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Abstract

Merge trees are a type of graph-based topological summary that tracks the evolution of
connected components in the sublevel sets of scalar functions. They enjoy widespread applications
in data analysis and scientific visualization. In this paper, we consider the problem of comparing
two merge trees via the notion of interleaving distance in the metric space setting. We investigate
various theoretical properties of such a metric. In particular, we show that the interleaving
distance is intrinsic on the space of labeled merge trees and provide an algorithm to construct
metric 1-centers for collections of labeled merge trees. We further prove that the intrinsic property
of the interleaving distance also holds for the space of unlabeled merge trees. Our results are a
first step toward performing statistics on graph-based topological summaries.

1 Introduction

Many applications in science and engineering use scalar functions to describe and model their data.
For example, atmospheric scientists compare the Weather Research and Forecasting model with
daily surface observations in weather forecasts, where both simulated and observed parameters
(such as surface temperature, pressure, precipitation, and wind speed) can be modeled as scalar
functions. We are interested in comparing scalar functions by comparing their topological summaries.
There are several types of summaries constructed from topological methods, including vector-based
summaries such as persistence diagrams [29] and barcodes [33], as well as graph-based summaries
such as merge trees, contour trees [13], and Reeb graphs [44].

The merge tree (sometimes referred to as a barrier tree [31] or a join tree [13]) for a given space
X equipped with a scalar function is a construction that tracks the evolution of sublevel sets. For a
given function f : X→ R, the merge tree encodes the connected components of the sublevel sets
f−1(−∞, a] for a ∈ R. This construction is closely related to that of the Reeb graph [44], which
analogously encodes connected components of the level sets f−1(a). The contour tree [13] is a
special type of Reeb graph for a simply connected domain. Both merge trees and Reeb graphs are
related to the level-set topology through critical points of the scalar functions [39]. Furthermore,
the mapper graph [48], which has found considerable success in applications, can be viewed as an
approximation of a Reeb graph [16, 42, 14]. These constructions are referred to as graph-based
summaries as the output object of study is always a graph G equipped with an induced real-valued
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function f : G → R. They have appeared in many contexts and applications over the last few
decades [53, 43, 54].

Considerable recent effort has gone into understanding how to perform proper statistics on
graph-based summaries. For instance, how does one define the mean of a collection of these objects?
The first step toward answering this question is to determine a metric for the comparison of two
summaries. This has been extensively studied recently with the creation of a veritable zoo of metric
options for Reeb graphs and merge trees [40, 23, 2, 4, 1, 25, 3, 50, 15, 5]; see Section 2.3 for a
discussion of some of these metrics. In particular, Carriére and Oudot [15] have investigated whether
some of these metrics are intrinsic in the more general case of Reeb graphs; i.e., that the distance
between two (close enough) graphs can be realized by a geodesic.

In this paper, we continue the investigation into the intrinsic-ness of these metrics with the more
narrow view of merge trees. One of the main distances we study is the interleaving distance. This
metric was originally given in the context of persistence modules [17, 18] as a generalization of the
bottleneck distance, and has been ported to merge trees [40, 51] and Reeb graphs [23, 20] via a
category-theoretic viewpoint [9, 24]. When restricting ourselves from Reeb graphs to merge trees, we
can actually work in an even more restrictive setting that has desirable theoretical properties, namely,
labeled merge trees. In this case, we study a data triple: a merge tree T with its function f : T → R,
and a labeling π : {1, · · · , n} → V (T ) of its vertices, which at a minimum encompasses the leaves of T .
The interleaving distance for labeled merge trees has been investigated in [41], where it is shown that
the metric can be naturally realized as the L∞-distance for a particular matrix construction. This
construction has already been discovered in the context of dendrograms [49] and phylogenetic trees
[12], where the objects of interest are closely related to merge trees. The phylogenetic tree literature,
in particular, provides a wealth of other options for metrics [45, 46, 22, 21, 26, 6, 8, 7, 30, 11, 19].
There has also been interest in that community for creating summaries of collections of phylogenetic
trees [38, 37, 32].

These ideas are also closely related to those of ultrametrics, a strengthening of the triangle
inequality for a metric into a requirement that d(x, y) ≤ max{d(x, z), d(z, y)}. Independent of the
phylogenetic tree work, there has been extensive interest in what is known as Gelfand’s Problem
from the ultrametric literature, that is, to describe all finite ultrametric spaces up to isometry using
graph theory. The answer to this question is exactly a restriction of the labeled merge tree, although
their literature never calls it such [34, 35, 36, 28, 27].

Our contributions. In Section 2, we provide the necessary background on labeled merge trees
and establish a correspondence between labeled merge trees and a particular class of matrices known
as ultra matrices (Lemma 2.9). We also discuss several metrics on labeled and unlabeled merge trees,
how to obtain their intrinsic counterparts, and the known relationships between these metrics. Then,
in Section 3, we prove a stability result for the labeled interleaving distance dLI (Lemma 3.2), which
we use both to show that dLI is strictly intrinsic on the space of labeled merge trees (Corollary 3.3)
as well as to construct 1-centers for collections of labeled merge trees in Section 3.3.

Section 4 focuses on unlabeled merge trees and the interleaving distance. In particular, given two
unlabeled merge trees, we show that the unlabeled interleaving distance between them is equal to the
infimum over all finite labelings for the two trees of the labeled interleaving distance between them
(Proposition 4.1). In fact, we show in Corollary 4.4 that the infimum is always achieved. Section 4
concludes with the result that the interleaving distance is intrinsic on the space of unlabeled merge
trees (Theorem 4.5). We conclude with a discussion of open problems and future work in Section 5.
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2 Background

In this section, we give the basic definitions for our constructions of interest. We refer to Section 1
for an overview of notation. For the entirety of the section, we fix n, and denote {1, · · · , n} by [n].

Valid Matrices = VM

LMT = Labeled Merge Trees MT = Merge trees

Ultra Matrices = UM

T

U=MT

M
∼=

Figure 1: A roadmap of key notation.

2.1 Labeled Merge Trees

First, we give the definition of a merge tree and related notions arising from the phylogenetic tree
literature that we will make use of shortly.

