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Abstract

Linear projections are one of the most common approaches to visualize high-dimensional data. Since the space of possible
projections is large, existing systems usually select a small set of interesting projections by ranking a large set of candidate
projections based on a chosen quality measure. However, while highly ranked projections can be informative, some lower
ranked ones could offer important complementary information. Therefore, selection based on ranking may miss projections that
are important to provide a global picture of the data. The proposed work fills this gap by presenting the Grassmannian Atlas,
a framework that captures the global structures of quality measures in the space of all projections, which enables a systematic
exploration of many complementary projections and provides new insights into the properties of existing quality measures.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation—Line and

curve generation

1. Introduction

Understanding high-dimensional data has become a central prob-
lem in a wide variety of applications ranging from the physical sci-
ences and engineering to business and the social sciences. Among
the large numbers of available techniques, linear projection (which
produce 2D embeddings) remains the most popular approach as
it is relatively cheap to compute and easy to interpret. One fun-
damental challenge is how to identify interesting and informative
linear projections from all the possible projection directions. Even
for datasets with moderate dimensions, exploring all possible axis-
aligned projections, let alone all linear ones, becomes impracti-
cal. A method such as PCA (principal component analysis) can
be used to obtain one optimal (maximizing variance) linear pro-
jection, however, high-dimensional datasets likely contain complex
structures that cannot be adequately captured by a single linear pro-
jection.

Therefore, a common strategy is to search through a large num-
ber of potentially interesting projections and select a small set
based on a ranking quality measure computed from the projec-
tions. The large number of candidates is usually generated by
all axis-aligned projections [EDFO8] or random sampling with
dimension composition [Asi85, STBCO03]. User-defined qual-
ity measures, such as the projection pursuit index [FT74], the
rank-by-feature framework [SSO5], and graph-theoretic scagnos-
tics [WAGO5, WAGO06], are used to rank the candidates.

However, few techniques explicitly consider diversity when
choosing representative projections. As a result, multiple highly
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ranked but redundant (similar) projections may be selected. At the
same time, lower ranked ones are discarded even though they may
contain complementary information. On the other hand, each qual-
ity measure is designed to capture some aspects of the data, yet lit-
tle is known regarding the properties of the measure. For example,
understanding the smoothness of a measure and the distribution of
its local maxima is crucial in choosing the right representative pro-
jections. In particular, we demonstrate in our study that for some
datasets, many quality measures contain a single maxima globally
that may not be suitable for finding multiple projections.

We introduce the Grassmannian Atlas, a new framework to ana-
lyze, compare, and explore the space of all linear projections based
on different quality measures. Rather than working with a few se-
lected projections, the space of linear projections is modeled by
the so-called Grassmannian [Har92], which abstracts the space of
linear subspaces in a data-independent manner and compensates
for affine transformations of the projections. The Grassmannian is
approximated by connecting a set of sampled points (each corre-
sponding to a subspace) on the surface of the manifold with a neigh-
borhood graph based on well-defined geodesics. We then analyze
a given quality measure as a scalar function defined on the Grass-
mannian and introduce the notion of locally optimal projections:
the local maxima of the quality measure that are robust to small
perturbations of the function. Consequently, using tools from scalar
field topology, we extract a topological skeleton that describes the
number, locations, and relationships among optimal projections, vi-
sualized by the topological spine [CLB11]. The topological spine
captures the global structure of the quality measure across multi-
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ple scales and provides important insights into its properties. It also
leads to a visual map for exploring the space of projections in an
intuitive manner.

Our key contributions are summarized below:

e We model the space of all linear projections based on a Grass-
mannian that parameterizes all linear subspaces of a high-
dimensional dataset, and provide a sampling strategy to approx-
imate the Grassmannian in any dimension;

e We construct a given quality measure as a scalar function on the
Grassmannian and compute, analyze, and simplify its topologi-
cal structure via the notion of topological spine;

e We provide a linked view interface based on topological spines
to study locally optimal projections and explore the global struc-
ture of the space of all projections across different quality mea-
sures.

