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Abstract—Massive simulations and arrays of sensing devices, in combination with increasing computing resources, have generated
large, complex, high-dimensional datasets used to study phenomena across numerous fields of study. Visualization plays an important
role in exploring such datasets. We provide a comprehensive survey of advances in high-dimensional data visualization that focuses on
the past decade. We aim at providing guidance for data practitioners to navigate through a modular view of the recent advances,
inspiring the creation of new visualizations along the enriched visualization pipeline, and identifying future opportunities for visualization
research.
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1 INTRODUCTION

W ITH the ever-increasing amount of available com-
puting resources and sensing devices, our ability

to collect and generate a wide variety of large, complex
datasets continues to grow. High-dimensional datasets show
up in numerous fields of study, such as economics, biology,
chemistry, political science, astronomy, and physics, to name
a few. Their wide availability, increasing size, and complex-
ity have led to new challenges and opportunities for their
effective visualization. For example, genomic microarrays in
biology [1], [2], spectrometry data in air quality research [3],
simulation parameters in nuclear safety engineering [4], and
chemical compositions in combustion simulations [5] can all
be mapped to high-dimensional spaces (with a few dozen to
several hundreds of dimensions) for exploration.

On the other hand, the physical limitations of display
devices and our visual systems prevent the direct display
and rapid recognition of structures with dimensions higher
than two or three. In the past decade, a variety of approaches
have been introduced to visually convey high-dimensional
structural information by utilizing low-dimensional projec-
tions or abstractions: from dimension reduction to visual
encoding, and from quantitative analysis to interactive ex-
ploration. A number of surveys have focused on different
aspects of high-dimensional data visualization, such as par-
allel coordinates [6], [7], quality measures [8], clutter reduc-
tion [9], visual data mining [10], [11], [12], and interactive
techniques [13]. Multivariate scientific datasets have also
been investigated in [14], [15], while other surveys [16], [17],
[18] have focused on the various aspects of visual encoding
techniques. These papers provide a valuable summary of
existing techniques and inspiring discussions of future di-
rections in their respective domains. However, few surveys
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in the past decade have aimed at providing a general, co-
herent, and unified picture that addresses the full spectrum
of techniques for visualizing high-dimensional data.

In this work, we strive to provide a broad survey of
advances in high-dimensional data visualization over the
past decade (even though the focus is on the last decade,
the search extends to more than 15 years), with the follow-
ing objectives: providing guidance for data practitioners to
navigate through a modular view of the recent advances,
allowing the creation of new visualizations along the en-
riched visualization pipeline, and identifying opportunities
for future visualization research.

A high-dimensional dataset can be described through the
perspective of the range and domain of a function, which
provides a unified view of several related but different types
of datasets. In this survey, a dataset with more than three
domain or range attributes is considered high-dimensional.

Our contributions are as follows. We propose a cat-
egorization of recent advances based on the visualiza-
tion pipeline [19], enriched with customized classifications
(Fig. 1, Section 2) to highlight the common operations in
each stage of the pipeline (Sections 3, 4, 5). We further assess
the interplay between user interaction and the visualizaiton
pipeline and summarize the prominent interaction patterns
in this context (Fig. 7, Section 6). Finally, we provide a dis-
cussion of emerging research directions in connection with
high-dimensional data visualization (Section 7), as well as
a summary and reflection on our categorization (Section 8).
This paper includes and extends our earlier survey [20] by
enriching existing topics, deliberating about emerging ones
and reflecting on the surveying process.

2 SURVEY METHOD AND CATEGORIZATION

We have conducted a thorough literature review based
on relevant works from major visualization venues, namely
Visweek, EuroVis, PacificVis, and the journal IEEE Transac-
tions on Visualization and Computer Graphics (TVCG) from
the period between 2000 and 2015. To ensure the survey
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n Dimension Reduction
linear projection [21], [22],
non-linear DR [23], [24],

Control Points Projection [25], [26],
Distance Metric [27], [28],

Precision Measures [29], [30]

Subspace Clustering
Dimension Space Exploration

[2], [31], [32],
Subset of Dimension [33], [34],

Non-Axis-Parallel Subspace
[35], [36], [37]

Regression Analysis
Optimization

Design Steering
[38], [39], [40],

Structural Summaries
[5], [41]

Topological Data Analysis
Morse-Smale Complex

[42], [43], [44], [45]
Reeb Graph [46], [47], [48]

Contour Tree [49], [50],
Topological Features [51], [52]
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Axis Based
Scatterplot Matrix [53],

Parallel Coordinate [54],
Radial Layout [55],

Hybrid Construction
[56], [57], [58], [59]

Glyphs
Per-Element Glyphs

[60], [61]
[62], [63],

Multi-Object Glyphs
[64], [65], [66]

Pixel-Oriented
Jigsaw Map [67],

Pixel Bar Charts [68],
Circle Segment [69],

Value & Relation
Display [70]

Hierarchy Based
Dimension

Hierarchy [71],
Topology-based

Hierarchy [72], [73],
Others [74], [75]

Animation
GGobi [76],

TripAdvisorND

[77],
Rolling the
Dice [78]

Evaluation
Scatterplot Guideline

[79], [80],
PCPs Effectiveness [81],

Radical Layout [82],
Animation [83]
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Illustrative Rendering
Illustrative PCP [84],

Illuminated 3D Scatterplot [85],
PCP Transfer Function [86]

Magic Lens [87], [88]

Continuous Visual Representation
Continuous Scatterplot [89], [90],

Continuous Parallel Coordiante [91], [92],
Splatterplots [93]

Splatting for PCPs [94]

Accurate Color Blending
Hue-Preserving
Blending [95],

Weaving vs. Blending
[96]

Image Space Metrics
Clutter Reduction

[97], [98],
Pargnostics [99],
Pixnostic [100]

Fig. 1. Research categorization based on different stages of the visualization pipeline, with subcategories that reflect common approaches.

covers the state-of-the-art, we further selectively searched
through references within the initial set of papers. Beyond
the visualization field, we also dedicated special attention
to the exploratory data analysis techniques in the statistics
community. Through such a rigorous search process, we
have identified more than 200 papers that focus on a wide
spectrum of techniques for high-dimensional data visualiza-
tion. To help organize the large quantity of papers, we have
produced an interactive survey website 1 that allows readers
to select and filter papers through various tags. Due to the
space limitation, not all works in the complete list (available
through the survey website) are discussed in this survey.

As illustrated in Fig. 1, we base our main categoriza-
tion on the three transformation stages of the visualization
pipeline [19] (and its minor variation in [8]), namely, data
transformation, visual mapping, and view transformation.
Each category is enriched with customized subcategories
that reflect common approaches. Instead of focusing on a
complete coverage of relevant research, we strive to provide
a broad overview of advances pertinent to high-dimensional
data visualization while highlighting representative works,
through the carefully designed subcategories, which can act
as guidelines for interested reader to dive into more specific
topics or techniques.

Data transformation (Section 3) corresponds to the analysis-
centric methods such as dimension reduction, regression,
subspace clustering, feature extraction, data sampling, and
abstraction. Visual mapping (Section 4) emphasizes visual
encoding tasks that transform the information from the
data transformation stage for visual representation. This
category includes visual encodings based on axes (e.g., scat-
terplots and parallel coordinate plots), glyphs, pixels, and
hierarchical representations, together with animation and
perception. View transformation (Section 5) methods focus
on screen space and rendering. Examples from this stage
include illustrative rendering for various visual structures,
as well as screen space measures for reducing clutter or

1. www.sci.utah.edu/∼shusenl/highDimSurvey/website/. The site
is developed based on the SurVis [101] framework.

artifacts and highlighting important features.
This design allows us to easily classify the core contri-

butions of vastly different methods that operate on entirely
different objects, but at the same time, reveal their inter-
connections through the linked pipeline. Also, the pipeline-
based categorization provides the reader with a modular
view of the recent advances, allowing new systems to be
configured based on possible options provided by the re-
viewed methods.

Interactivity is an integral part within each stage of
the pipeline (Section 6), as illustrated in Fig. 1. Based
on the amount of user interaction, we classify high-
dimensional data visualization methods into three cat-
egories: computation-centric, interactive exploration, and
model manipulation. The distinction between the latter two
categories is made to emphasize a particular manipulation
paradigm, where the underlying data model is altered based
on interaction to reflect user intention.

Next, we identify two emerging fields of interest in Sec-
tion 7. We survey related works in these areas in a context
independent from the visualization pipeline in order to
consolidate and highlight future directions of exploration.
Finally, Section 8 serves to distill the key points of our
survey.

3 DATA TRANSFORMATION

This section discusses in-depth the typical analysis tech-
niques during data transformation, namely, dimension re-
duction, subspace clustering and regression analysis, as well
as the emerging topic of topological data analysis. We focus
particularly on their usages in visualization.