Definition 2.1. A merge tree is a pair (T, f) of a finite rooted tree T with vertex set V (T ) and
a function f : V (T )→ R ∪∞ such that adjacent vertices do not have equal function value, every
non-root vertex has exactly one neighbor with higher function value, and the root (a degree one node)
is the only point with the value ∞. The space of merge trees is denoted MT.

We commonly call the function f a height function, the non-root vertices with degree 1 are called
leaves, and we let depth(u) denote the largest height difference between the vertex u in T and any
node in the subtree rooted at u. All merge trees under consideration in this paper are assumed to
be finite. MT also denote the space of unlabeled merge trees.

In some sense, replacing a merge tree edge e = (u, v) with f(u) < f(v) by a subdivision of that
edge where the interior vertex w satisfies f(u) < f(w) < f(v) does not change the inherent structure
of the tree (sometimes such a tree is referred to as an argumented merge tree). We consider two
merge trees to be the same if one can be obtained from the other by a sequence of such subdivisions
or the inverse operation.

Furthermore, the merge tree structure induces a poset relation on the vertices of T . We say v
is an ancestor of w and write v � w if the unique path from v to w strictly decreases in f . This
occurs if and only if w is in the subtree of v. We use LCA(v, w) ∈ T to mean the lowest common
ancestor of v and w (or LCAf (v, w) if the function needs to be emphasized), and f(LCA(v, w)) for
its function value. We abuse notation and write LCA(S) for the lowest common ancestor of any
finite set S ⊂ V (T ).

The merge tree structure provides a method for inducing a metric on the underlying tree vertices
via the metric given by the length of the unique path between two points. Note that there is a
canonical weighting associated to any merge tree (T, f), namely, ω(u, v) = |f(u)− f(v)| for any two
adjacent vertices u and v in the tree. Further, as paths are unique in a tree, we can define a metric
for any pair of vertices by δT (u, v) =

∑
ω(e) for the edges in the path from u to v.

In Section 3, we will be focusing on labeled merge trees, defined as follows.
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Definition 2.2. A labeled merge tree is a triple (T, f, π) consisting of a merge tree (T, f) along
with a map π : [n] → V (T ) that is surjective on the set of leaves. When additional data are
unnecessary or clear from context, we sometimes write T for (T, f, π). The space of labeled merge
trees is denoted LMT.

Analogously to the unlabeled case, we consider two labeled merge trees to be the same if one can
be obtained via edge contractions or insertions that respect the function values and existing labels.

This definition is closely related to that of a weighted, rooted X-tree from the phylogenetic
literature [47]. Specifically, given a set X, an X-tree is a pair (T, φ) where T is a tree and
φ : X → V (T ) is a map so that every vertex of degree at most 2 is in the image. The difference is
that such weighted graphs do not keep track of function values, so that two different labeled merge
trees that induce the same weighting might be considered to be the same X-tree. Thus, a labeled
merge tree can be thought of as a weighted, labeled X-tree (where X = [n]) with f(u) specified for
a subset of vertices u that includes all leaves, as function values for the remaining vertices can be
deduced from the weights.

As with X-trees, the labels for our merge tree are allowed to go to vertices that are not leaves;
we essentially think of these as degenerate labeled leaves. Further, we do allow for non-injectivity of
π, so a vertex can have multiple labels. See Section 2 for an example with labels on degenerate
leaves and vertices with more than one label.

2.2 Relating Merge Trees and Matrices

In this section, we give the relationship between labeled merge trees and a particular class of
matrices. Again, see Section 1 for an overview of notation.

We begin with the traditional notion of an ultrametric and our variant of it that relaxes one of
the conditions, which will be closely related to our labeled merge trees.

Definition 2.3. An ultrametric is a function d : X ×X → R such that for any x, y, z ∈ X,

• d(x, y) ≥ 0 and is equal to 0 if and only if x = y,

• d(x, y) = d(y, x), and

• d(x, y) ≤ max{d(x, z), d(z, y)}.

Definition 2.4. A relaxed ultrametric is a function d : X×X → R such that for any x, y, z ∈ X,

• d(x, y) = d(y, x), and

• d(x, y) ≤ max{d(x, z), d(z, y)}.

It is well known that ultrametrics satisfy the isosceles triangle property. That is, for any triple
x, y, z, at least two of d(x, y), d(y, z), and d(x, z) must be equal. Otherwise, assume without loss
of generality that d(x, y) < d(y, z) < d(x, z), and then d(x, z) 6≤ max{d(x, y), d(y, z)}. Note that
this further implies that the pair that are equal must be at least as big as the third value since
d(x, y) = d(y, z) < d(x, z) still violates the ultrametric property. Note that relaxed ultrametrics still
satisfy the isosceles triangle property.

When we have a set X ∼= [n], the information in a relaxed ultrametric can be stored as follows.

Definition 2.5. A symmetric matrix M ∈ Rn×n is called valid if Mii ≤ Mij for all 1 ≤ i, j ≤ n.
A valid matrix M is called ultra if Mij ≤ max{Mik,Mkj}. The spaces of valid and ultra matrices
are denoted VM and UM, respectively.
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In particular, a relaxed ultrametric on [n] is represented by an ultra matrix. Inspired by the
cophenetic matrix construction of [12] that is studied in relation to merge trees in [41], there is a
natural way to associate a matrix to a labeled merge tree as follows.

Definition 2.6. The induced matrix of the labeled merge tree (T, f, π), denoted M(T, f, π) ∈
Rn×n, is the matrix

M(T, f, π)ij = f(LCA(π(i), π(j))).

See Section 2 for an example.

Lemma 2.7. The induced matrix of a labeled merge tree is an ultra matrix. That is, M(T, f, π) ∈
UM for (T, f, π) ∈ LMT.

Proof. Let M = M(T, f, π) for (T, f, π) ∈ LMT. First, to check that it is a valid matrix, we see
that Mii is simply the function value f(π(i)). So, as f(u) ≤ f(LCA(u, v)) by definition, we have

Mii = f(π(i)) ≤ f(LCA(π(i), π(j))) = Mij .