2. Related Work

Quality measures. A large number of quality measures have been
proposed due to their practicality and simplicity for selecting inter-
esting linear projections based on dimension selection. Tukey pro-
posed a set of measures, coined scagnostics, to identify interesting
axis-aligned scatterplots. The set of measures includes the area of
the peeled convex hull, a modality measure of the kernel densities,
a nonlinearity measure based on principal curves fitted to the scat-
terplots, etc. [WAGOS5]. This idea was extended by Wilkinson et al.
[WAGO0S5, WAGO6] to include nine quality measures that capture
properties such as outliers, shape, trend, and density. Guo [Guo03]
introduced an interactive feature selection method for evaluating
the maximum conditional entropy of all plots in a scatterplot ma-
trix. Similarly, the rank-by-feature framework [SS04, SS06] al-
lowed users to choose a ranking criterion for axis-aligned projec-
tions, such as histogram characteristics and correlation coefficients
between axes.

In addition to measuring the quality of dimension selection
among scatterplots, a large class of work is dedicated to assess-
ing and measuring the quality of dimensionality reduction based
on dimension composition (i.e., create new dimensions by combin-
ing existing ones). Projection Pursuit [FT74], one of the early ap-
proaches, defined the interestingness of a projection as its amount
of deviation from a normal distribution. Mokbel et al. [MLGH13]
used a pointwise co-ranking measure, which calculates the aver-
age number of neighbors that agree in high and low dimensions.
Liu et al. [LWBP14] introduced a set of measures derived from
objective functions that dimensionality reduction techniques aimed
to minimize, such as stress and strain [BG05]. Other criteria in-
clude measurements of distance distortions, density differences, or
ranking discrepancies. Their system allowed direct manipulation
of low-dimensional embeddings, guided by pointwise quality mea-
sures that get updated interactively to resolve structural ambigu-
ities. An excellent survey that offered a comprehensive summary
of various quality measures for visualizing high-dimensional data
was provided by Bertini et al. [BTK11]. Our proposed framework
is general enough to utilize any quality measure, but we focus on
analyzing the global properties of a few popular ones, including the
projection pursuit index, scagnostics, and stress.

Subspace clustering. Various subspace clustering methods provide
interesting alternatives for selecting multiple linear projections to
understand different aspects of high-dimensional data. These sub-
spaces can be constructed either by selecting different subsets of the
dimensions (subspace search) or by grouping subsets of the data
that occupy common linear subspaces (subspace clustering). The
former class of methods (e.g., [CFZ99]) was adopted for visualiza-
tion [TMF*12] to capture complex multivariate structures. How-
ever, these subspace search methods are limited to finding axis-
aligned subspaces only. In a recent work [LWT*14], the later class
of subspace clustering methods [Vid11] is introduced, which iden-
tify views that focus on various subsets of data points that share a
subspace. By assuming that, the high-dimensional dataset can be
represented by a mixture of low-dimensional linear subspaces with
mixed dimensions, this approach can produce views that focus on
a specific region of the space spanned by each of the clusters. Our
proposed framework is different in that we not only care about se-
lecting multiple interesting linear projections, but also aim to gain
a holistic understanding of their relationships. Such an understand-
ing is made possible by first viewing quality metrics as a function
on the Grassmannian and then summarizing the function and visu-
alizing its abstraction.

Recently, Lehmann et al. introduced an interesting ap-
proach [LT16] to capturing the optimal set of linear projections.
The proposed method adopted a dissimilarity measure, which pro-
duces a set of linear projections optimized for differences among
them in order to remove duplicated data patterns. Compared to our
approach, which is optimized for obtaining locally optimal views
based on quality metrics, their method is tuned to maximizing dis-
similarity, which may not guarantee the “quality” of the selected
views.

3. Method

As mentioned above, the Grassmannian Atlas is designed to pro-
vide a more intuitive and reliable approach to select a set of 2D lin-
ear projections for visualization of a given high-dimensional point
cloud. The challenge is that there exist an infinite number of possi-
ble projections, and the top ranked ones according to some quality
measure may not be the most informative ones. In particular, sim-
ilar projections are likely to have similar quality measures. Conse-
quently, a cluster of very similar projections will be chosen over
a potentially very different and more informative projection with
slightly lower ranking. Instead, we propose to select a set of lo-
cally optimal projections as representatives based on computing the
high-dimensional topological structure of the chosen quality mea-
sure. Figure 1 provides an overview of the approach. First, we ran-
domly choose a (large) set of linear projections represented as lin-
ear subspaces and together with their neighborhood graph use them
as a discrete approximation of the Grassmannian manifold, which
defines the space of all possible linear projections (see Section 3.1).
We then evaluate the chosen quality measure on the Grassmannian
and compute its topological spine (Section 3.2). The local maxima
of the topological spine then indicate locally optimal projections
(with respect to the given measure), i.e., those that cannot be im-
proved with incremental changes. Finally, the topological spines
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Figure 1: First row: the three steps (marked with different colors) for constructing the Grassmannian Atlas. Bottom row: examine the space
of linear projections involving a 3D example. For illustration purposes, the left panel displays point cloud samples representing projections

rather than subspaces as the Gassmannian has no intuitive embedding.

also serve as a convenient and intuitive interface to navigate be-
tween different projections.