3.1 Data Value Type
Data transformation starts with input data. The attribute

value type (e.g., nominal vs. numerical) can greatly impact
the choice and design of the visualization. In many appli-
cations, the value of the attributes is nominal in nature.
However, most commonly available high-dimensional data

www.sci.utah.edu/~shusenl/highDimSurvey/website/
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visualization techniques are designed to handle numerical
values only. When utilizing these methods for nominal data,
information overlapping and stacking of visual elements
usually exist. One way to address this challenge is to map
the nominal values to numerical values [102] (e.g., as imple-
mented in the XmdvTool [103]). Through such a mapping,
each axis is used more efficiently, and the spacing becomes
more meaningful. In the Parallel Sets work [104], the authors
introduce a new visual representation that adapts the notion
of parallel coordinates but replaces the data points with
a frequency-based visual representation that is designed
for nominal data. The Conjunctive Visual Form [105] al-
lows users to rapidly query nominal values with certain
conjunctive relationships through simple interactions. The
GPLOM (Generalized Plot Matrix) [106] extends the Scat-
terplot Matrix (SPLOM) to handle nominal data. In recent
work [107], Zhang et al. introduce the visual correlation
analysis for both numerical and categorical data. In addition
to the difference between nominal and numerical value
type, data with a temporal dimension also requires different
approaches. In most situations, the temporal dimension is
analyzed separately, as demonstrated in TimeSpan [108].

3.2 Dimension Reduction
Dimension reduction is one of the fundamental tech-

niques for analyzing and visualizing high-dimensional
datasets. Dimension reduction techniques can be roughly di-
vided into two major categories: linear dimension reduction
and nonlinear dimension reduction (manifold learning).
Linear Projection. Linear projection uses linear transfor-
mation to project the data from high-dimensional to low-
dimensional space. It includes many classical methods, such
as Principal Component Analysis (PCA), Multidimensional
Scaling (MDS), Linear Discriminant Analysis (LDA), and
various factor analysis methods.

PCA [21] is designed to find an orthogonal linear transfor-
mation that maximizes the variance of the resulting embed-
ding. PCA can be calculated by an eigen decomposition of
the data’s covariance matrix or a singular value decompo-
sition of the data matrix. The interactive PCA (iPCA) [109]
introduces a system that visualizes the results of PCA using
multiple coordinated views. The system allows synchro-
nized exploration and manipulations among the original
data space, the eigenspace, and the projected space, which
aids the user in understanding both the PCA process and
the dataset. When visualizing labeled data, class separation
is usually desired. Methods such as LDA aim to provide a
linear projection that maximizes the class separation. The
work by Koren et al. [22] generalizes PCA and LDA by
providing a family of flexible linear projections to cope with
different kinds of data.
Nonlinear Dimension Reduction. Nonlinear dimension re-
duction can occur in either a metric or nonmetric setting.
The graph-based techniques are designed to handle metric
inputs, such as Isomap [23], Locally Linear Embedding
(LLE) [110], and Laplacian Eigenmap (LE) [111], where
a neighborhood graph is used to capture local distance
proximities and build a data-driven model of the space. The
other group of techniques addresses nonmetric problems
commonly referred to as nonmetric MDS or stress-based

MDS by capturing nonmetric dissimilarities. The funda-
mental idea behind the nonmetric MDS is to minimize
the mapping error directly through iterative optimizations.
The well-known Shepard-Kruskal algorithm [112] begins
by finding a monotonic transformation that maps the non-
metric dissimilarities to the metric distances, which pre-
serves the rank-order of dissimilarity. Then, the resulting
embedding is iteratively improved based on stress. The
progressive and iterative nature of these methods has been
exploited recently by Williams et al. [24], where the user is
presented with a coarse approximation from partial data.
The refinement is on-demand based on user inputs. Others
rely on hybrid methods [113], [114] based upon stochastic
sampling and interpolation to approximate the solution. t-
SNE [115] has gained a lot of attention recently due to
its effectiveness for visualizing high-dimensional data. It
utilizes a probability distribution to encode the inter-point
neighborhood information, and a mismatched distribution
between high- and low-dimensional spaces is used to elimi-
nate the unwanted attractive forces, therefore, resolving the
crowding problem [115].

Fig. 2. A trade-off exists between the interpretablility of the axis and the
intrinsic structure captured by the dimensionality reduction methods.

The trade-off among the different type of projections
is illustrated in Fig. 2. The bivariate scatterplot (as in a
scatterplot matrix) is most easily understood, since its axes
directly correspond to the original dimensions. A linear pro-
jection [21], [22] generates interpretable embeddings (less so
compared to a bivariate scatterplot), and the out-of-samples
points can be easily projected to the same space. The non-
linear projection (manifold learning) approaches [23], [110],
[111], on the other hand, allow the capture of more complex
structures, but the resulting embedding can be extremely
difficult to interpret.
Control Point Based Projection. For handling large and
complex datasets, the traditional linear or nonlinear dimen-
sion reductions are limited by their computational efficiency.
Some recent developments, e.g., [25], [26], [116], utilize
a two-phase approach, where a set of control points (or
anchor points) is projected first, followed by the projection
of the rest of the points based on the location of the control
points and preservation of local features. Such designs lead
to a much more scalable system. Furthermore, the control
points allow the user to easily manipulate and modify the
outcome of the dimension reduction computation to achieve
the desired results.
Distance Metric. For a given dimension reduction algo-
rithm, a suitable distance metric is essential for the compu-
tation outcome as it is more likely to reveal important struc-
tural information. Brown et al. [27] introduce the distance
function learning concept, where a new distance metric is
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calculated from the manipulation of point layouts by an
expert user. In the Explainers work [28], the author attempts
to associate a linear basis with a certain meaningful con-
cept constructed based on user-defined examples. Machine
learning techniques can then be employed to find a set
of simple linear bases that achieve an accurate projection
according to the prior examples. The structure-based anal-
ysis method [117] introduces a data-driven distance metric
inspired by the perceptual processes of identifying distance
relationships in parallel coordinates using polylines.
Dimension Reduction Precision Measure. One of the fun-
damental challenges in dimension reduction is assessing
and measuring the quality of the resulting embeddings.
Lee et al. introduce the ranking-based metric [118] that
assesses the ranking discrepancy before and after applying
dimension reduction. This technique is then generalized [29]
and used for visualizing dimension reduction quality.

A projection precision measure is introduced in [119],
where a local precision score is calculated for each point
with a certain neighborhood size. In the distortion-guided
exploration work [30], several distortion measures are pro-
posed for different dimension reduction techniques, for
which these measures aid in understanding the cause of
highly distorted areas during interactive manipulation and
exploration. For MDS, the stress can be used as a preci-
sion measure. Seifert et al. [120] further develop this idea
by incorporating the analysis and visualization for better
understanding of the localized stress phenomena. In recent
work [121], Stahnke et al. introduce the notion of probing for
examining the dimension reduction results. This approach
not only reveals points with larger errors but also inter-
actively considers locally correct representations of these
points.

3.3 Subspace Clustering
Clustering is one of the most widely used data-driven

analysis methods. Instead of providing an in-depth discus-
sion of all clustering techniques, in this survey we focus on
subspace clustering techniques that have a great impact on
understanding and visualizing high-dimensional datasets.
Compared to dimension reduction, which aims to compute
one single embedding that best describes the structure of
the data, subspace clustering helps identify multiple em-
beddings, each capturing a different aspect of the data, by
clustering either the dimensions or the data points.
Dimension Space Exploration. Guided by the user, dimen-
sion space exploration methods interactively group relevant
dimensions into subsets. The grouping allows us to better
understand dimension relationships and to identify shared
patterns among the dimensions. Turkay et al. introduce
a dual visual analysis model [2] where both the dimen-
sion embedding and point embedding can be explored
simultaneously. Their later improvement [31] allows for the
grouping of a collection of dimensions as a factor, which
permits effective exploration of the heterogeneous relation-
ships among them. The Projection Matrix/Tree work [32]
extends a similar concept to allow a recursive exploration
of both the dimension space and data space. One recent
advance [122] bridges the gap between the dimension space
and the data space. By combining the dimension and ele-