To check that it is an ultra matrix, let u = LCA(π(i), π(k)), v = LCA(π(j), π(k)), and w =
LCA(π(i), π(j), π(k)). This means that u � w and v � w. If u and v are not comparable, then there
are two distinct paths from π(j) to each of them, and thus we have a loop π(j)→ u→ w → v → π(j),
contradicting the tree property of T . If u and v are comparable, assume without loss of generality
that u � v; then v is a common ancestor for π(i), π(j), and π(k), and thus w � v. This implies
f(w) ≤ f(v), and so

Mij ≤ f(w) ≤ f(v) = max{f(u), f(v)} = max{Mik,Mjk}.

A valid matrix may be viewed as representing a function on the complete graph of n vertices,
with function value Mii on vertex i and function value Mij on edge ij. Note that because M is a
valid matrix, any sublevel set of the resulting function is a simplicial complex as every edge has
equal or higher function value than either of its vertices. Given a valid matrix, one may obtain a
labeled merge tree and subsequently an ultra matrix in the following way.

Definition 2.8. The labeled merge tree of a valid matrix M ∈ Rn×n, denoted T (M), is the
labeled merge tree (in the sense of a 7→ π0(f−1(−∞, a])) of the complete graph with the induced
function.

Note that the labeling is inherited by including internally labeled vertices if there is any pair i 6= j for
which Mii = Mij . See Section 2 for a labeled tree containing an example of when Mii = Mij = Mjj

creating a leaf with two labels, as well as an example where Mii = Mij > Mjj creating an internal
labeled vertex.

Lemma 2.9. M induces a 1-1 correspondence between labeled merge trees and ultra matrices.

Proof. We start with injectivity of M. From [47], a metric δ is called a tree metric if there exists a
weighted [n]-tree (i.e., a weighted X-tree with X = [n]) (T, f, π, ω) for which δ(i, j) =

∑
e∈γ ω(e) for

γ the unique path from π(i) to π(j) if π(i) 6= π(j), and is 0 otherwise. By [47, Thm. 7.1.8], such a
weighted [n]-tree representation is unique. For any (T, f, π) ∈ LMT, we can construct a tree metric
δT : [n]× [n]→ R≥0 uniquely from M(T, f, π) by setting

δT (i, j) = 2M(T )ij −M(T )ii −M(T )jj ;
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a1 a1 a4 a4

· a1 a4 a4

· · a3 a3

· · · a2
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M

Figure 2: An example of a labeled merge tree with two types of degenerate labels. As all matrices
used are symmetric, we only show the upper triangular portion.

this is the length of the path from π(i) to π(j). So, given any (T, f, π), (T ′, f ′, π′) ∈ LMT, we
construct the two tree metrics δT and δ′T . However, these two tree metrics are equivalent as
δ′T (x, y) ≤ δT (x, y) ≤ 2δ′T (x, y). This implies that any continuity condition is the same under either
choice of metric.

For ease of notation, denote M(T, f, π) by M(T ); similarly for M(T ′). If M(T ) = M(T ′),
then (T, f, π, ω) = (T ′, f ′, π′, ω′) as weighted [n]-trees by keeping the weighting but forgetting the
function values and which vertex is the root. Since the function value of any labeled vertex can be
determined by M(T )ii, this implies that T = T ′ as labeled merge trees.

Next, we tackle surjectivity of M. Given any ultra matrix M , we want a labeled merge tree T
for which M(T ) = M . In particular, we will show that T = T (M) satisfies this requirement, which
further gives that T is the inverse of M. To construct T (M), let K be the complete graph on n
vertices with vertices labeled v1, · · · , vn. Define the map s : K → R on the simplicial complex K by
s(vi) = Mii (vertex map) and s(vi, vj) = Mij (edge map). Because M is a valid matrix, this gives a
well-defined map; in particular, s(vi) ≤ s(vi, vj) for any i 6= j.

First, we check the diagonal entries of the matrix. By definition of the construction of T (M),
there is a vertex π(i) in the resulting tree with function value f(π(i)) = s(vi) = Mii, so clearly
M(T (M))ii = f(LCA(π(i), π(i))) = f(π(i)) = Mii.

Finally, we check the non-diagonal entries, so assume i 6= j and consider Mij . Note that
M(T (M))i,j = f(LCA(π(i), π(j))) is exactly the function value for which the components containing
vi and vj merge in the sublevel set persistence of s : K → R. (See the end of Section 2.3 for a very brief
discussion of sublevel set persistence.) Because s(vi, vj) = Mij , this means that M(T (M))i,j ≤Mij .
Seeking a contradiction, assume that M(T (M))i,j < Mij . In order for the components with vi
and vj to have merged before Mij , there must be a path γ = viu1u2 · · ·ukvj for which every
internal edge e has s(e) < Mij . By the isosceles property using the triangle vivju1, we know
that s(vi, vj) = Mij and s(vi, u1) < Mij , so s(vj , u1) = Mij . The same logic for triangle u1u2vj
implies that s(vj , u2) = Mij . Repeating this process for the entire path, we conclude finally that
s(vj , uk−1) = Mij . However, then the triangle vjuk−1uk has both s(uk−1, uk) and s(uk, vj) strictly
less than s(uk−1, vj), contradicting the isosceles triangle property. Thus, we conclude that no such
path exists, and therefore M(T (M))ij = Mij .

In the course of the above proof, we have showed that MT is the identity when restricted
to ultra matrices, but this is not the case when extending to only valid matrices. However, this
construction does offer a method for turning a valid matrix into an ultra matrix.

Definition 2.10. The ultra matrix of a valid matrix M ∈ VM, denoted U(M), is defined to
be the induced matrix of T (M). That is, U =MT .
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Basically, given a valid matrix M , we can consider M to induce weights of a complete graph on
n vertices. We then compute a minimal spanning tree T (M) of this complete graph based on the
weights. The resulting tree T (M) gives rise to an induced relaxed ultra matrix MT (M).

