edge ab:

Fig. 5 Illustration of our connection method for the computed Jacobi
set points. The top shows our computed Jacobi set points along with
the piecewise linear method, and the bottom illustrates how our method
connects the points. A protruding triangle (resulting in a loop) is shown
on the left, whereas a straightforward topology is presented on the right

Fig. 6 Local refinement around
a critical edge ab

• For the critical edge ab, bisect each edge that belongs to
the two adjacent triangles and connect the new vertices
x1, . . . , x5 such that 8 smaller triangles are obtained.

• Use an interpolant to compute the function values of f
and g at the new vertices x1, . . . , x5.

• Our local bilinear method can now be applied to the
resulting new edges e1, . . . , e8.

This procedure is done for each critical edge, which means a
local efficient subdivision scheme is used. An illustration is
presented in Fig. 4d. It can be observed that T-nodes occur,
which violate the rules of a triangulation. However, for our
purposes, we do not need a consistent global triangulation for
further computations. The new critical edges and Jacobi set
points will only be computed in the local neighborhood, and
therefore, the T-nodes do not affect the repeated application
of the local subdivision method.

5 Results

To evaluate our local bilinear method qualitatively and quan-
titatively, we apply it to three different datasets: an analytical
example, a simulated von Kármán vortex street, and the
multi-field Hurricane Isabel dataset. Additionally, it is com-
pared to the piecewise linear method by Edelsbrunner and
Harer [8]. The methods are performed using MATLAB
(R2022a) on aMacBook Pro with an Intel Dual-Core i5 CPU
@ 3.1GHz and 8GB of RAM. The computation times for
each of the datasets are given in Table 1.

For the quantitative analysis, we introduce the gradient
alignment measure μ that measures the accuracy of the
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Table 1 Comparison of computation times (in seconds). For the piece-
wise linear method the time for identifying critical edges wasmeasured.
For the local bilinear method with and without subdivision (subd.) the
computation times of Algorithm 1 and 2 were added

Analytic Kármán Hurricane

Piecewise linear 0.0055 0.0384 0.2281

Local bilinear 0.0121 0.0728 0.5318

Local bilinear subd. 0.0219 0.1731 2.0936

Fig. 7 Contour lines of the analytic functions f (red dashed lines) and g
(blue dotted lines) with the resulting analytic Jacobi set J( f , g)marked
in black

extracted Jacobi set. Given a globally computed gradient
alignment field κx( f , g) aswell as a Jacobi set representation
J S = {lk = (pki ,pk j )} via a collection of line segments, we
define the gradient alignment measure as

μ(J S) : =
∫
J S κx( f , g) dx∫

J S 1 dx
=

∑
k

∫
lk

κx( f , g) dx∑
k

∫
lk
1 dx

≈
∑

k
1
2

(
|κpki ( f , g)|+|κpk j ( f , g)|

)
‖pk j −pki ‖2∑

k‖pk j − pki ‖2
.

In short, the measure computes the deviation of the Jacobi
set with regard to the globally computed gradient alignment
field κx( f , g). The background of this measure is that the
gradient alignment value is zero for x ∈ J( f , g).

5.1 Analytic dataset

The first dataset consists of two artificially generated scalar
fields. Both are constructed by the sum of three bivariate
normal distributions on the unit square. To get an impression
of the two functions, a visualization of the contour lines is
presented in Fig. 7. The figure also shows the Jacobi set
of these two functions (black line) given by an analytical
formula. Therefore, we can compare the Jacobi set extracted
by our local bilinear approach (or by the piecewise linear
approach) with the true Jacobi set.

In Fig. 1, the Jacobi sets are computed by the piecewise
linear approach (top row) and our local bilinear method (bot-
tom row) for a fixed resolution and different zoom levels
on a (triangulated) rectangular grid. First of all, both meth-
ods identify the fundamental topological structure correctly.
For each zoom level, the piecewise linear approach produces
a solution that highly suffers from the edge-based geomet-
ric representation of the Jacobi set (which stems from the
underlying triangulation), leading to zig-zag patterns. Fur-
thermore, the zoomed-in image (top right) reveals that the
Jacobi set representation consists of several (“glued”) trian-
gles of the underlying triangulation, resulting in misleading
topological patterns.While our local bilinear method obtains
the same topology, these triangles are merged geometrically,
leading to a clearer geometric representation. In sum, our
local bilinear method results in a smoother and more precise
Jacobi set representation (e.g., see third column).