ment relationship and encoding them into a single matrix,
the proposed approach produces a comprehensive map in
which the data points are presented in the context of the
variables. Several visual encoding methods also rely on the
concept of dimension space exploration. These methods are
discussed in Section 4.3.
Subsets of Dimensions. Compared to the dimension
space exploration, where the user is responsible for
identifying patterns and relationships, subspace cluster-
ing/finding methods automatically group related dimen-
sions into clusters. Subspace clustering filters out the in-
terferences introduced by irrelevant dimensions, allowing
lower-dimensional structures to be discovered. These meth-
ods, such as ENCLUS [33], originate from the data mining
and knowledge discovery community. They introduce some
very interesting exploration strategies for high-dimensional
datasets that can be particularly effective when the dimen-
sions are not tightly coupled. The TripAdvisorND [77] sys-
tem employs a sightseeing metaphor for high-dimensional
space navigation and exploration. It utilizes subspace clus-
tering to identify the sights for the exploration. The sub-
space search and visualization work [123] utilizes the SURF-
ING [124] algorithm to search the high-dimensional space
and automatically identifies a large candidate set of in-
teresting subspaces. In the work presented by Ferdosi et
al. [34], morphological operators are applied on the density
field generated from the (3D) PCA projection of the high-
dimensional data for identifying subspace clusters.
Non-Axis-Aligned Subspaces. Instead of grouping the di-
mensions, which essentially creates axis-aligned linear sub-
spaces, identifying non-axis-aligned linear subspaces is a
more flexible alternative. Projection Pursuit [35] is one of the
earliest works aimed at automatically identifying the inter-
esting non-axis-aligned subspaces, where the projections are
considered to be more interesting when they deviate more
from a normal distribution. Recently, some advances have
been made in the machine learning community to perform
non-axis-aligned subspace clustering [36]. Instead of finding
(possibly overlapping) clusters in axis-aligned subspaces
defined by different dimensions combinations, the points
are directly clustered together for sharing similar linear
subspaces. In particular, this approach assumes the complex
structure of the data can be approximated by a mixture of
linear subspaces (of varying dimensions), and each of the
linear subspaces corresponds to a set of points where their
relationships can be approximately captured by the same
linear subspace. Lehmann et al. [37] have recently intro-
duced an interesting and different approach for identifying
a set of distinct linear projections. By adopting a dissimilar-
ity measure, they aim to remove duplicated data patterns by
optimizing the dissimilarity among the selected projections.
By utilizing random projection [125], Anand et al. [126]
introduce an efficient subspace finding algorithm for data
with thousands of dimensions. The algorithm generates a
set of candidate subspaces through random projections and
presents the top-scoring subspaces in an exploration tool.

3.4 Regression Analysis
Regression analysis for high-dimensional data is an exten-

sive field of research on its own, and so, we focus only on
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the interplay between visualization and regression analysis.
Optimization and Design Steering. Pure optimization
problems often are not the focus in the visualization com-
munity. What is more common are design steering methods
for which, in addition to a multivariate input space, users
have one or several output or response variables they want
to explore (e.g., [39], [40]), where the results require a
qualitative examination or are used to inform decisions.

HyperMoVal [38] is a software system used for validating
regression models against actual data. It uses support vector
regression (SVR) [127] to fit a model to high-dimensional
data, highlights discrepancies between the data and the
model, and computes sensitivity information on the model.
The software allows for adding more model parameters
to refine the regression to an acceptable level of accuracy.
Berger et al. [39] utilize two types of regression models
(SVR and nearest neighbor regression) to analyze a trade-
off study in performance car engine design. Utilizing the
predictive power of the regression, they are able to provide
a guided navigation of the high-dimensional space centered
around a user-selected focal point. The user adjusts the focal
point through multiple linked views, and sensitivity and
uncertainty information is encoded around the focal point.

Tuner [40] uses an automated adaptive sampling algo-
rithm where a sparse sampling of the parameter space is
refined by building a Gaussian Process Model (GPM) [128]
and using adaptive sampling to focus additional samples in
areas with either a high goodness of fit or high uncertainty.
The software then relies heavily on user interaction to study
the sensitivities with respect to each input parameter and
steers the computation toward the user-defined optimal
solution. Demir et al. [129] improve the effectiveness of
GPMs by utilizing a block-wise matrix inversion scheme
that can be implemented on the GPU, greatly increasing
efficiency. In addition, their method involves progressive
refinement of the GPM and can be halted at any point, if
the improvement becomes insignificant.

Most of these methods convey sensitivity information
through user exploration of the input space. In Section 4.2,
explicit visual encodings for understanding sensitivity in-
formation are also discussed.
Structural Summaries. Researchers have also used regres-
sion to summarize data as in the works by Reddy et
al. [41] and Gerber et al. [5]. Both approaches summarize the
structures of the data via skeleton representations. Reddy et
al. [41] use a clustering algorithm followed by construction
of a minimum spanning tree of the cluster centroids in
order to determine possible trends in the data. These trends
are then fitted with principal curves [130] that go through
the medial-axis of the data. HDViz [5], on the other hand,
approximates a topological segmentation (for more details,
see Section 3.5) and constructs an inverse linear regression
for each segment of the data. In both examples, regression
is used as a postprocessing step of the algorithms in order
to present summaries of the extracted subsets of the data.

3.5 Topological Data Analysis
A crucial step in gaining insights from large, complex,

high-dimensional data involves feature abstraction, extrac-
tion, and evaluation in the spatiotemporal domain for effec-

tive exploration and visualization. Topological data analysis
(see [131], [132], [133], [134], [135], [136], [137] for seminal
works and surveys), has provided efficient and reliable
feature-driven analysis and visualization capabilities.

Topology in visualization covers many techniques dealing
with multivariate data over a low-dimensional (e.g. 2, 3 or
4) spatiotemporal domain. This includes well-established
research topics in vector and tensor field visualizations,
and we defer discussion of such topics to the appropriate
surveys [138], [139], [140], [141], [142], [143], [144]. Within
this body of work, a few techniques have stated their
applicability to arbitrary dimensional domain spaces [143],
[145]; however very few applications exist for visualizing
vector or tensor fields in high-dimensional spaces.

Fig. 3. Contour- and gradient-based topological structure of a 2D scalar
function.

In our context, topological data analysis (TDA) is an emerg-
ing field of study that combines algebraic topology and
other pure mathematical disciplines with computer sci-
ence to describe the shape of data in a quantitative and
mathematically rigorous fashion. Previous work in pure
mathematics has focused on the study of topological spaces
under smooth and continuous settings without computa-
tional considerations of noisy and discrete datasets. TDA
typically operates under the discrete setting where combi-
natorial structures such as graphs or simplicial complexes
are imposed on the point cloud data to approximate their
underlying structure. TDA, in our opinion, has over the past
15 years, brought a brand new perspective to topology in
visualization.

The main data analysis tools in TDA are rooted in persis-
tent homology [133], that is, the study of homology for point
cloud data across multiple scales, and topological structures
such as contour trees and Morse-Smale complexes. In the
remainder of this section, we will discuss the applications of
TDA for high-dimensional data visualization in the context
of the visualization pipeline. For a complete taxonomy of
topological methods in visualization including vector and
tensor field visualization, see a recent survey by Heine et
al. [137].

Many TDA techniques construct topological struc-
tures [146], [147] from scalar functions on point clouds (e.g.,
Morse-Smale complexes, contour trees, and Reeb graphs)
as “summaries” over data. As a result, most TDA related
techniques exist in the data transformation stage of the
visualization pipeline. Among the commonly used TDA ap-
proaches, Reeb graphs/contour trees capture very different



6

structural information of a real-valued function compared
to the Morse-Smale complexes as the former is contour-
based and the latter is gradient-based (Fig. 3). They both
provide meaningful abstractions of high-dimensional data,
which reduce the amount of data needed to be processed or
stored; and they utilize sophisticated hierarchical represen-
tations that capture features at multiple scales, which enable
progressive simplifications of features differentiating small-
and large-scale structures in the data.
Morse-Smale Complex. The Morse-Smale complex
(MSC) [42], [148] describes the topology of a function
by clustering the points in the domain into regions of
monotonic gradient flow, where each region is associated
with a sink-source pair defined by local minima and
maxima of the function. The MSC can be represented using
a graph where the vertices are critical points, and the edges
are the boundaries of areas with similar gradient behavior.
The simplification of the MSC is obtained by removing
pairs of vertices in the graph and updating connectivities
among their neighboring vertices, thus merging nearby
clusters by redirecting the gradient flow [149], [150], [151].

HDViz [5] employs an approximation of the MSC (in
high dimensions) to analyze scalar functions on point cloud
data. It creates a hierarchical segmentation of the data by
clustering points based on their monotonic flow behavior,
and designs new visual metaphors based on such a segmen-
tation. This type of visual representation has been employed
in the visual analytics of high-dimensional parameter spaces
originating from simulations in nuclear engineering [4],
[152], [153] and the National Ignition Campaign [154].
Correa and Lindstrom [155] suggest that by considering a
different type of neighborhood structure, the accuracy in
the extracted topology can be improved compared to those
obtained within HDViz. The topological spine [156] uses the
MSC to build an extremum graph that can more faithfully
represent complex structures such as cycles and fractals
occurring in the topology. Narayanan et al. [157] design a
metric for comparing such extremum graphs of related data.
Reeb Graphs, Contour Trees, and Merge Trees. The Reeb
graph of a real-valued function describes the connectivity
of its level sets. A contour tree is a special case of the Reeb
graph that arises in simply connected domains. A merge
tree, also known as a barrier tree, is similar to Reeb graphs
and contour trees except that it describes the connectivity of
sublevel sets rather than level sets. The Reeb graph stores
information regarding the number of components at any
function value as well as how these components split and
merge as the function value changes. Such an abstraction
offers a global summary of the topology of the level sets and
enables the development of compact and effective meth-
ods for modeling and visualizing scientific data, especially
in high dimensions (i.e., [46], [47]). Approximating Reeb
graphs from point cloud data are also possible [158]. For
a more detailed history of the Reeb graph in computer
graphics, see the survey by Biasotti et al. [159]

Mapper [46] decomposes data into a simplicial complex
resembling a generalized Reeb graph and visualizes the
data using a graph structure with varying node sizes. The
software is shown to extract salient features in a study
of diabetes by correctly classifying normal patients and

patients with two causes of diabetes [160]. It is shown, in
a restrictive sense, that Mapper converges to the Reeb space
(a higher-dimensional generalization of Reeb graph) in the
limit [161]. To this end, there have been some very recent
efforts in understanding Reeb spaces and fiber surfaces via
visualization, although those works have largely focused on
bivariate functions on tetrahedral meshes [162], [163], [164].
Extensions of these works to general dimensionality are an
open and interesting avenue of future research.