3.1. Grassmannian Manifold

Grassmannian. We are interested in understanding the structure
of quality measures on the space of projections. In a visualization
setting, one typically can consider a set of projections to be equiv-
alent if they produce the same scatterplots under affine transforma-
tions. Therefore, a somewhat simpler yet equivalent approach is to
directly consider the space of 2D linear subspaces rather than the
space of projections. Since projections that transform the data into
the same subspaces produce equivalent scatterplots under affine
transformations, the space of linear subspaces is much smaller than
the space of projections, does not suffer from redundancies, and
most importantly, admits a well-known geodesic distance metric
among the subspaces.

The space of r-dimensional linear subspaces of R” is called the
Grassmannian, denoted by Gr(r,n), and is known to be an embed-
ded manifold of dimension r(n — r) [Har92]. Each point on Gr(r,n)
represents a linear subspace typically encoded by its orthonormal
basis. Given two subspaces with orthonormal basis A and B, their
geodesic distance on the manifold can be computed by decompos-
ing ATB using its SVD (singular value decomposition) and ob-

taining Y7, ( ) . Each 6; = cos~! o; denotes a principal angle,
where o; is the corresponding singular value. In our context, we
have r = 2 and study the space of 2D linear subspaces Gr(2,n) for
an n-dimensional (i.e., nD) dataset.

Uniform sampling. To obtain an approximation of the Grass-
mannian Gr(2,n), we generate a discrete point cloud sample of
the manifold and construct a neighborhood graph based upon the
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geodesic distances on the manifold. Ideally, the sample should be
uniformly random and dense to adequately capture the structure of
the manifold, as well as the structure of a reasonable function de-
fined on the manifold. We first discuss how to construct an approx-
imately uniform sampling of a given size, and later in this section,
we provide experiments for understanding the relationships among
input data dimension, sample size, and sample density. The sam-
pling quality is evaluated in Section 4.

A random sample on the Grassmannian Gr(2,n) can be gen-
erated by constructing uniformly distributed random rotation ma-
trices [Mez06]. More specifically, we use the QR decomposi-
tion [JM92] of a Gaussian random matrix S (i.e., a matrix that
contains random numbers with a Gaussian distribution) to compute
a random rotation matrix 7, that is, T = Q - diag(sign(diag(R)))
where S = QOR. A random sample on the Grassmannian therefore
corresponds to a 2D subspace generated by applying a random ro-
tation matrix to a pair of standard basis in R”. To ensure the set
of rotation matrices is approximately uniformly distributed, we can
resample the initial points using the k-means++ seed point initial-
ization algorithm [AV07], which maximizes the spread of points
by selecting points away from already selected samples. Finally,
we construct a neighborhood graph connecting the sampled points
using geodesics. Since the sample is approximately uniform, a k-
nearest neighbor graph (kNN) is sufficient (with an appropriately
chosen k). Such a graph is a discrete approximation of Gr(2,n) that
supports the subsequent topological analysis.

Sampling experiments. In practice, for a given data dimension n,
the choice of the number of samples is crucial for reliable analy-
sis of the data. To this end, we study the relationships among the
number of samples (m), the data dimension (n), and the sampling
density defined by the average nearest neighbor distance (dyy,). In
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Figure 2: Sampling experiments. Let m be the sample size, d,,, be the average nearest neighbor distance, and n be the data dimension. (a) For
a fixed m = 1500, dgnn increases with an exponential increase of n (x-axis, log-scale). (b) For a fixed n (4 <n <7), dyun (y-axis) decreases
with an exponential increase of m (x-axis, log-scale). (c) To maintain a fixed density d,,, ~ 0.3, m (y-axis, log-scale) scales exponentially

with n (x-axis).