2.3 Available Metrics

There are a number of metrics that may be defined on the space of (labeled) merge trees. Note
that any metric defined on unlabeled merge trees can be extended to labeled merge trees by simply
forgetting the labeling information (while likely turning the metric into a pseudometric). We now
introduce several of these metrics. In this paper, we focus on interleaving distance dI and labeled
interleaving distance dLI . Other popular distances include functional distortion distance dFD and
bottleneck distance dB . We note that dI = dF in the case of merge trees (Theorem 6.2 of the arXiv
version of [2]); while they are strongly equivalent for general Reeb graphs [4].

Interleaving distance. The interleaving distance is an idea arising from the generalization of the
bottleneck distance for persistence diagrams to arbitrary persistence modules [17]. Generalizations
abound [9, 42, 24], but the analog for merge trees was first given in [40]. We give a modified
definition here, which was shown to be equivalent to the original in [51].

Definition 2.11. Given two merge trees (T, f), (T ′, f ′), a δ-good map α : (T, f) → (T ′, f ′) is a
continuous map on the metric trees such that the following properties hold:

(i) For any x ∈ |T |, f ′(α(x))− f(x) = δ;

(ii) For any w ∈ Im(α) with x′ := LCA(α−1(w)), f(x′)− f(u) ≤ 2δ for all u ∈ α−1(w); and

(iii) For any w /∈ Im(α), depth(w) ≤ 2δ.

The interleaving distance is then defined to be

dI((T, f), (T ′, f ′)) = inf{δ | ∃ δ-good α : (T, f)→ (T ′, f ′)}.

One particularly useful property that we will use later is the following.

Lemma 2.12. Let α : (T, f)→ (T ′, f ′) be a continuous map such that f ′(α(x)) = f(x) + δ for any
x ∈ |T |. Assume u � v. Then

• α(u) � α(v), and

• if w is the unique ancestor of α(u) with f ′(w) = f(v) + δ, then w = α(v).

Proof. Note that u � v implies that f(u) ≤ f(v) and further that the unique path γ from u to v in
T is monotone increasing in f . Then the image of γ in T ′, α(γ), satisfies f ′(α(γ(t))) = f(γ(t)) + δ
and thus is monotone increasing in f ′. Thus, by definition, we have that α(u) � α(v). Further, the
uniqueness of paths implies that if w is the unique ancestor with f ′(w) = f(v) + δ, then it must be
the endpoint of γ, and so w = α(v).

Labeled interleaving distance. The following related metric is closely related to one originally
defined in [12] for comparing phylogenetic trees.

Definition 2.13. Given two labeled merge trees, the labeled interleaving distance is

dLI ((T, f, π), (T ′, f ′, π′)) = ‖M(T, f, π)−M(T ′, f ′, π′)‖∞.
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The reason for calling such a distance an interleaving distance comes from [41] where it is shown
that this metric arises as an interleaving distance on a particular category with a flow [24]. Note
that because we need the labels in order to be able to have a well-defined matrix, this metric only
works on labeled merge trees.

Functional distortion distance. The next distance, introduced in [2], takes inspiration from
the Gromov–Hausdorff distance. Anytime we have a correspondence between points in two different
metric spaces X and Y , we can ask what is the maximum difference between the distance between a
pair of points in X and the distance between a corresponding pair in Y . This is called the distortion
of the correspondence, and the Gromov-Hausdorff distance between X and Y is the infimum of
all correspondence distortions. A natural generalization is to consider the distortion of functions
that may not be metrics, and a natural class of correspondences are those that arise from a pair of
continuous maps.

Definition 2.14. Given two merge trees (T, f) and (T ′, f ′), let φ : T → T ′ and ψ : T ′ → T be
continuous maps. If

G(φ, ψ) = {(x, φ(x)) : x ∈ T} ∪ {(ψ(y), y)) : y ∈ T ′}

and

D(φ, ψ) = sup
(x,y),(x̃,ỹ)∈G(φ,ψ)

1

2
|df (x, x̃)− df ′(y, ỹ)|,

then the functional distortion distance dFD is defined to be

dFD((T, f), (T ′, f ′)) = inf
φ,ψ

max{D(φ, ψ), ||f − f ′ ◦ φ||∞, ||f ◦ ψ − f ′||∞}.

Bottleneck distance. In order to define the next distance, we require a bit of background. In
persistent homology, colloquially known as persistence, one is interested in the changing homology of
an increasing sequence of subspaces associated to a topological space X. Given a smooth function f :
X → R, one may define a sublevel set filtration f−1(−∞, a1) ⊆ f−1(−∞, a2) ⊆ . . . ⊆ f−1(−∞,∞),
and these inclusions induce a persistence module in any homological dimension k by applying
the kth homology functor with coefficients in a field. A homology class is said to be born in
Hk(f

−1(−∞, ai)) if its class does not exist in any previous Hk(f
−1(−∞, ai − ε)), and it is said to

die in Hk(f
−1(−∞, aj)) if its homology class merges with another class in some Hk(f

−1(−∞, ak))
with ak < ai. In this way, elements of the kth homology group may be tracked through the filtration
and recorded in the kth persistence diagram, which is a multiset of points in the extended plane
lying above the diagonal ∆ = {(x, x) : x ∈ R} (since a class dies after it is born). Given persistence
diagrams D = Dg(f) and D′ = Dg(f ′), a partial matching (or partial correspondence) between the
two diagrams is a subset Γ ⊂ D ×D′, where to every p ∈ D there is associated at most one p′ ∈ D′
so that (p, p′) ∈ Γ, and the analog holds for every p′ ∈ D′. The bottleneck distance between D and
D′ is given by

dB(D,D′) = inf
Γ

max

{
max
p∈D

δD(p), max
p′∈D′

δD′(p
′)

}
,

where Γ ranges over all partial matchings between D and D′, and where δD(p) = ||p− p′||∞ if p is
matched to some p′ ∈ D′ and δD(p) = d∞(p,∆) if p is unmatched (similarly for δD′(p

′)).

Definition 2.15. The bottleneck distance between two merge trees (T, f) and (T ′, f ′) is

dB((T, f), (T ′, f ′)) = dB(Dg(f),Dg(f ′)).
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2.4 Intrinsic Metrics

The induced intrinsic metric on a metric space is the infimum of the lengths of all paths from one
point to another. A metric space is said to be a length space if the original metric d coincides with
the intrinsic metric d̂. It is known that d is always less than or equal to d̂. Given a metric d on
merge trees, we may define its intrinsic version as follows.