In terms of comparing the topologies of related data, the
bottleneck distance between persistence diagrams is a well-
established technique [165], but Beketayev et al. [166] have
recently devised a more robust metric for comparing merge
trees that accounts for the nesting structure of the tree.

Efficient algorithms for computing the contour tree [49],
[167], [168], merge tree [50], and Reeb graph [48] in ar-
bitrary dimensions have been developed. The latest state-
of-the-art regarding contour trees have been parallel or
distributed implementations, however these have focused
specifically on tetrahedral meshes or regular grids in low di-
mensions [169], [170], [171], [172]. The visual representations
of these topological structures are discussed in Section 4.4.
For a more detailed reference of these methods in the time-
varying setting, refer to the survey by Mascarenhas and
Snoeyink [173].
Multi-field Analysis. The methods mentioned above deal
primarily with scalar field data (except for those regarding
Reeb spaces [161], [162], [163], [164]), but more recently
techniques have been developed to also deal with multi-
field data. Jacobi sets [174] have been used to locate the
critical points of one scalar field restricted to the level sets of
another scalar field, allowing for the simultaneous compari-
son of two variables of interest. However, most applications
of Jacobi sets have been to low-dimensional examples and
are restricted to comparing only two outputs of interest.

A more recent and general technique is the develop-
ment of the Joint Contour Net (JCN), a generalization of
the Reeb graph introduced by Carr et al. [175], [176] that
allows for the analysis of multi-field data. Duke and Hos-
seini [177] have subsequently improved the performance
with a parallel implementation of the JCN, and Geng et
al. have improved the interactivity by enabling brushing
and linking and demonstrated its effectiveness in finding
periodic patterns in oceanic data [178]. Chattopadhyay et
al. [179], [180] have focused on bridging the gap between
approximation and theory and produced an algorithm for
performing simplification on the JCN among several other
theoretical advancements.

The notion of Pareto optimality has also been explored.
Pareto optimality is the trade-off analysis dealt with in
multi-target optimization where a maximum implies in-
creasing one target function value cannot be done without
reducing another, and vice versa for a Pareto minimum. The
simplicial Pareto set [181] builds off the technique proposed
by Stadler and Flamm [182] to the piecewise linear setting
in order to visualize the so-called Pareto sets of a sampled
multivariate dataset. This work has been extended to deal
with noisy data by using a reachability graph to perform
topological simplification [183]. Huettenberger et al. [184]
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compare the JCN with the Pareto set and conclude that the
JCN can be seen as a good and fast approximation of the
Pareto set under specific conditions.
Other Topological Features. TDA also applies to nonfunc-
tional data such as the focus of persistent homology where
the connected components, circles, and voids in the data
are studied. Carlsson [135] and Ghrist [136] both offer
several applications of TDA and in particular highlight the
topological theory used in a study of statistics of natu-
ral images [185]. Wang et al. [52] utilize TDA techniques
developed by Silva et al. [51] to recover important struc-
tures in high-dimensional data containing nontrivial (high-
dimensional branching and circular structures) topology.
Rieck et al. utilize persistent homology to structurally com-
pare high-dimensional datasets [186], [187] and to compare
dimensionality reduction algorithms [188]. Bubenik [189]
introduces a visualization called the persistence landscape
as an alternative to the persistence diagrams and barcodes
used by both Carlsson and Ghrist.

Outlying

Skewed

Clumpy

Convex

Skinny

Striated

Straight

Monotonic

Stringy

Fig. 4. Scagnostics introduced by Wilkinson et al. [53]

4 VISUAL MAPPING

Visual mapping plays an essential role in converting
the analysis result from the data transformation stage or
the original dataset into visual structures for rendering
in the view transformation stage. Based on differences in
their structural patterns and visual compositions, we divide
these approaches into axis-based, glyphs, pixel-oriented,
hierarchy-based, and animation. Axis-based methods con-
tain axes corresponding to the original data dimensions,
projected dimensions, or combinations thereof. Glyphs en-
code information into the size, color, shape, and arrange-
ment of small graphical symbols. Pixel-oriented techniques
encode individual data values as pixels and focus on ar-
ranging the pixels in meaningful ways. Hierarchy-based
mappings visualize nesting relationships in multiresolution
and tree-like data. Animations include a temporal element
to convey information in the changing of visual elements.
In addition, the methods that evaluate the effectiveness of
visual encodings are also discussed.

4.1 Axis-Based Methods
Axis-based methods refer to visual mappings where el-

ement relationships are expressed through axes represent-
ing the data dimensions. These methods include the most

ubiquitous visual mapping approaches, such as scatterplot
matrices (SPLOMs) and parallel coordinate plots (PCPs).
Scatterplot Matrix. A scatterplot matrix, or SPLOM, is
a collection of bivariate scatterplots that allows users to
view multiple bivariate relationships simultaneously. One
of the primary drawbacks of SPLOMs is the scalability. The
number of bivariate scatterplots increases quadratically with
respect to the dataset’s dimensionality. Numerous studies
have introduced methods for improving the scalability of
SPLOMs by automatically or semiautomatically identifying
more interesting plots.

Originally introduced by John W. Tukey, Scagnostics are a
set of measures designed for identifying interesting plots
in a SPLOM. The recent works of Wilkinson et al. [53]
extend the concept to include nine measures (illustrated in
Fig .4) capturing properties such as outliers, shape, trend,
and density. In addition, they improve the computational
efficiency by using graph-theoretic measures. Scagnostics
have also been extended to handle time series data [190].
Guo [191] introduces an interactive feature selection method
for finding interesting plots by evaluating the maximum
conditional entropy of all possible axis-parallel scatterplots.
The rank-by-feature framework [192] allows users to choose
a ranking criterion, such as histogram distribution proper-
ties and correlation coefficients between axes, for scatter-
plots in SPLOMs.

Data class labels can play an important role in identifying
interesting plots and selecting a meaningful ranking order.
Sips et al. utilize class consistency [193] as a quality metric
for 2D scatterplots. The class consistency measure is defined
by the distance to the center of the class or entropies of
the spatial distributions of classes. Tatu et al. [194] intro-
duce different metrics for ranking the “interestingness” of
scatterplots and PCPs for both classified and unclassified
datasets. For data with labels, a class density measure and
a histogram density measure are adopted as ranking func-
tions for the scatterplots.

The ranking order provides only an indirect way to assess
the scatterplots. Lehmann et al. [195] introduce a system for
visually exploring all the plots as a whole. By reordering
the rows and columns in the SPLOMs, this method groups
relevant plots in the spatial vicinity of one another. In
addition, an abstraction can be obtained from the reordered
SPLOM to provide a global view.
Parallel Coordinates. Compared to a SPLOM, for which
only bivariate relationships can be directly expressed, the
parallel coordinate plot (PCP) [6], [7], [196] allows patterns
that highlight multivariate relations to be revealed by show-
ing all the axes at once. For a given n-dimensional dataset,
theoretically, there are n! permutations of the ordering of
the axes. With different axes order, vastly different informa-
tion may be presented. Therefore, one of the fundamental
challenges when dealing with PCPs is determining the
appropriate orders of the axes [7]. Since a user typically
can only interpret the visual patterns among nearby axes,
the search space can be drastically reduced by focusing on
localized axes orders, such as consecutive dimension triples
(an axes and its immediate neighbors) or pairwise dimen-
sions. For these scenarios, finding the minimum number
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of permutations needed to display all dimension triples
or pairwise dimension combinations is the goal. Hurley et
al. [197] adopt Eulerian tours and Hamiltonian decompo-
sitions of complete graphs to generate axis order permu-
tations ( O(n/2) ) covering all bivariate patterns between
dimensions. Inselberg has posed the problem of finding
permutations that display all adjacent triples [6], which may
be considered as a future visualization challenge in PCPs.

A few other methods utilize quality metrics and subspace
finding methods to automatically identify interesting axes
orders. The PCP ranking methods developed by Tatu et
al. [194] work for both classified and unclassified datasets.
For unlabeled data, the Hough space measure is used, and
for labeled data, a similarity measure and overlap measures
are adopted. Ferdosi et al. introduce a dimension ordering
method [198] that is applicable for both PCPs and SPLOMs
utilizing the subspace analysis method from their earlier
work [34] discussed in Section 3.3. Johansson and Johans-
son [54] propose an interactive system adopting a weighted
combination of quality metrics for dimension selection and
automatic ordering of the axes to enhance visual patterns
such as clustering and correlation.