In the following, we also evaluate the proposed local sub-
division method. It can be applied to both our local bilinear
method and the piecewise linear method. The qualitative
results are presented in Fig. 8, and the corresponding gra-
dient alignment measure is depicted in Fig. 9.

In general, both Jacobi set representations produce incor-
rectly detected regions and artifacts for the initial configura-
tion, especially at the bottom right. This is due to the coarse
irregularmesh and resulting degenerate areas.With the appli-
cation of subdivision, both methods produce better results;
however, our local bilinear method results in much smoother
representations. This observation can also be noticed in the
error plot in Fig. 9. The gradient alignment measure shows
that our approach results in less error and has a faster con-
vergence than the piecewise linear method.

5.2 Von Kármán vortex street dataset

While the analytic dataset provides first insights into our
approach, we now apply our method to a simulated von Kár-
mánvortex street [15]. Thedataset consists of 1501 time steps
describing the velocity and has a resolution of 640× 80. We
use the magnitudes of the flow velocity for two consecutive
time steps as the two scalar fields for the Jacobi set compu-
tation. For our examples, we start at time step 1500, where
the vortex street is fully emerged.

A visualization of the von Kármán vortex street for this
time step is depicted in Fig. 10 top. The figure also shows
the Jacobi set computed by the piecewise linear approach
(middle) and our approach (bottom). In general, we observe
that the Jacobi set captures the topological structure of each
Kármán vortex. However, similar to previous observations,
the zig-zag patterns of the piecewise linear approach make it
hard to distinguish between different topological structures.

For a zoomed-in view, the top rows of Fig. 11 show the
framed area in Fig 10 in more detail. We observe that both
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Fig. 8 Comparison of 0, 1, 2, and 4 subdivision steps with adjusted
zoom levels (left to right) for the piecewise linear (top) and local bilin-
ear (bottom) method using the analytic dataset on a triangulated mesh

with 80 × 80 data points. The globally computed gradient alignment
values are not interpolated to emphasize the subdivision process

Fig. 9 The gradient alignment measure for different subdivision steps
(analogously to Fig. 8) for the piecewise linear (red) and our local bilin-
ear (blue)method. The vertical dashed lines correspond to the snapshots
in Fig. 8

methods fail to produce the correct topological structure at
the top left (compare the gradient alignment field in the back-
ground). However, due to our connection method, our Jacobi
set representation suggests that this region is problematic and
may contain wrongly detected areas. In the piecewise linear
case, the regular identification of Jacobi set patterns via the
underlying triangulationmakes it hard to distinguish between
correctly and incorrectly detected areas. Besides of that, at
the middle and top right areas, our local bilinear method
captures the geometry better due to the smooth Jacobi set
representation.

Another comparison of these two methods is done by
using the local subdivision method (rows 2–4 in Fig. 11).
We observe for both methods that the incorrect topological
structures in the top left disappear after one subdivision step.
Another important aspect is shown in the third row (with two
subdivision steps). Topologically identified patterns, such as
the isolated triangle at the bottom left, can disappear visu-
ally for our bilinear method due to geometrical contraction.

Fig. 10 LIC visualization of the fully emerged von Kármán vortex
street (top) as well as a comparison of the Jacobi set computed with the
piecewise linear method (middle) and our method (bottom). The two
scalar fields represent the flow velocity magnitude for two consecutive
time steps. The boxed-in areaswill be discussed inmore detail in Fig. 11

This can never happen for the piecewise linear approach.
Applying subdivision four times, we observe that the repre-
sentation of topological structures is significantly improved.
While the piecewise linear approach identifies the circular
shape rather poorly (due to the underlying grid), the geom-
etry of our method captures the circularity more clearly (in
the limit, the shape is nearly an ellipse).