Definition 2.16. Given two merge trees, let γ : [0, 1]→ MT be a continuous path in d such that
γ(0) = T and γ(1) = T ′. The length of γ induced by the distance d is defined as

Ld(γ) = sup
n,
∑
n−1∑
i=0

d(γ(ti), γ(ti+1)),

where n ranges over N and
∑

ranges over all partitions 0 = t0 ≤ t1 ≤ . . . ≤ tn = 1 of [0, 1]. The
intrinsic metric d̂ induced by the distance d is

d̂(T, T ′) = inf
γ
Ld(γ).

Recall that a metric space is said to be a geodesic space if any two points in the space can be
connected by a curve of length equal to the distance between the two points. In this case, the metric
is said to be strictly intrinsic. Note that a geodesic space is necessarily a length space. The following
theorem provides a sufficient characterization for a complete metric space to be a geodesic space.

Theorem 2.17 ([10, Thm. 2.1.16]). Let X be a complete metric space. If for any two points a and
b from X there exists a midpoint between a and b, then X is a geodesic metric space.

3 Geodesics and 1-Centers for Labeled Merge Trees

In this section, we prove two results involving the labeled interleaving distance and provide methods
for constructing geodesics and 1-centers for collections of labeled merge trees.

3.1 More on the Labeled Interleaving Distance

We begin by pointing out a completeness result for LMT (Section 3.1) and proving a stability result
for dLI (Section 3.2). As a consequence, we show in the next subsection in Corollary 3.3 that the
metric dLI is strictly intrinsic on LMT.

Lemma 3.1. The space of n-labeled merge trees, LMT, equipped with the labeled interleaving distance,
dLI , is complete.

Proof. By Section 2.9, UM ∼= LMT, and the space of ultra matrices, UM, is a closed subspace of
(Rn×n, d∞), which is complete.

Lemma 3.2. For any pair of valid matrices M,M ′ ∈ VM,

dLI (T (M), T (M ′)) ≤ ‖M −M ′‖∞.

Proof. Since, by definition, dLI (T (M), T (M ′)) = ‖U(M)− U(M ′)‖∞, we will actually establish the
inequality ‖U(M)− U(M ′)‖∞ ≤ ‖M −M ′‖∞.

Let δ = ‖M −M ′‖∞. Set T =M(M) and T ′ =M(M ′) to be the associated merge trees, and

M̃ = U(M) and M̃ ′ = U(M ′) the induced ultra matrices. Consider any pair of (possibly equal)
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labels i and j with 1 ≤ i ≤ j ≤ n. We consider the vertices vi and vj in the complete graph K with
s, s′ : K → R the maps on K induced by M and M ′, respectively. As vi and vj are in the same

component of the Mij-sublevel set of s, there is a path γ in K with s(e) ≤ M̃ij for all edges e in the
path. Because ‖M −M ′‖∞ ≤ δ, we have that

s′(e) ≤ s(e) + δ ≤ M̃ij + δ

for every e ∈ γ. So, vi and vj are in the same component of the (M̃ij + δ)-sublevel set of s′ and

thus M̃ ′ij ≤ M̃ij + δ.

Symmetrically, for any t < M̃ij − δ, vi and vj do not lie in the same connected component of
the t-sublevel set of s′. Otherwise, by the same argument as above, vi and vj would belong to the

same connected component of the (t+ δ)-sublevel set of T with t+ δ < M̃ij , a contradiction. Hence,

M̃ ′ij ≥ M̃ij − δ. It follows that |M̃ ′ij − M̃ij | ≤ δ, and since this is true for all labels 1 ≤ i ≤ j ≤ n,

the symmetric matrices M̃, M̃ ′ satisfy ‖M̃ − M̃ ′‖∞ ≤ δ. Hence, dLI (T, T ′) = ‖M̃ − M̃ ′‖∞ ≤ δ.

3.2 Geodesics in LMT

The next corollary looks at the straight line between the matrices associated to two labeled merge
trees. Specifically, given any two labeled merge trees T, T ′ ∈ LMT, we know that their associated
matrices M = M(T ),M ′ = M(T ′) are ultra matrices. We can define the line between them by
setting Mλ := (1 − λ)M + λM ′ for λ ∈ [0, 1]. While not necessarily ultra matrices, it is easy to
check that Mλ ∈ VM for all λ ∈ [0, 1]. We can then pull this back to a path of labeled merge trees
by setting T λ = T (Mλ).

Corollary 3.3 (LMT Geodesics). Given any two labeled merge trees T, T ′ ∈ LMT, and their corre-
sponding ultra matrices M =M(T ),M ′ =M(T ′), the family of merge trees

{
T λ := T

(
Mλ
)}

λ∈[0,1]

defines a geodesic between T and T ′ in the metric dLI . As a consequence, on the space of labeled
merge trees, the metric dLI is strictly intrinsic.

Proof. Let δ denote the distance dLI (T, T ′) = ‖M −M ′‖∞. For any 0 ≤ λ ≤ λ′ ≤ 1, the linearly
interpolating matrices Mλ,Mλ′ satisfy ‖Mλ −Mλ′‖∞ ≤ (λ′ − λ) δ. Hence, by Section 3.2, we have
dLI (T λ, T λ

′
) ≤ (λ′ − λ) δ. Since this is true for all 0 ≤ λ ≤ λ′ ≤ 1, the triangle inequality implies

that the family {T λ}λ∈[0,1] defines a geodesic between T and T ′.

See the example of Section 3. Setting λ = 1/2, Mλ is the matrix (labeled M) shown in the
middle green circle, and T λ (labeled T (M)) is the tree shown at the far right.

3.3 1-centers in LMT

A metric 1-center of a finite set of labeled merge trees is one that minimizes the maximum distance
to any other tree in the set.

Definition 3.4. Given a metric space (X, d), the 1-center c ∈ X of a finite point set P =
{p1, · · · , pm} ⊂ X is

c = arg min
x∈X

max
p∈P

d(x, p).