In addition, as the number of data points increases, the
line density in the PCP increases dramatically, which can
lead to visual clutter [7] thus hindering the discovery of
patterns (e.g., density variation, dimension correlation). As
a result, clutter reduction through filtering, aggregation,
visual encoding, and dimension reordering, is another im-
portant challenge for PCPs. Interactive filtering of data, such
as brushing linked axes, is essential for alleviating visual
clutter. Chapter 10 of Inselberg’s book [6] provides a great
discussion on how to exploit interactivity in PCPs to under-
stand large and complex data. A set of query operations,
which can be combined to construct more complex queries,
is identified as the basis for the exploration.

Aggregation and visual encoding can also be used in com-
bination with interactive exploration to reduce visual clutter.
In the work by Novotny and Hauser [199], a focus+context
visualization scheme is adopted for reducing the clutter
by aggregation. In this approach, the outliers are indicated
by single lines and the trends that capture the overall
relationship between axes are approximated by polygon
strips. Zhou et al. introduce a line bundling scheme [200]
for enhancing the visual clusters. The authors exploit the
curved edges and arrange the edges by minimizing the
curvature while maximizing the parallelism of the adjacent
ones. The progressive parallel coordinate (PPC) [201] work
introduces several LOD-hierarchy based visual encoding
approaches to address the challenges of large datasets and
overplotting. In the work introduced by Dang et al. [202],
density is expressed by stacking overlapping elements. For
the PCP case, a 3D visualization is presented, where either
the edges are stacked as curves or the points on the axes
are stacked vertically as dots to alleviate the clutter with
an additional dimension. Finally, as dimension ordering can
greatly affect the PCPs’ expressiveness, Peng et al. [203]
introduce a clutter reduction method for PCPs by reordering
the axes. Clutter reduction methods that employ screen
space measures are discussed in detail in Section 5.4.
Radial Layout. The star coordinate plot [204], also referred

to as a bi-plot [205], is a generalization of the axis-aligned
bivariate scatterplot. The star coordinate axes represent the
unit basis vectors of an affine projection. The user is allowed
to modify the orientation and the length of the axes as a way
of altering the projection. However, due to the unbounded
manipulation, star coordinates may produce affine projec-
tions in which substantial distortion occurs. Lehmann et
al. extend the star coordinate concept with an orthographic
constraint [55], which better preserves the structure of the
original dataset in the projection.

Radviz [205], similar to the star coordinates, adopts a
circular pattern. The difference is that Radviz does not de-
fine an explicit projection matrix. In Radviz, n-dimensional
anchors are placed along the perimeter of a circle, each
representing one of the dimensions of an n-dimensional
dataset. A spring model is constructed for each point, where
one end of a spring is attached to a dimensional anchor and
the other is attached to the data point. The point is then
displayed where the sum of the spring forces equals zero.
Albuquerque et al. [206] devise a RadViz quality measure
allowing automatic optimization of the dimensional anchor
layout.

DataMeadow [207] introduces a radial visual encoding
named DataRoses, which is represented as a PCP laid out
radially as opposed to linearly. Lastly, PolarEyez [208] in-
troduces a focus+context visualization in which the high-
dimensional function parameter space is encoded in a radial
fashion around a user-controlled focal point. Data near the
focal point is represented with more precision, and the focal
point can be altered to focus on different parts of the data.

Fig. 5. Scattering points in parallel coordinates by Yuan et al. [57].

Hybrid Construction. The axis-based methods can also be
combined to create new visualizations. The scattering points
in parallel coordinate work [57] (Fig. 5) embeds an MDS
plot between a pair of PCP axes. The flexible linked axes
work [58] is a generalization of the PCP and the SPLOM. The
tool gives the user the ability to create new configurations
by drawing and linking axes in either scatterplot or PCP
style. Proposed by Fanea et al., the integration of parallel
coordinate and star glyphs [56] provides a way to “unfold”
the overlapped values in the PCP axis in 3D space. In this
work, each axis in the PCP is replaced by a star glyph
that represents the values of the corresponding dimension
across all points, and then each high-dimensional point is
described as a set of line segments in 3D connecting the
individual values in the star glyphs.

In addition, a number of visual representations de-
rive from the well-known visual encodings. Angular his-
tograms [59] introduced a novel visual representation that
improves the scalability of PCPs by summarizing the trend
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of the line segments between the axes. The tiled PCP [209]
adopts a row-column 2D configuration instead of the 1D
linear layout of the traditional PCP for simultaneous visual-
ization of multiple time steps and variables.

4.2 Glyphs
By rendering “small graphical symbols”, the glyphs-

based approaches utilize shape, color, opacity, size, location,
etc. to encode high-dimensional information.

Chernoff faces [210] are one of the first attempts to map
a high-dimensional data point into a single glyph. The
system works by mapping different facial features to sep-
arate dimensions. In a few recent works, glyphs have been
utilized to provide statistical and sensitivity information in
order to present trends in the data. By utilizing local linear
regression to compute partial derivatives around sampled
data points and representing the information in terms of
glyph shape, sensitivity information (uncertainty related
topics are discussed in Section 7.1) can be visually encoded
into scatterplots [60], [61], [62], [63].

The methods described above deal with encoding per
data point information into glyphs. Other usages of glyphs
attempt to show the trends in parts of the data. DICON [65]
uses dynamic icons based on treemap visualization to
encode clusters of data into separate glyphs, and allows
the user to interactively merge, split, filter, regroup, and
highlight information within clusters. Lehmann et al. [66]
introduce visualnostics, in which various 2D representations
of high-dimensional data such as parallel coordinates, scat-
terplots, RadViz, and star coordinates are summarized by
pictograms to aid visual search tasks.

Finally, Ward [64] gives a thorough, practical treatment for
generating and organizing effective glyphs for multivariate
data, paying particular attention to the common pitfalls
involving the use of glyphs.

4.3 Pixel-Oriented Approaches
In an effort to encode the maximal amount of infor-

mation, several works have targeted dense pixel displays.
Researchers have focused on encoding data values as indi-
vidual pixels and creating separate displays, or subwindows,
for each dimension.

Some of the earliest works in this area date back to the mid
1990s [69], [211]. VisDB [211] visualizes database queries by
creating a 2D image for each dimension involved in the
query and mapping individual values of a dimension to
pixels. The mapped data is sorted and colored by relevance
such that the data most related to the query appears in
the center of the image, and the data spirals outward as
it loses relevance to the query. Circle segments [69] arrange
multidimensional data in a radial fashion with equal size
sectors being carved out for each dimension.

The pixel concept can be applied to bar charts to create
pixel bar charts [68]. Pixel bar charts first separate data into
separate bars based on one dimension or attribute, and they
can also split the data along the orthogonal direction using
another dimension, although most results are reported us-
ing only one direction for splitting data. Once split, the data
points are sorted along the horizontal axis within the bars
using one dimension and ordered along the vertical axis

using another dimension. Wattenberg introduces the jigsaw
map [67], which again maps data points to pixels and uses
discrete space-filling curves in order to fill a 2D plane in a
more sensible fashion than a comparative treemap layout.

The Value and Relation (VaR) displays [212] combine the
recursive pattern displays [213] with MDS in order to lay out
the separate subwindows such that similar dimensions are
placed closer together. A latter iteration [70] enhances the
work by providing alternative dimension representations
and their layout schemes.

4.4 Hierarchy-Based Approaches
Hierarchical structures can be used to capture dimen-

sional relationships and to provide summaries for represent-
ing high-dimensional datasets.
Dimension Hierarchies. Large numbers of dimensions hin-
der our ability to navigate the data space and cause scalabil-
ity issues for visual mapping. A hierarchical organization of
dimensions explicitly reveals the dimension relationships,
helping to alleviate the complexity of the dataset. Yang et
al. propose an interactive hierarchical dimension ordering,
spacing, and filtering approach [71] based on dimension
similarity. The dimension hierarchy is represented and nav-
igated by a multiple ring structure (InterRing [214]), where
the innermost ring represents the coarsest level in the hier-
archy.
Topological Hierarchies. In the previous section, we have
discussed topological structures, which can provide a rank-
ing of features with the help of persistence simplification
and thus be treated as a hierarchy.