Figure 2(a), for a fixed m = 1500, we vary the data dimension n
where 3 < n < 10, and compute d,,,. We observe that dg, in-
creases as n grows exponentially (notice that x-axis is log-scale),
indicating increasing sparsity in higher dimensions. In Figure 2(b),
for a fixed n (4 < n <7), we observe that d,,,, decreases with the
exponential increase of m (notice that the x-axis is log-scale). Fi-
nally in Figure 2(c), we illustrate that for an approximately fixed
dann =~ 0.3, the required number of samples m increases exponen-
tially with the number of dimensions n (notice that the y-axis is
log-scale).

3.2. Quality Measures

Our framework applies to any quality measure; in this work, we
focus on three categories: scagnostics [WAGO0S, WAGO06], pro-
Jjection pursuit indices [CBC93, LCKLO05], and the measures de-
rived from objective functions of dimensionality reduction meth-
ods [LWBP14].

The graph-theoretic scagnostics comprises a set of nine mea-
sures describing the shape, trend, and density of points from lin-
ear projections: outlying, skewed, sparse, clumpy, striated, con-
vex, skinny, stringy, and monotonic. These measures help to auto-
matically highlight interesting or unusual scatterplots from a scat-
terplot matrix. Scagnostics computation relies on graph-theoretic
measures such as the convex hull, alpha hull, and minimal span-
ning tree of the points. Take the skinny measure for example,

Cskinny = 1 — \/4marea(A)/ perimeter(A), where A indicates an al-
pha hull of the points in the projection.

Projection pursuit indices are quality measures developed on the
basis of the original projection pursuit approach [FT74] to capture
various features in a projection. In particular, we include gini, en-
tropy [LCKLOS] (highlighting class separation), central mass, and
hole [CBC93] measures in this study. Finally, the objective func-
tions of dimensionality reduction methods are also used for identi-
fying interesting projections. Linear Discriminant Analysis (LDA)

can be adopted to measure the amount of class separation. Stress,
which is the objective function in the distance scaling version of
Multidimensional Scaling (MDS), measures the quality of distance
preservation. Let d;; be the distance between a pair of points i, j in
R" and d; j be the corresponding distance in R*, where k < n. Stress
is defined as ¥; ;(dij — dij)?/ ¥ jd; [BSL*08].

Given an approximation of the Grassmannian, we consider var-
ious quality measures of interest as scalar functions on the Grass-
mannian, and calculate their values on all the sampled locations.

3.3. Topological Summaries of Quality Measures

Given the list of subspace (samples) with the corresponding qual-
ity values, the tradition approach simply selects the highest ranking
views and presents them to the user. However, as discussed above,
some of these views may be similar and thus redundant. Consider
the 1D example of Figure 3(a). The two highest ranking samples
are close together, i.e., represent a very similar projection, but the
second peak is ignored, even though in practice it may provide a
very different view and thus likely more information. Treating the
samples as individual points, these relationships between subspaces
are difficult to consider. Exploiting the underlying manifold struc-
ture, however, leads to an intuitive definition of locally optimal sub-
space. Given both the samples and their neighborhood relations it
is natural to consider only those subspaces that have no neighbor
with a higher metric value. Intuitively, we prefer views where no
small adjustment could lead to a higher quality value. Such a ten-
dency naturally leads to the concepts of topology and in particular
the Morse complex of the metrics.

Morse complex and persistence. We use the topological notions
of Morse complex to identify local maxima of a function and per-
sistence to quantify their robustness.

Given an Morse function defined on a smooth manifold, f: M —
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Figure 3: Selecting projections based purely on the ranking of a
quality measure, (a) fails to identify structurally distinct projections
as those obtained via topological analysis (b).

R, An integral line of f is a path in Ml whose tangent vector agrees
with the gradient of f at each point along the path. An integral line
starts at a local minimum and ends at a local maximum of f. De-
scending manifolds (surrounding local maxima) are constructed as
clusters of integral lines that have common destinations. The de-
scending manifolds form a cell complex that partitions M, referred
to as the Morse complex.

In our context, M is the Grassmannian, a smooth manifold with-
out a boundary, and f is a quality measure of interest. We identify
local maxima of f based on the Morse complex, and they corre-
spond to structurally distinct regions within the landscape of f. To
further quantify the robustness of a local maximum, we use the
notion of topological persistence. The persistence of a local max-
imum is defined to be the minimum amount of perturbation to the
function that removes it. In Figure 3, for example, the right peak
is less persistent than the left peak, since it can be removed with a
nearby critical point (e.g., a local minimum) with a smaller amount
of perturbation. We use the discrete algorithm of [GBPW10] to ap-
proximate the Morse complex of a measure, given a sampling and
neighborhood graph as discussed in Section 3.1.