That is, c is the center of the minimum enclosing ball of P .
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Figure 3: An example of the averaging process for labeled merge trees. T 1 and T 2 are labeled merge
trees with induced matrices M1 and M2. M is the pointwise average of M1 and M2, but is not an
ultra matrix. The labeled merge tree T (M) is shown, whose induced matrix is the ultra matrix
U(M).

In the case of a finite collection of numbers χ in R, the 1-center is simply the midpoint of
the enclosing interval, (max(χ) + min(χ))/2. For a collection of matrices M1, · · · ,MN with L∞-
distance, an option for a 1-center in the space of all matrices is the entry-wise 1-center of the
matrices.

We study the following procedure in order to obtain a 1-center in the space of valid matrices
for a collection of labeled merge trees under the labeled interleaving distance dLI . First, map the
collection of labeled merge trees to their corresponding induced ultra matrices, and then take a
1-center in the space of valid matrices. This coincides with the entrywise defined 1-center in the
space of all matrices mentioned previously. This 1-center is a valid matrix since Mk

ii ≤Mk
ij for all k

implies that
(max

k
(Mk

ii) + min
k

(Mk
ii))/2 ≤ (max

k
(Mk

ij) + min
k

(Mk
ij))/2.

This 1-center (while being valid) may not be an ultra matrix, so we can replace it by its labeled
merge tree and take its corresponding ultra matrix. See Section 3 for an example of the process.
The following proposition establishes the fact that this construction yields a 1-center.

Proposition 3.5 (LMT 1-Center). Let M1, · · · ,MN be a set of ultra matrices, and M their
1-center in the space VM of valid matrices. Let T (M) denote the labeled merge tree of M , and
U =M(T (M)) its corresponding ultra matrix. Then T (M) is a 1-center for the labeled merge trees
{T (M i)}Ni=1; while U is a 1-center for the set of ultra matrices {M1, · · · ,MN}.

Proof. For ease of notation, set T = T (M) and T i = T (M i). Let δ = max
i
‖M −M i‖∞. Then

dLI (T, T i) ≤ ‖M −M i‖∞ by Section 3.2. It then follows that

max
i
dLI (T, T i) ≤ max

i
‖M −M i‖∞ ≤ δ.
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Thus {Ti}Ni=1 is contained in a ball of radius δ centered at T .

To show that this is in fact a minimum enclosing ball, assume there exists a T̃ such that
max
i
dLI (T̃ , T i) < δ. Set M̃ =M(T̃ ). Then for any i,

‖M̃ −M i‖∞ = dLI (T (M̃), T (M i)) = dLI (T̃ , T k) < δ.

This contradicts the assumption that M is a 1-center, and thus T is a 1-center for {T 1, · · · , TN}.
By the relation between distance for ultra matrices and for their corresponding labeled merge trees,
U is a 1-center for {M1, · · · ,MN}, as well.

4 Interleaving Distances for Unlabeled Merge Trees

Moving to the unlabeled setting, we establish the existence of a certain labeling for a pair of merge
trees that allows us to show that the interleaving distance for unlabeled merge trees is intrinsic.

Proposition 4.1. Given two merge trees (T, f) and (T ′, f ′), let L and L′ be the respective leaf sets.
Then

dI((T, f), (T ′, f ′)) = inf
π,π′

dLI ((T, f, π), (T ′, f ′, π′)) (1)

where the infimum is taken over all finite labelings of the two given merge trees, π and π′, using at
most |L|+ |L′| labels.

Prior to proving the proposition, we will investigate the following construction of a labeling
when given a δ-good map. First, note that given two labeled merge trees (T, f, π) and (T ′, f ′, π′),
where π : [n]→ V (T ) and π′ : [n]→ V (T ′), the labeling information can be equivalently stored as
an ordered collection of pairs Π = {(π(i), π′(i)) | i ∈ [n]} ⊆ V (T )× V (T ′). Since the order of the
labels does not matter for this particular application, we will build Π iteratively and assign the
integers at the end.

Let L and L′ denote the leaf sets for T and T ′, respectively. Assume we are given a δ-good map
α as described in Section 2.11. While this map is defined on the underlying metric trees, note that
we can subdivide the trees so that α(v) is a vertex in T ′ for any vertex in T , and further that every
point in the set α−1(w) is a vertex in T if w is a vertex in T ′.

Then, we construct the labeling Π as follows.

(S-1) Fix some v ∈ L, and let w = α(v). Then for every u ∈ α−1(w), add (u,w) to Π. Repeat this
for every vertex in L.

(S-2) For any leaf node w ∈ L′ \ Im(α), let x be its lowest ancestor contained in Im(α). Let
u ∈ α−1(x) be an arbitrary preimage of x from |T |. Add (u,w) to Π. Repeat for all leaves in
L′.

(S-3) Fix an ordering on the pairs in Π = {(ui, wi) | i ∈ [n]} and define π(i) = ui ∈ T and
π′(i) = wi ∈ T ′.

Observe that since the preimage of any leaf node w ∈ L′ ∩ Im(α) must be some vertex (or
vertices) in L, any w ∈ L′ ∩ Im(α) will be paired with some u ∈ L by the process in (S-1), so this
procedure does not miss any leaves in T ′. See Section 4 for an example.

To use this construction to prove Section 4.1, we will use the following two lemmas.

Lemma 4.2. For any (u,w) ∈ Π, |f(u)− f ′(w)| ≤ δ.
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M(T, f, π) =

a1 a4 a7 a7 a1 a4 a7

· a2 a7 a7 a4 a2 a7

· · a4 a5 a7 a7 a5

· · · a0 a7 a7 a4

· · · · a1 a4 a7

· · · · · a2 a7

· · · · · · a4



M(T ′, f ′, π′) =

a2 a5 a7 a7 a2 a5 a7

· a3 a7 a7 a5 a3 a7

· · a5 a5 a7 a7 a5

· · · a1 a7 a7 a5

· · · · a0 a5 a7

· · · · · a2 a7

· · · · · · a4


Figure 4: Given α : (T, f)→ (T ′, f ′), this is an example of the labeling induced by the procedure
discussed after Section 4.1. The image of the map α is given by the red dashed lines, and α is
δ-good for δ = ai+1 − ai. Labels 1-4 were generated in (S-1), the rest in (S-2). Note that there
were two options for the location of label 7 in T . The other choice would be the same as the vertex
labeled 3, and would only change the red entries in M(T, f, π).