5.3 Hurricane Isabel dataset

Jacobi sets are motivated as a topological descriptor of mul-
tiple scalar fields with different quantities. Here, we perform
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Fig. 11 For the piecewise linear (left) and local bilinear (right) compu-
tation of the Jacobi set, the top rows show the zoomed-in view of Fig. 10
(see the white box). As scalar functions, flow magnitudes of two con-

secutive time steps are used. Furthermore, the subdivision method is
applied in the zoomed-in areas for both methods

Fig. 12 Comparison of the piecewise linear (a) and local bilinear (b) computation of Jacobi sets for the Hurricane Isabel dataset. For the Jacobi
set, a pressure and temperature scalar field is used. Furthermore, our local bilinear method with two subdivision steps is illustrated (c)

the Jacobi set extraction on the multi-field real-world dataset
Hurricane Isabel1. The dataset consists of multiple 3D scalar
fields and a 3D velocity vector field that have a resolution of
500 × 500 × 100 and 48 time steps.

We use the pressure and temperature scalar field at time
step 30 and height 50 to compare the Jacobi set computation
methods in Fig. 12. At this height, the hurricane has a large
spatial expansion and reveals many characteristic structures.

Comparing the piecewise linear method (Fig. 12a) with
ourmethod (Fig.12b),we observe thatmany areas aremarked

1 Hurricane Isabel data produced by the Weather Research and Fore-
cast (WRF) model, courtesy of NCAR and the U.S. National Science
Foundation (NSF)

in the top left region.Whereas in the piecewise linear case it is
nearly impossible to track topological structures, our method
(without subdivision) already has a clearer representation due
to geometrical enhancements. However, it can be observed
that the preservation of topology leads to a folding of line
segments, which can clutter areas in the representation (see
exemplary Fig. 5). Our subdivision method (Fig 12c) solves
this issue by thinning out those areas. This leads to a much
clearer representation.

To further demonstrate that our proposed local subdivision
method improves the results, the other zoomed-in area at the
center shows that the identified topological structures match
more clearly the zero-level set (white areas) of the gradient
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alignment field in the background. In fact, several connected
topological patterns are separated correctly.

6 Conclusion

In this paper, we recapped the piecewise linear computation
of Jacobi sets and embedded its theory into our new formu-
lation. This view enables a new formulation that extends the
piecewise linear computation to be based on a bilinear inter-
polation scheme.While preserving the topological structures,
our bilinear interpolation results in a smoother and geometri-
callymore accurate Jacobi set representation. In addition, our
efficient local subdivision method tailored to our approach
further improves the Jacobi set representation.

In the future, we could extend our local bilinear method to
higher dimensions as well as more than two scalar functions.
Additionally, other interpolation methods could be used that
are based on finite elements or higher interpolation schemes
such as biquadratic or bicubic interpolation.

Another idea is to evaluate our local bilinear method in
terms of detecting new features. This not only includes the
raw results but also the representation via connected line seg-
ments. In this regard, the appearance and the spatial spread of
the connected line segments (representing a band-like struc-
ture) could contain more information about the underlying
data, e.g., uncertainty or other features. In addition, since our
method significantly facilitates the investigation of Jacobi
sets, another research direction is to find new interpretations
and applications of Jacobi sets across diverse research areas,
such as image processing or computer vision.
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Fig. 13 Applying Nerve Lemma to a piece of the Jacobi set

Appendix: Proof of homotopy equivalence

In Algorithm 2, each critical edge is replaced by its corre-
sponding Jacobi set point, where two Jacobi set points are
connected by a line segment if their corresponding critical
edges share the same vertex. We claim that such a mapping
preserves the topology due to the Nerve Lemma (see [16,
Corollary 4G.3, page 459] and [9, Nerve Theorem, page 71]).
In our context, as shown in Fig. 13 left, the input to Algo-
rithm 2 is a set of critical edges ei , which form a simplicial
complex K together with their vertices. Recall the closure of
a simplex contains the set of its faces. We form a cover U of
K by treating the closure of each critical edge ei as a cover
element Ui := Cl(ei ), where K ⊆ ⋃

Ui∈UUi (see Fig. 13
middle). Each cover element Ui is a convex and closed set,
and the intersection of Ui and Uj is contractible. Therefore,
the Nerve Lemma applies and the nerve of U, which contains
a 3-simplex (a yellow tetrahedron) as shown in Fig. 13 right,
is homotopy equivalent to K . The output of Algorithm 2 is
by construction precisely the 1-skeleton of the nerve of U.
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