Persistence Plot

-

L\ M
s 0 Maxima Saddle

0 et

Figure 4: Multiscale topological spine representations. The persis-
tence plots are shown on the left: the x-axis corresponds to the per-
sistence threshold, and the y-axis is the number of current cells in
the simplification. The long plateau in the persistence plot (bottom)
corresponds to a stable topological structure.
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Topological spines. The Morse complex provides a structural sum-
mary of the topology of a function, and is well defined in any di-
mension, but it is not easy to visualize. Instead, we use the concept
of topological spines [CLB11] to visualize both the space of pro-
jections and an intuitive interface for users to select and explore
various projections (see Figure 4)

The topological spine adapts a terrain metaphor, as shown in Fig-
ure 4, that connects local maxima whose corresponding descending
manifolds have shared boundaries. Intuitively, these connections
can be interpreted as the ridge-lines between neighboring peaks of
a terrain. The topological spine uses two parameters to simplify its
structure. First, persistence is used to remove noise and artifacts
to construct a simplified dual complex. Second, a variation thresh-
old is provided to determine which of the remaining connections
should be considered “ridge-like”, and only those above the thresh-
old are visualized. Furthermore, the size of each cell in the Morse
complex, i.e., the number of samples it contains, is encoded by the
width of the topological spine. The persistence plot (see Figure 4)
is essential for understanding the distribution of robust features in
the function: a long flat plateau indicates the existence of multi-
ple robust peaks that are good candidates for selection, whereas a
descending slope suggests excessive noise and the lack of robust
structures.

3.4. Interactive User Interface

Apart from the automatic selection of locally optimal views, our
system also allows users to interactively explore the different view
points using the topological spine as a selection interface. In partic-
ular, the system allows selection of the simplification (persistence)
levels that automatically updates the spine and provide dynamic
transitions between maxima/projections. The interface consists of
two linked views, the topological spine panel and the dynamic pro-
jection panel. The former displays the topological spine of the cho-
sen quality measure at the selected persistence set directly via the
embedded persistence plot (see Figure 4). The projection panel dis-
plays the dataset using the currently selected linear projection (local
maxima). To better understand the relationships between projec-
tions we use the dynamic projection approach [STBCO03] to create
animated transitions between projections by displaying a set of in-
termediate linear projections (see the supplementary video for more
details).

3.5. Computation Complexity

Since the sampling of Grassmannian Gr(2,n) and the construction
of neighborhood graphs are independent from the actual dataset
as well as the quality measures, the sampling process need to be
computed for each dimension n only once. Let m be the number
of data points, n the number of data dimensions, and k the number
of samples on the Grassmannian. Evaluating the quality measures
for each linear projection takes between O(mnz) (Scagnostics with
binning optimization) and O(m?n) (Stress). The algorithm used to
construct the topological spine from the samples of a given qual-
ity measure has a complexity of O(klogk). Therefore, the overall
computation complexity for a given data with a selected quality
measure is O(m>nk + klogk). The theoretical relationship between
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the number of samples k and data dimension # is examined in Sec-
tion 4. Quality measures and their corresponding topological spines
are pre-computed to support interactive exploration. For the exam-
ples in this paper, the computation time varies between 2 to 30 min-
utes, depending on the data dimension, sample size, and the number
of quality measures. The test setup consists of a machine with Intel
Core i5 2.8GHz processor running Linux. The software framework
is written in C++/Qt and compiled with GCC 4.8.

4. Results and Evaluation

In this section, we first evaluate our sampling procedure by show-
ing that our approach samples the Grassmannian evenly and com-
pletely. Subsequently, we show that the topological structure is sta-
ble for different sampling sizes and neighborhood graphs. We then
compare the topological structures of various metrics on different
datasets to better understand the behavior of each metric. Finally,
we show our collaboration with domain experts for applying the
proposed framework to the Word2Vec dataset.