Proof. If (u,w) is generated from (S-1) above, then the lemma holds by property (i) in the definition
of the δ-good map α (see Definition 2.11). If (u,w) is generated from (S-2), then the lemma follows
from property (iii) of the δ-good map α. Indeed, let x be the lowest ancestor of w contained
in Im(α), so that α(u) = x. Then 0 ≤ f ′(x) − f ′(w) ≤ 2δ and f ′(x) − f(u) = δ, implying that
|f ′(w)− f(u)| ≤ δ.

Lemma 4.3. For any (u1, w1), (u2, w2) ∈ Π, |f(LCA(u1, u2))− f ′(LCA(w1, w2))| ≤ δ.

Proof. Assume we are given α, a δ-good map. If (ui, wi) is generated from (S-1), set w′i = wi. If
(ui, wi) is generated via (S-2), then let w′i be the lowest ancestor of wi in Im(α). In both cases, we
have that α(ui) = w′i and wi � w′i.

Set u0 = LCA(u1, u2), w0 = LCA(w1, w2) and w′0 = LCA(w′1, w
′
2). We will first show that

w0 = w′0. If both pairs come from (S-1), then wi = w′i and the claim is obvious. So, assume that
at least one, say (u1, w1), comes from (S-2) and thus w1 6= w′1. As wi � w′i � w′0 for each i, the
least common ancestor property implies w0 � w′0. Seeking a contradiction, assume that w0 is not
a common ancestor of both w′i; without loss of generality, say w0 is not an ancestor of w′1. Let
z = LCA(w0, w

′
1, w

′
2). Then there are two paths in T ′ from w1 to z: one through w0 and one through

w′1. This contradicts the tree assumption of T ′. Therefore, w0 is a common ancestor of w′i, implying
w′0 � w0, and so w0 = w′0.

We will now prove the main claim, namely, that |f(u0)− f ′(w0)| ≤ δ. To see that this is the
case, assume that the claim does not hold; that is, either f(u0)− f ′(w0) > δ or f ′(w0)− f(u0) > δ.
Suppose first that f ′(w0) − f(u0) > δ, and consider α(u0). Because ui � u0 for i = 1, 2, by
Section 2.12 we must have that w′i = α(ui) � α(u0) for i = 1, 2. However, then α(u0) is an ancestor
of both w′1 and w′2 with

f ′(α(u0)) = f(u0) + δ < f ′(w0),

contradicting the least common ancestor assumption of w0.
Next, suppose f(u0)− f ′(w0) > δ and consider α−1(w0). We claim that any point in α−1(w0) is

a descendant of u0; i.e., v � u0 for all v ∈ α−1(w0). Otherwise, we have that

f(LCA(α−1(w0))) > f(u0) > f ′(w0) + δ = f(v) + 2δ

for any v ∈ α−1(w0), contradicting property (ii) of Section 2.11. For i = 1, 2, let vi be the unique
ancestor of ui with f(vi) = f ′(w0) − δ. By Section 2.12, since α(ui) = w′i and w0 is the unique
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ancestor of w′i with f ′(w0) = f(vi) + δ, this implies that α(vi) = w0. That is, vi ∈ α−1(w0). Further,
v1 6= v2. Otherwise if v := v1 = v2, then

f(v) = f ′(w0)− δ < f(u0)− 2δ < f(u0)

and thus v is a lower common ancestor of u1 and u2 than u0, a contradiction. Hence, LCA(v1, v2) = u0.
However,

f(u0)− f(vi) = f(u0)− f ′(w0) + δ > 2δ.

This also contradicts property (ii) of Section 2.11, finishing the proof of Section 4.3.

Proof of Section 4.1. Say we have a δ-good map α for some δ ≥ dI((T, f), (T ′, f ′)). We construct
the labelings π, π′ as described above. Then Lemmas 4.2 and 4.3 imply that

dLI ((T, f, π), (T ′, f ′, π′)) ≤ δ.

As this is true for any δ, inf
Π
dLI ((T, f, π), (T ′, f ′, π′)) ≤ dI((T, f), (T ′, f ′)).

To show the other inequality, assume we are given any pair of labelings π, π′ and assume

dLI ((T, f, π), (T ′, f ′, π′)) = δ.

We will construct the map α and show that it is δ-good. For any x ∈ |T |, let Sx ⊆ [n] be the labels
in the subtree of x. Let yi be the unique ancestor of π′(i) ∈ |T ′| for i ∈ Sx with f ′(yi) = f(x) + δ.
First, we note that yi = yj for all i, j ∈ Sx. Indeed, let M =M(T, f, π) and M ′ =M(T ′, f ′, π′).
Then we know M ′ij ≤ δ +Mij and so

f ′(yi) = f(x) + δ ≥ f(LCA(π(Sx))) = Mij + δ ≥M ′ij = f ′(LCA(π′(Sx))).

Because every yi has function value greater than the lowest common ancestor of π′(Sx), the tree
property implies that all yi are equal. Thus, we can set α(x) = yi for any i ∈ Sx and it is well-defined.

We need to ensure that the α constructed is δ-good as given in Section 2.11. The map
satisfies property (i) by construction, so we move on to (ii). Let w ∈ |T ′| ∩ Im(α) and set
x′ = LCA(α−1(w)) ∈ |T |. Fix any u ∈ α−1(w), and clearly f(u) ≤ f(x′). Now x′ must be
LCA(u, u′) for some other u′ ∈ α−1(w). Let i be a label in the subtree of u, and let j be a label
in the subtree of u′. This further implies that x′ = LCA(π(i), π(j)). Set w′ = LCA(π′(i), π′(j))
and note that as π′(i) � w and π′(j) � w, this implies that w′ � w. In particular, this means
f ′(w′) ≤ f ′(w). Further, by assumption |f(x′)− f ′(w′)| = |Mij −M ′ij | ≤ δ. Thus,

f(x′)− f(u) ≤ (f ′(w)− f(u)) + (f(x′)− f ′(w′)) + (f ′(w′)− f ′(w)) ≤ 2δ

as the first part of the middle term is exactly δ, the second is ≤ δ, and the last is negative, showing
that α satisfies property (ii).