The contour tree that summarizes the structure of (poten-
tially) high-dimensional data has been the subject of many
visual manifestations with a focus on its 2D graph drawing;
Heine et al. establish a set of constraints to produce aesthetic
and interpretable visualizations of this nature [215]. More
abstract visual metaphors have been introduced, such as
orreries [216], cacti [217], and landscapes [72], [73], [218],
[219], [220], [221]. These visual metaphors can be and have
been used to support high-dimensional data visualization
by abstracting the structures in high dimensions as a low-
dimensional representation, where its layout is used to con-
vey the hierarchy and proximity of features. In particular,
Weber et al. [72] have presented such a metaphor for visu-
ally mapping the contour tree of high-dimensional functions
to a 2D terrain. The metaphor preserves the relative size,
volume, and nesting of the topological features. Harvey
and Wang [220] have extended this work by computing all
possible planar landscapes. They are able to preserve exactly
the volumes of the high-dimensional features in the areas of
the terrain. In addition, the works of Oesterling et al. [73],
[221] have used this same metaphor to visualize a related
structure, the join tree. They use a novel high-dimensional
interpolation scheme in order to estimate the density from
the raw data points and visually map the density as points
on top of their generated terrains. Oesterling et al. [222]
have continued this line of work by creating a linked view
software system including user interactions in the analysis
by allowing users to brush and link with PCPs and PCA
projections of the data. In addition, they have presented a
new method of sorting the features based on persistence,



10

cluster size, or cluster stability, thus adjusting the placement
of features in the topological landscape. The level set tree
proposed by Klemelä [223] is a similar data structure to
the contour tree used in understanding multivariate density
distributions as piecewise constant functions. Klemelä pro-
vides three visualizations for understanding the statistical
and shape properties of the distributions: a tree drawing, a
barycenter plot, and a volume plot.

In terms of visual mapping for Morse-Smale complexes,
skeletons are often used to convey their topology; however,
these may not be the best visualization technique, particu-
larly in the face of uncertainty. An alternative is to apply
a graph-based layout (i.e., [224], [225], [226]) to the MSC,
and combine such a layout with dimension reduction and
statistical techniques such as regression to produce content-
rich visual representations, e.g., HDViz [5].
Other Hierarchical Structures. In the structure-based
brushes work [74], a data hierarchy is constructed to be
visualized by both a PCP and a treemap [227], allowing
users to navigate among different levels-of-detail and se-
lect the feature(s) of interest. The structure decomposition
tree [228] presents a novel technique that embeds a clus-
ter hierarchy in a dimensional anchor-based visualization
using a weighted linear dimension reduction technique. It
provides a detail plus overview structural representation
and conveys coordinate value information in the same
construction. The system supports user-guided pruning,
optimization of the decision tree, and encoding the tree
structure in an explorable visual hierarchy. Kreuseler et al.
present a novel visualization technique [75] for visualizing
complex hierarchical graphs in a focus+context manner for
visual data mining tasks.

4.5 Animation
As stated in Heer et al.’s work [83], animation, when

used appropriately, can significantly improve graphical per-
ception. Many techniques for visualizing high-dimensional
data utilize animated transitions to enhance the perception
of point and structure correspondences among multiple
relevant plots.

The GGobi system [76] provides a mechanism for calculat-
ing a continuous linear projection transition between a pair
of linear projections based on the principal angles between
them. In the Rolling the Dice work [78], a transition between
any pair of scatterplots in a SPLOM is made possible by
connecting a series of 3D transitions between scatterplots
that share an axis. RnavGraph [229] constructs a graph
connecting a number of interesting scatterplots. A smooth
animation is generated between all scatterplots that are
connected by an edge. The TripAdvisorND [77] system
allows users to explore the neighborhood of a subspace
by tilting the projection plane using a polygonal touchpad
interface.

4.6 Perception Evaluation
The design goal of visual mapping and encoding is to

directly convey the information to the user through vi-
sual perception. The evaluation of this mapping is vitally
important in determining the effectiveness of the overall
visualization.

Sedlmair et al. have carried out an extensive investiga-
tion of the effectiveness of visual encoding choices [79],
including 2D scatterplots, interactive 3D scatterplots, and
SPLOMs. Their findings reveal that the 2D scatterplot is
often decent, and certain dimension reduction techniques
provide a good alternative. In addition, SPLOMs some-
times add additional value, and the interactive 3D scatter-
plot rarely helps and often hurts the perception of class
separation. A perception-based evaluation [80] of various
projection methods that generate 2D linear or nonlinear
scatterplot is presented by Etemadpour et al. In this work,
the authors identify eight typical tasks that relate to the
properties of projection methods and results in terms of seg-
regation capability, projection precision, and incurred visual
cluttering. The evaluation demonstrates that the projection
performance is task dependent and heavily depends on the
nature of the data. In addition, certain projections perform
better on specific types of tasks.

The efficacy of several PCP variants for cluster identifica-
tion has been studied in [81]. A comparison is performed
among nine PCP variations based on existing methods and
combinations of them. The evaluation reveals that, aside
from the scatterplots embedded into parallel coordinates,
a number of seemingly valid improvements do not result
in significant performance gains for cluster identification
tasks. A comparative study between two popular radial
visualizations, the RadViz and star coordinates, can be
found in [82]. As pointed out in the study, RadViz is useful
for analyzing sparse data, but the nonlinear nature of its
normalization step impedes its application and accuracy
compared to the flexible and linear star coordinates. An
evaluation of radial visualization solutions for composite
indicators (a measuring and benchmark tool used to capture
multidimensional concepts) is presented by Albo et al. [230].
Heer et al. investigate the animated transition effectiveness
between statistical graphs [83], such as bar charts, pie charts,
and scatterplots. Their results reveal that animated transi-
tions, when used appropriately, can significantly improve
graphical perception.

Fig. 6. Illuminated 3D scatterplot by Sanftmann et al. [85].

5 VIEW TRANSFORMATION

View transformations dictate what we ultimately see on
the screen. As pointed out by Bertini et al. [8], the view
transformation can also be described as the rendering pro-
cess that generates images in the screen space.

5.1 Illustrative Rendering
Illustrative rendering describes methods aimed at achiev-

ing a specific visual style by applying custom rendering
algorithms. The illustrative PCPs work [84] provides a set of
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artistic rendering techniques for enhancing visual patterns
(e.g., line density) in PCPs. Illuminated scatterplots [85]
(Fig. 6) classify points based on the eigenanalysis of the
covariance matrix and give the user the opportunity to
see effects such as planarity and linearity when visualizing
dense scatterplots. Johansson et al. [86] reveal structures in
PCPs by adopting the transfer function concept commonly
used in volume rendering. Based on user input, the transfer
function maps the line densities into different opacities to
highlight different features.

Illustrative renderings are also used for highlighting focal
areas, such as the well-known TableLens approach [231] for
visualizing large tables. Such a magic lens based approach
permits fast exploration of an area of interest without pre-
senting all the details and, therefore, reduces clutter in the
view. MoleView [88], for visualizing scatterplots and graphs,
adopts a semantic lens for allowing users to focus on the
area of interest and keep the in-focused data unchanged
while simplifying or deforming the rest of the data to main-
tain context. A survey on early distortion-oriented magic
lens techniques is presented by Leung and Apperley [87].

5.2 Continuous Visual Representation
For most high-dimensional visualization techniques, a

discrete visual representation is assumed since each element
usually corresponds to a single data point. However, due to
limitations such as visual clutter and computational cost,
many applications prefer a continuous representation.

The work of Bachthaler and Weiskopf [89] presents a
mathematical model for constructing a continuous scat-
terplot. The follow-up work [90] introduces an adaptive
rendering extension for continuous scatterplots, thereby in-
creasing the rendering efficiency. This concept is extended to
create continuous PCPs [91] based on the point-line duality
between scatterplots and parallel coordinates. In addition,
Lehmann et al. introduce a feature detection algorithm
designed for continuous PCPs [92].

Clutter in PCPs and scatterplots leads to occlusion of
data distribution patterns. In the splatterplot work [93], the
authors introduce a hybrid representation for scatterplots to
overcome the overdraw issue when scaling to very large
datasets. The proposed abstraction automatically groups
dense regions into an abstract contour and renders the rest
of the area using selected representatives, thus preserving
the visual cue for outliers. A splatting framework for ex-
tracting clusters in PCPs is presented in [94], where a polyline
splatter is introduced for cluster detection, and a segment
splatter is used for clutter reduction.

5.3 Accurate Color Blending
When rendering semitransparent objects, color blend-

ing methods have a significant impact on the perception
of order and structure. As stated in the hue-preserving
color-blending work [95], the commonly adopted alpha-
compositing can result in false colors that may lead to a
deceiving visualization. The authors propose a data-driven
machine learning model for optimizing and predicting hue-
preserving blending. This model can be applied to high-
dimensional visualization techniques such as illustrative
PCPs [84], where a depth ordering clue is better preserved.

In the Weaving vs. Blending work [96], the authors in-
vestigate the effectiveness of two color mixing schemes:
color blending and color weaving (interleaved pattern). The
results indicate that color weaving allows users to better
infer the value of individual components; however, as the
number of components increases, the advantage of color
weaving diminishes.

5.4 Image Space Metrics
As discussed in Section 4.1, a number of quality measures

have been proposed to analyze the visual structure and
automatically identify interesting patterns in PCPs or scat-
terplots. In this section, we discuss the image space based
quality measures that are applied in the screen space.