4.1. Parameter Validation: Sampling Density and Sampling
Size

To reliably represent functions defined on the Grassmannian, we
require a uniformly distributed sample that covers the entire man-
ifold. For moderate input dimensions, the Grassmannian has com-
paratively low dimensions, and creating sufficient samples, espe-
cially during offline pre-processing, is straightforward. If the data
dimension becomes too large for the available resources, the Grass-
mannian has been shown to be amenable to dimension reduction,
i.e., a PCA [Jol05].

10k Pointwise farthest neighbor distance
} [l Pointwise nearest neighbor distance
8
6k
4k

2k IIIIII

0702 04 06 08 1 12 14

Figure 5: A histogram showing the distribution of pointwise nearest
(blue) and farthest (orange) neighbor distances for Gr(2,5) with
10K samples.

To validate our results, Figure 5 shows the histogram of near-
est neighbor distances and farthest neighbor distances for 10k sam-
ples from Gr(2,5). As expected, the nearest neighbor distances are
tightly clustered, indicating a nearly uniform distribution. Simi-
larly, the farthest neighbor distances indicate that the entire man-
ifold has a “diameter” of 1.4. As the sample is random and/or re-
sampled, the uniform farthest neighbor distance makes it unlikely
(though not impossible) that the manifold is not completely cov-
ered. However, a high-quality sample of the Grassmannian does
not necessarily guarantee that a given metric defined on the Grass-
mannian is well sampled.

Figure 6 shows the persistence plots and topological spines for
the two-planes dataset (see below) for different numbers of samples
and different neighborhood sizes for graph construction. All results
are stable, indicating that at least for this dataset the Grassmannian
is sufficiently sampled and our approach is numerically stable. We
have performed similar parameter studies for all experiments in the
paper and found similar results.
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Figure 6: Validating the stability of topological spines by varying
the number of samples and the number of neighbors for the k-NN
graph.

4.2. Validation With Synthetic Two-Planes Dataset

To evaluate the effectiveness of our approach we analyze a syn-
thetic dataset containing samples from two 2D planes embedded
in R3 that intersect with a 75-degree angle (see Figure 7(a)). The
scagnostics skinny measure (Figure 7(b)) identifies the head-on
projection in which both planes are skinny as the main mode and
various other projections where only a single plane is “skinny” as
alternatives. The Stress measure (Figure 7(c)) finds only a single,
stable maximum, which identifies an average view in which both
planes are equally distorted. The projection pursuit index central
mass (Figure 7(d)), on the other hand identifies good projections for
both planes as local maxima. These experiments demonstrate that
the Grassmannian Atlas not only is able to identify good projec-
tions but also provides insights into the measure itself. A measure
with only a single stable maximum likely produces some globally
average view whereas multiple maxima indicate several comple-
mentary views emphasizing different, local aspects of the data.

4.3. Quality Measure Comparisons

The Grassmannian Atlas not only helps to identify complementary
projections and summarize the structure of quality measures, but
also provides an avenue for examining and comparing high-level
structures of quality measures in general. In particular, the persis-
tence plot encodes a number of interesting properties in a concise
and intuitive manner. As discussed in Section 3.3, the persistence
plot records the number of salient local maxima depending on the
simplification threshold. In general, the most interesting feature in
a persistence plot is the number and width of stairs. Multiple stairs
indicate several sets of complementary projections, and the width
encodes how stable these features are.
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Figure 7: Validate the Grassmannian Atlas framework on a synthetic two-planes dataset. The dataset is sampled from the space illustrated
in (a). In (b), the two maxima within the topological spine correspond to the projections where one or both planes are at the “skinniest”. In
(c), the (global) stress measure captures one only interesting projection at its global maxima. In (d), the projection pursuit index central mass
measure captures the two projections where one of the two planes becomes “skinny".
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Figure 8: Quality measures comparison by evaluating their respective persistence plots, which provide concise summaries of the multireso-
lution topological structure. Only four datasets are shown here due to space constrains.

We compute the persistence plots for all 16 quality measures (9
scagnostics, 3 projection pursuit indices, 4 based on objective func-
tions of dimension reduction techniques) and include 11 of these
in Figure 8. For each measure we evaluate its behavior for five
datasets: (i) 2-planes synthetic dataset (3D), (ii) UCI Iris dataset
(150 samples in 4D), (iii) UCI E. coli dataset (332 samples in 6D, a
subset of the original 336 samples in 8D), (iv) olive oil dataset (572
samples in 8D), and (v) housing dataset (506 samples in 14D). The
details for each dataset can be found in the UCI machine learning
repository (http://archive.ics.uci.edu/ml/).