Finally, we ensure property (iii). Let w ∈ |T ′| \ Im(α). Let i be the label of any leaf in the
subtree of w, and set y = α(π(i)) to be the image of the vertex labeled i in T . Then the tree
property implies that π′(i) � w � y and thus f ′(π′(i)) ≤ f ′(w) ≤ f ′(y). So,

|f ′(w)− f ′(π′(i))| ≤ |f ′(π′(i))− f ′(y)| ≤ |f ′(π′(i))− f(π(i))|+ δ = |Mii −M ′ii|+ δ ≤ 2δ.

As this is true for every leaf in the subtree of w, depth(w) ≤ 2δ and so α satisfies property (iii).
Thus, we have that dI((T, f), (T ′, f ′)) ≤ dLI ((T, f, π), (T ′, f ′, π′)) for any given Π, completing

the proof of the proposition.
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We can use the construction from the proof to state something stronger. Recall that we work
with finite labeled and unlabeled merge tree throughout the paper.

Corollary 4.4. There exist an n and a pair of labelings π, π′ so that

dI((T, f), (T ′, f ′)) = dLI ((T, f, π), (T ′, f ′, π′)).

Thus, the interleaving distance for finite merge trees is always achieved by a map α.

Proof. The right side of equation (1) is taken over labelings using at most N = |L|+ |L′| labels,
which is finite. Up to reordering, we can use the first |L| numbers to label the leaves in T and
the last |L′| to label the leaves in T ′. All that remains to show is that there are finitely many
possible locations to place the remaining labels in each tree. Indeed, if dI(T, T

′) = δ, then for each
i ∈ {1, · · · , |L|}, one has the option of placing i at any point in (f ′)−1(f(π(i)) + δ) ⊂ T ′. Note that
|(f ′)−1(f(π(i)) + δ)| is finite. Similarly, there are |f−1(f ′(π′(i)) + δ)| possible locations available for
i ∈ {|L|+ 1, N} to be placed in T . For any fixed choice from this set for every i, let M and M ′ be
the associated matrices for T and T ′, respectively.

The options are set up so that any choice of location for label i in the opposite tree will
automatically satisfy |Mii −M ′ii| = δ, so we need only ensure that some choice in each tree of these
locations for every i promises |Mij −M ′ij | ≤ δ. For every choice of remaining labels, say there
is some i, j for which |Mij −M ′ij | > δ. As we have finitely many options, there is an ε so that
|Mij −M ′ij | > δ + ε. However, there is certainly a (δ + ε/2)-good map α that does not take the
labels into consideration, and we could then build the labeling as discussed in Section 4.1, giving a
contradiction. Thus, one of finitely many options achieves the left infimum of (1), and thus there is
a δ-good map α that also achieves the unlabeled distance.

We conclude this section by showing that the interleaving distance is intrinsic on the space of
finite (unlabeled) merge trees.

Theorem 4.5. For the space of finite (unlabeled) merge trees, dI = d̂I .

Proof. Let T and T ′ be two merge trees, and set δ = dI((T, f), (T ′, f ′)). Let π, π′ be optimal
labelings such that dI((T, f), (T ′, f ′)) = dLI ((T, f, π), (T ′, f ′, π′)) = δ, as established by Section 4.4.

Now consider the space of labeled merge trees LMT. By Section 3.3, there exists a geodesic
γ : (T, f, π) (T ′, f ′, π′) in LMT such that the length LdLI

(γ) = δ.

Note that γ can be projected to a path γ′ from T to T ′ in the space of (unlabeled) merge trees
MT by simply forgetting the labeling. As dI((T, f), (T ′, f ′)) ≤ dLI ((T, f, π1), (T ′, f ′, π2)) for any
labelings π1, π2 between any two trees T and T ′, we have

d̂I(T, T
′) ≤ LdI (γ′) ≤ LdLI (γ) = δ. (2)

On the other hand, by definition of the intrinsic metric d̂I induced by dI ,

d̂I(T, T
′) ≥ dI(T, T ′) = δ. (3)

Combining equations (2) and (3), we conclude that d̂I(T, T
′) = dI(T, T

′) for any two merge trees T
and T ′.
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5 Concluding Remarks and Discussion

In this paper, we investigated whether interleaving-type distances for (finite) labeled or unlabeled
merge trees are intrinsic or not, and presented positive answers in both cases. In the case of labeled
trees, the geodesic between two labeled merge trees can be characterized and computed easily, and
we also showed how to compute the 1-center of a set of labeled merge trees. For unlabeled merge
trees, however, computing the geodesic (even if just numerically estimating it) between two merge
trees appears to be significantly harder, part of the reason being that it is NP-hard to approximate
the interleaving distance between two merge trees.

On the other hand, a simpler and easier to compute object is the bottleneck distance dB(T1, T2)
between two (unlabeled) merge trees. We conjecture that the intrinsic distance d̂B induced by dB is
in fact equivalent to d̂I(= dI).

Another natural question is whether (some of the) results for merge trees in this paper can
be extended to contour trees. As a first question, can we characterize and compute the midpoint
(i.e., the contour tree representing the 1-center) for two labeled contour trees under either d̂I , d̂B,
or d̂FD? One idea is to compute the join and split trees of input contour trees, and compute the
midpoint of the pair of join trees (resp., the pair of split trees). Note that each join or split tree can
be viewed as a merge tree. Next we need to use the common ancestor information in both trees
to construct a midpoint for the two contour trees. This step could be subtle: in particular, it is
known [52] that in general, given a descending (join) tree TJ and an ascending (split) tree TS with
consistent functions associated to them, there may not exist a contour tree (or even a graph) whose
join and split trees are equal to TJ and TS , respectively. If such a contour tree exists, then it is
unique, and the algorithm by Carr et al. [13] will compute this tree in near linear time.
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