Arterode et al. propose a method [97] for uncovering
clusters and reducing clutter by analyzing the density or
frequency of the plot. Image processing based techniques
such as grayscale manipulation and thresholding are used to
achieve the desired visualization. Johansson et al. introduce
a screen space quality measure for clutter reduction [98]. The
metric is based on distance transformation, and the compu-
tation is carried out on the GPU for interactive performance.

Pargnostics [99], a portmanteau for parallel coordinates
and diagnostics (similar to Scagnostics [53]), is a set of screen
space measures for identifying distinct patterns among pairs
of axes in PCPs. The metrics include line crossings, crossing
angles, convergence, and overplotting. For each metric, the
system provides ranked views for pairs of axes, allowing the
user to guide exploration and visualization. Pixnostic [100]
is an image space based quality metric for ranking interest-
ingness for pixel-based (Section 4.3) visualization such as
Pixel Bar Chars [68].

6 USER INTERACTION

As illustrated in Fig. 1, interaction is integrated with
each processing stage. In this section, we identify three
types of user interaction (computation-centric approaches,
interactive exploration, and model manipulation) based on
the amount and type of user involvement and illustrate how
they interact with the different stages of the visualization
pipeline (see Fig. 7). In both recent surveys [232], [233] on
user interaction in visualization applications, the level of
integration between the computation and visualization (in-
cluding user interaction) is used for classifying the methods.
In many ways, their classifications are aligned with the pro-
posed approach, with the distinction that our discussion is
directly linked to the visualization pipeline. In the following
sections, we will discuss each paradigm in detail.

6.1 Computation-Centric Approaches
Computation-centric (see Fig.7(a)) approaches require

only limited user input such as setting initial parameters.
These methods center around algorithms designed for well-
defined computational problems such as dimension reduc-
tion [22], [24], [110], [113], subspace clustering [33], [34],
[123], [126], regression analysis [39], [127], quality met-
ric based ranking [53], [194], etc. Computation-centric ap-
proaches are most concentrated in the data transformation
stage (as illustrated in Fig. 7(a)).
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Fig. 7. The three types of user interaction paradigms with varying de-
grees of user involvement. Since each paradigm can interact with each
processing stage in the visualization pipeline, the diagram highlights the
most general patterns.

6.2 Interactive Exploration
Interactive exploration (see Fig.7(b)) approaches navigate,

query, and filter the existing model interactively for more
effective visual communication. They mostly exist in the
visual mapping stage, where the visual structure is inter-
actively modified by user interaction. The distinction be-
tween interactive exploration and model manipulation (see
Fig.7(c)) is made to highlight the fact that users do not
alter the underlying computation model in the interactive
exploration.

In the data transformation stage, the interactive explo-
ration scheme allows users to guide progressive dimen-
sion reduction, where a partial result is presented upon
request [24]. In the works by Turkay et al. [2], [31] and Yuan
et al. [32], a subset of dimensions is interactively selected
and explored in dimension space. In the visual mapping
stage, a large number of methods focus on interactive visual
exploration through filtering, zooming, distorting, linking,
and brushing of visual representations. For example, recent
works [234], [235] by Gratzl et al. introduce interesting
interactive methods for ranking multiple attributes and
exploring subsets of tabular datasets. Interactive exploration
methods also play an important role in the Knowledge Dis-
covery in Databases (KDD) and data mining process, where
the term visual data mining [11], [12], [236] is introduced
(see Section 7.2). In the view transformation stage, inter-
activity mostly originates from the changing of rendering
parameters and configurations, which appears in both the
magic lens based methods [87], [88] and the illuminated 3D
scatterplots [85] (discussed in Section 5.1).

6.3 Model Manipulation
Model manipulation (see Fig. 7(c)) techniques represent a

class of methods that integrate user manipulation as part of

the algorithm and update the underlying model to reflect
the user input to obtain new insights.

Take the distance function learning work [27], for exam-
ple. The initial embedding is created using a default distance
measure. Through interaction, the initial point layout is
modified based on the expert user’s domain knowledge.
The system then adjusts the underlying distance model
to reflect the user input. Such a process is illustrated in
Fig. 7(c). Hu et al. present a method [237] for improving
the translation of user interaction to algorithm input (visual
to parameter interaction) for distance learning scenarios.
Explainers [28] are projection functions created from a set
of user-defined annotations. Similarly, in recent work [238],
Kim et al. introduce an approach for steering axis-aligned
linear projections by dragging points into x or y axes to
generate new linear projections that reflect the combination
of data attributes bound to the axes. The control point
based projection methods [25], [26], [116] update the overall
projection result based on user manipulation of the control
points. Liu et al. [30] introduce a projection manipulation
scheme facilitates the understanding of high-dimensional
data via direct modification of its 2D embedding. Distortion
metrics are used for feedback during the manipulation.

7 EMERGING AREAS

In this section, we identify a couple of emerging areas
that could inspire future research in high-dimensional data
visualization. However, due the subjective nature of such a
discussion, our intention is not to give a comprehensive re-
view of all possible future directions, but rather to describe
specific directions with adequate details.

7.1 Uncertainty in High Dimensional Data Visualization
Along with the large scale and high dimensionality of

the data, information pertaining to uncertainty is becoming
increasingly available and important.

Uncertainty visualization has been deemed a top research
problem in scientific visualization [239], due to the increas-
ing availability of uncertainty information from simulation
and the importance of understanding data quality, confi-
dence, and error issues when interpreting scientific results.
Visualizing the uncertainty in data and the examination of
uncertainty in the visualization pipeline are also essential
for high-dimensional data visualization.

Similar to surveys on the topic [240], [241], [242], [243],
we make a distinction about the source of uncertainty. In
the first case, the process of acquiring the data imposes
uncertainty that must be communicated to the user. In the
second case, the transformations the data undergoes before
appearing onscreen can also add uncertainty. We denote the
prior case as data uncertainty and the latter case as algorithmic
uncertainty.
Data Uncertainty. When the data is encoded with its own
inherent uncertainty or the goal is to summarize an ensem-
ble of data, this extra information must be visually encoded.
Typical techniques include blurring of visual marks [244],
[245], [246], glyphs [247], or colormaps and noise [248],
[249] to indicate ranges of uncertainty. However, such a
simplistic treatment of uncertainty often causes problems
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in data understanding. By increasing the illegibility or
complexity of an image corresponding to the amount of
trustworthiness of the data, the amount of coherent in-
formation from that image decreases, which leads to less
usable information within a visualization. In contrast, more
recent works attempt to express a more visually quantifiable
encoding of uncertainty by using summaries of the data
to reduce the visual clutter [250], [251], [252]. For example,
Chen et al. [250] perform uncertainty-aware dimensionality
reduction on ensemble data by accounting for the distri-
bution of the ensemble. In the numerical weather model
ensemble visualization work [252], Sanyal et al. replace
the traditional spaghetti plots (line plot representation for
each element in the ensemble) with a combination of visual
elements, including ribbons and glyphs, that quantify the
uncertainty by summarizing individual ensemble member’s
standard deviation, interquartile range, and the confidence
interval. Limited work exists that specifically targets high-
dimensional data, which is why we believe the extensions
and generalizations of existing uncertainty visualization ca-
pabilities (e.g., [249], [251], [252]) to high-dimensional data
are important future directions.
Algorithmic Uncertainty. Another interesting aspect of un-
certainty quantification is based on uncertainty introduced
in the visualization pipeline (shown in Fig. 1). The concept
of uncertainty-aware visual analytics is first discussed by
Correa et al. [60]. In this work [60], the authors measure
the uncertainty introduced by three common data transfor-
mation techniques, namely regression, principal component
analysis, and k-mean clustering. Similar concepts are further
explored by other works [30], [119], [121], [253], where
the uncertainty (e.g., bias and distortions) stemming from
the dimension reduction is quantified and visualized. In
addition, other examples targeting high-dimensional data
visualization have focused on analyzing the uncertainty
with respect to the accuracy of a fitted model (see Section 3.4
and [254] for more details). These methods mostly focus
on the uncertainty stemming from the data transformation
stage. However, more work can be done to define measures
of uncertainty associated with the two latter processing
stages in the visualization pipeline: visual mapping and
view transformation.

7.2 The Interplay Between Data Science and High Di-
mensional Data Visualization

Data science is an interdisciplinary area where multiple
subjects are brought together. By relying on solid founda-
tions in mathematics and statistics, and the effective tools
from computer science, data science aims at transferring
data into knowledge for solving real world problems. Vi-
sualization as an integral part of data science plays an
important role in the data analysis process. In the following
sections, we will look into several aspects of data science
and discuss their connection with high-dimensional data
visualization and possible emerging research directions.
Data Management. In the visualization literature, data
management is often considered as an optional subsys-
tem, which is rarely the focus of the study. However, the
increasing complexity and size of the data and demands
for data-centric analysis call for robust and flexible data

management systems. An interesting integration of data
management and visualization system can be found in the
VisTrails framework [255]. VisTrails manages the data and
metadata of visualization results, and provides the ability
to trace and compare the history of different visualization
pipeline configurations, which allows for fast exploration
and discovery. A relational database is usually adopted for
managing data for visualization. However, its limited query
efficiency for high-dimensional data leads to the introduc-
tion of more efficient index schemes such as the X-tree [256],
which is designed for high-dimensional data.