As shown in Figure 8, surprisingly few measures ever show more
than two or three complementary projections based on the number
of wide stairs in their persistence plots, and the stress measure cap-
tures a single robust projection in most cases. Such an observation
has important implications for ranking-based projection selection -
selecting more projections would most likely result in information
redundancy. The significant discrepancies among the topological
structures of different quality measures can be explained by their
formulations and design goals. The stress measure originates from
the objective function of MDS [BSL*08], and is designed to cre-
ate a single embedding that best preserves the pairwise distances.
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Therefore the stress measure typically produces a single projection
that is optimal on average. On the other hand, quality measures
that focus on evaluating the quality of projections based on local
structure preservation typically provide multiple, complementary
projections. As shown in Figure 8, the clumpy, outlying measures
are some of the more effective ones for identifying complementary
projections.

In general, given an appropriate quality measure, the Grassman-
nian Atlas can reliably identify potentially diverse and locally opti-
mal projections. Compared to conventional rank-based approaches,
our framework summarizes the structural relationships among pro-
jections according to the topology of the quality measure, and pro-
vides a more reliable and locally optimal set of projections for vi-
sualization.

For example, as shown in Figure 9, based on the clumpy quality
measure, our framework identifies multiple interesting projections
for the E. coli dataset that capture meaningful biological relation-
ships.

The data points (corresponding to different E. coli strains) in
the two highlighted projections form clear clusters that are well
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Figure 9: The complementary projections captured by Grassman-
nian Atlas using the scagnostics clumpy measure for the E. coli
dataset.

aligned with the localization site classification labels (see details
in [HN96]). The black corresponds to the cyfoplasm localiza-
tion site, which comprises cyfosol (the gel-like substance enclosed
within the cell membrane) and the organelles (the cell’s inter-
nal sub-structures); the purple represents inner membrane with-
out signal sequence; the orange contains inner membrane with
uncleavable signal sequence; the light green corresponds to outer
membrane; the brown (with only 5 points) is the outer membrane
lipoprotein; and the dark green corresponds to perisplasm, a con-
centrated gel-like matrix in the space between the inner cytoplas-
mic membrane and the bacterial outer membrane. The projection
at the global maxima captures clear separation between the black,
and the (light and dark) green points, separating materials from the
inner membrane to the ones from or close to the outer membrane.
On the other hand, the projection at the local maxima merges the
black with the green points. Both projections group the purple and
orange points into one cluster that contains information regarding
the inner membrane.

Crime Rate (CRIM)

Average Number of Rooms (RM)

Figure 10: The different outliers captured by the Grassmannian At-
las using the scagnostics outlying measure for the housing dataset.
The outliers are highlighted by small solid circles.

Figure 10 shows a set of housing data in which each entry records
various property characteristics (14 in total), such as crime rate, me-
dian property value, average number of rooms per dwelling, etc. of
towns in Boston area. By utilizing the proposed framework and ex-
amining the topological spine and corresponding projection com-
puted from the outlying measure, we are able to identify some in-
teresting outliers which shed light on the large socioeconomic in-
equality correlated with the geological separation.

As shown in the projection on the right, we are able to identify
outliers that correspond to towns with a comparatively very high
crime rate. The difference is so extreme that this outlying pattern
is strongest among all the linear projection samples. By looking at
one of the local extrema (the projection on the left), we can see the
average number of rooms also are correlated with some outliers.
After examining the individual data points, we can see the outliers
corresponding to the towns that have around 8-9 average rooms per
dwelling, while at the same time the minimal number is around 3.5.

4.4. Word2Vec Dataset

The following study of Word2Vec dataset is a collaboration with
an expert in natural language processing (NLP). The popular
Word2Vec algorithm [MSC*13] learns a vector space representa-
tion of words by modeling the intrinsic semantics of large text
corpora. It consolidates the statistical relationships between words
in an abstract high-dimensional feature space. According to our
collaborator, the analysis and visualization approach for such a
dataset is very limited. Often, the t-SNE [VdMHO8] nonlinear pro-
jection algorithm is used for visualization, but most relationships in
Word2Vec are linear in nature. He suggests a visualization tool that
can produce interesting linear projections to emphasize semantic
properties in different parts of the data could lead to valuable new
insights.