Besides aiding the visualization process with the integra-
tion of databases, visualization can also be adopted as an
intuitive interface for querying databases. Such an interface
can translate the user intention into database queries and
then present the results in visual forms. The increasingly
sophisticated interplay between visualization and database
querying tasks leads to the introduction of visual data
mining and related techniques discussed below.
Data Mining. Data mining studies the process of extracting
meaningful patterns or relationships from data by utilizing
various statistical or machine learning algorithms and ef-
ficient data management infrastructures. Many purely au-
tomatic, analytical approaches have been introduced and
produce reasonable results. However, especially in the re-
cent years, our ability to generate, collect, and store data has
quickly outweighed our ability to analyze it. One important
paradigm shift in addressing challenges comes from the
realization that for resolving a complex analytical problem,
the involvement of humans in the early stage of the analysis
process is crucial. Instead of relying solely on confirmatory
data analysis, exploratory data analysis [257] and visual
data exploration [12] have proven to be extremely valuable
and effective. Visual data mining [11], [236] is one outcome
of such development. It bridges the gap between visual data
exploration and data mining tasks. It not only provides a
more intuitive interface for communicating the underlying
computational model to the user, but also exploits the
human vision system for pattern searching to deal with
the ever-increasing size and complexity of data. Such a
paradigm is currently recognized as part of the emerging
visual analytics [258], [259] field, which is described as
the science of analytical reasoning supported by interactive
visual interfaces.

Inspired by these new techniques, many high-
dimensional data visualization techniques combine
automatic analysis with user-driven visual exploration.
Stolte et al. introduce Polaris [260], which is a visual query
and analysis system designed for relational databases. In
this system, relational queries can be defined by visual
specifications that allow fast incremental development
and intuitive understanding of the data. The authors
later extend their work for hierarchically structured data
cubes [261]. In their last installment [262], a multiscale
visualization system utilizing Polaris and the data cubes
extension is introduced. The Polaris system was later
developed into the well-known commercial visualization
system Tableau. Hao et al. introduce the Intelligent
Visual Analytics Queries [263]. Their approach utilizes
correlation and similarity measurements that are then
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encoded by summary visualization for mining localized
data relationships. Detailed surveys and discussions on
the topic of visual data mining can be found in [10],
[11], [12]. We believe new research can stem from the
further development and interaction among data mining
tasks, visual encoding and exploration, and in-depth user
interactions with the full spectrum of the analysis process.
Machine Learning. Machine learning introduces the tools
to build models from data for predicting or summarizing
unknown data. It provides building blocks for constructing
higher-level tasks commonly found in data mining and
artificial intelligence. Machine learning algorithms such as
manifold learning [23] and subspace clustering [36], [264]
have been adopted for visualizing high-dimensional data.

On the other hand, the high-dimensional visualization
methods also aid intuitive understanding of the algorithm
and the parameter tuning process. The fundamental tasks
of machine learning involve the study of the feature space
and the learned models from the data, which are high-
dimensional in nature. However, intuitive understanding
and exploration of these high-dimensional models are ex-
tremely difficult. To resolve such a challenge, several vi-
sualization approaches have been introduced to provide
visual aids. Tzeng et al. present a visualization system that
helps users design neural networks more efficiently [265].
The works of Teoh and Ma [266] and van den Elzen and
van Wijk [267] investigate visualization methods for interac-
tively constructing and analyzing decision trees. Visualiza-
tion has also been used to aid model validation [268], [269]
(regression model related validation and tuning is discussed
in more detail in Section 3.4). Garg et al. use Hidden Markov
Models as an example to illustrate the effectiveness of their
visualization approach [270]. It achieves a balance between
manual operation and a fully automatic approach for tasks
such as data tagging by involving the user in the decision-
making process.

Numerous challenges for understanding machine learn-
ing algorithms coincide with the goal of high-dimensional
visualization. We believe high-dimensional visualization
will play an increasingly important role in designing, tun-
ing, and validating machine learning algorithms. At the
same time, more machine learning algorithms will also find
their way into visualization methods.

8 SUMMARY AND REFLECTIONS

In this survey, we aim to provide a structured overview
of distinct subfields, in which new methods can be inspired
based upon combinations and extensions of existing ap-
proaches. To better achieve this goal, in this section, we sum-
marize and reflect on each stage of the visualization pipeline
and focus on the scenarios in which various methods can be
effectively applied.

Starting from the data transformation stage, the methods
in this stage of the pipeline are computation-centric and
mostly focus on obtaining quantitative results. Dimension
reduction methods are commonly used for capturing the
overall structure of a dataset. Since these methods are
designed for reducing the dimension while preserving the
important structures, dimension reduction approaches are

more suitable for handling data with a large number of
dimensions compared to many visual mapping approaches
(e.g., scatterplot matrix). The scalability of dimension reduc-
tion methods as visualization tools is addressed partly by
the development of the control point based projection ap-
proaches [25], [26], [116] and partly by approximations [24],
[113], [114]. Various precision measures [29], [30], [118] have
been introduced to provide a per-point assessment of the
accuracy in terms of information preservation, which is
essential for interpreting the results.

Due to the complexity of high-dimensional data, it is
unlikely a single embedding (produced by dimension re-
duction) is sufficient for understanding every dataset. In-
stead, identifying multiple informative 2D projections au-
tomatically or semiautomatically is essential for explor-
ing different aspects of the data. The subspace clustering
methods either find clusters in subset of the dimensions
(originated from data mining [124]) or cluster points that
share a low-dimensional linear subspace (originated from
machine learning [36]). These methods not only help in
identifying multiple interesting projections but also address
the challenges of the ever-increasing complexity of the data
(e.g., number of dimensions) by dividing them into lower
dimensional subsets.

Besides the approaches focusing on generating one or
multiple low-dimensional embeddings, regression analysis
provides a class of methods designed to capture the quan-
titative relationship among individual dimensions. Interac-
tive visualization has been integrated with the regression
analysis process for more effective parameter exploration
and tuning [39], [40]. Finally, topological data analysis
(Section 3.5) provides a unique approach for summarizing
high-dimensional structure, which we believe will play an
increasingly important role in high-dimensional data visu-
alization.

The next stage of the pipeline is visual mapping. The most
common visual representations for high-dimensional data,
such as SPLOMs and PCPs, are built around the different
arrangements of data axes. A SPLOM helps capture the
complete bivariate relationship by permuting all possible
pairs of the axis whereas a PCP [6], [196] provides a single
view of the multivariate relationship by showing all the
axes vertically. The major drawback of both approaches
is that the number of possible 2D configurations increases
drastically as the dimensionality increases. As a result, vari-
ous quality metrics [53], [194], [271] that help automatically
filter for the interesting configurations are at the center
of recent developments. Other axis configurations, such as
radial layouts, are also gaining popularity [206], [207], [208].
In addition, recent advances have introduced new visual
representations by coupling existing approaches to combine
the advantages of different visual representations [56], [57],
[58].

Glyph-based approaches [60], [62], [65], [210] are among
the earliest methods for visualizing high-dimensional data.
They either encode and highlight certain per-point infor-
mation or combine multiple points to express summary
information. The pixel-oriented representations [67], [68],
[69], [70] are closely related to the glyphs, but instead
of encoding individual data points, they mostly provide
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a compact representation of dimensions that are packed
as pixels. Hierarchy-based representations [71], [228] are
usually a natural translation of a structure that is tree-
like or multiresolution in nature, such as encoding the
dimension hierarchy [71] and the hierarchical topological
segmentation [216], [218]. In the past decades, many works
have focused on evaluating the effectiveness of various
visual encodings, such as PCPs [83] and SPLOMs [79]. The
perception of visual effects such as animation [77], [78],
[83] has also been studied. Such development highlights
the important trend where rigorous evaluation is an integral
part of any effective visualizations.

The last stage of the pipeline is the view transformation,
which describes the process of generating rendered images
from visual structures. Many innovative methods in this
stage focus on enhancing the existing rendering techniques
to address their limitations or highlight the regions of inter-
est. The illustrative rendering works [84] aim at emphasiz-
ing certain aspects of the data through visual exaggeration
while discarding other less important visual properties. The
continuous visual representations [89], [90] are designed
to address overplotting issues through analytical modeling
and splattering approximations. The techniques [84], [95]
that address color blending have a similar goal. Instead of
the general overplotting issue, they focus on resolving the
challenge of misleading overlapping colors. In addition, the
image space metrics [97], [98], [99] are a natural extension
from the quality metrics of visual structures (discussed in
Section 4), for which evaluating the metric is more efficient
in the image space (usually for dealing with a large number
of points).

Finally, we discuss the emerging areas in high dimen-
sional data visualization, namely uncertainty quantification
(Section 7.1) and data science (Section 7.2). We believe the
interaction between these topics and high-dimensional data
visualization will lead to many interesting future research
and applications.
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