The complete Word2Vec dataset is obtained by running the
Word2Vec algorithm on corpora of news articles, containing 100
billion words. The dimension of the resulting vector representations
for the words is fixed at 300. The data used in our experiment is a
small subset of the Word2Vec dataset, containing 900 frequently
occurring words obtained from the Google analogy task list. This
list contains pairs of words with a semantic or syntactic relation-
ship between them, e.g., (queen, king) and (man, woman). Follow-
ing this, we use PCA to reduce the dimension of the word vectors
to 5D in order to reduce the sampling cost. Note that subsampling
and dimension reduction are both common strategies in NLP to
limit the complexity of the input data without introducing signifi-
cant errors. To provide a context for the visualization, we label the
900 words with 10 categories such as adjective, adverb, verb, and
different groups of nouns (e.g., capitals and countries in different
continents, states of the US, etc.).

As shown in our quality measure comparison analysis in Sec-
tion 4.3, several measures, such as clumpy, outlying, which are
more likely to identify multiple complementary projections. In ad-
dition, clumpy by definition will likely highlight cluster-like fea-
tures. As demonstrated in Figure 11, the clumpy measure helps
capture the projections that reveals interesting semantic relations
in the analogy dataset. The largest maxima (shown on the right)
correspond to a projection that clearly separates cities and coun-
tries from all other words and does well in separating their respec-
tive continents (e.g., orange for North America, dark green for Eu-
rope, and blue for South America). A second projection (shown
on the left) does less well on cities and countries, but nicely sep-
arates the remaining groups of words. Our collaborator considers
the left projection to be the most informative overall, yet it does not
have a very high global ranking, and it would likely be ignored in a
ranking-based approach.

(© 2016 The Author(s)
Computer Graphics Forum (©) 2016 The Eurographics Association and John Wiley & Sons Ltd.



S. Liu, P.-T Bremer, J. J. Jayaraman, B. Wang, B. Summa & V. Pascucci / Grassmannian Atlas

adjectives, |
adverbs, %2 -2

¢ P

Yop o, X ,’.' S,
Sy
IO X% o AR

family nouns: daughter,
grandson, etc.

~
~
R

cities & countries

cities & countries

Figure 11: Word2Vect dataset. The clumpy measure helps to identify the two projections that highlight clear separation between cities and

countries from the rest of the data points.

A one-on-one session is carried out to obtain meaningful feed-
back from the collaborator. First, a carefully prepared demo by the
researcher is presented to the collaborator. Then the collaborator
is directed to experiment with the tool to explore the various mea-
sures and projections interactively. The session is concluded by a
discussion regarding the capability and usability of the tool. Our
collaborator shows great interest in the capability of the proposed
framework. He points out that the Grassmannian Atlas framework
can be a useful tool for exploring the word feature space, espe-
cially considering it does not have any restriction on what quality
measures can be adopted. For example, he suggests new measures
specifically tailored towards text analysis can be designed by incor-
porating semantic relationships among words. Regarding the pos-
sible challenges for using the proposed tool, the collaborator points
out the basic concept can be challenging to digest at first, since it
approaches the problem from a fundamentally different perspective
(the space of all linear projections).

5. Conclusion

The Grassmannian Atlas provides a fundamentally unique ap-
proach to exploring the space of all linear projections, the Grass-
mannian. By studying quality measures as functions defined on
the Grassmannian, we are able to identify local optimal projec-
tions as well as obtain an intuitive understanding of the topolog-
ical structures of the quality measures themselves. Our framework
not only enables the comparison among multiple quality measures
(Figure. 8), but also helps to guide the design of and provide bench-
marks for new quality measures.

The advantage of our approach lies in the ability to provide a
holistic interpretation of the space of all linear projections for a
given measure, However, this ability also leads to an unavoidable
battle against the curse of dimensionality: the space complexity of
the Grassmannian and the number of samples (based on current
sampling techniques) needed for a reliable coverage grow exponen-
tially in the number of dimensions. To mitigate this issue, we as-
sume that our data typically has low intrinsic dimensions and apply
dimension reduction as a pre-processing step, and therefore retain
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a balance between the sampling expense and the data accuracy. To
decrease the number of samples required for accurately represent-
ing the Grassmannian, an adaptive data centric sampling approach
is preferred. However, at the moment efficient sampling of an ar-
bitrary function on the Grassmannian is still an open problem (and
also an opportunity for future research).
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