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Figure 1: Robustness assignment for critical point trajectories for a 2D time-varying vector field from a combustion simulation.
The trajectories are mapped to colors based on their (dynamic) robustness values. The zoomed-in versions show robustness
pairings among the trajectories: same color segments are paired to each other. (a) and (c) involve fold and blue-sky bifurcations.
(b) and (d) are part of a long trajectory with high robustness values but different partners.

Abstract
Analyzing critical points and their temporal evolutions plays a crucial role in understanding the behavior of vector
fields. A key challenge is to quantify the stability of critical points: more stable points may represent more impor-
tant phenomena or vice versa. The topological notion of robustness is a tool which allows us to quantify rigorously
the stability of each critical point. Intuitively, the robustness of a critical point is the minimum amount of pertur-
bation necessary to cancel it within a local neighborhood, measured under an appropriate metric. In this paper,
we introduce a new analysis and visualization framework which enables interactive exploration of robustness of
critical points for both stationary and time-varying 2D vector fields. This framework allows the end-users, for the
first time, to investigate how the stability of a critical point evolves over time. We show that this depends heavily
on the global properties of the vector field and that structural changes can correspond to interesting behavior. We
demonstrate the practicality of our theories and techniques on several datasets involving combustion and oceanic
eddy simulations and obtain some key insights regarding their stable and unstable features.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Vector fields represent an important and ubiquitous class of
data that arise in many scientific disciplines. Vector field

topology, introduced into the visualization community by
Helman and Hesselink [HH91], has inspired much research
in the analysis and visualization of vector fields, e.g. see sur-
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veys [LHD∗04, PVH∗03, WE05, PL09, MLP∗10, BCP∗12].
A large body of work focuses on the study of critical (fixed)
points [PP03, SKMR98, TSH01, TSH00a, Wei08], locations
where the vector value is zero. A key challenge is to quan-
tify the stability or significance of a critical point, for both
stationary and time-varying vector fields.

In this paper, we use a relative of persistence [ELZ02,
DW07,RKG∗11], called robustness, to represent the stability
of critical points with respect to perturbations in a rigorous
manner. Understanding how stable points are is crucial to as-
sessing their significance. The notion of persistence has been
used successfully for scalar field visualization and analysis
but is ill-suited to vector-valued data. On the other hand, ro-
bustness, introduced in [EMP11] through the algebraic con-
cept of well diagrams [EMP10], is specifically designed for
such data. Recently, an algorithm was given to compute well
diagrams for vector fields on Rn [CPS12]. We relate and ex-
tend these results to perform analysis and visualization of
both stationary and time-varying 2D vector fields. Another
closely related work by Kasten el. al. [KHNH11] introduced
the notion of long-lived features. Such long-lived features
are different from robust features as the former focuses on
lifetime and the latter relies on the amount of perturbation
necessary to eliminate the feature. However, as shown in
Section 6 in the case of ocean eddies, these two concepts
are correlated. Thus maybe the most interesting features are
those with high robustness values across a long period of
time. The work in [RLH11] also strongly advocated the need
for importance measures for critical points and proposed
such a measure under the setting of stationary vector fields.

In [EMP11], the authors first proposed the question re-
garding how different robustness is from persistence and
whether there is a reduction of one to another. They gave
a setting in which the two are almost the same under the
one-dimensional notions of robustness. Such relations were
further explored in [BEMP13] by describing how the ro-
bustness of features in level and interlevel sets, quantified
through well groups, can be read off the persistence diagram
of the function. However in more general settings the reduc-
tion from robustness to persistence is not known and the au-
thors in [EMP11] have conjectured that robustness may sit
somewhere between the 1-parameter notion of persistence
and its multi-parameter generalization [CZ07]. The notion
of robustness offers twofold benefits. First, it helps us dif-
ferentiate features from noise, although what is considered
noise may be application-driven and data-dependent. Sec-
ond, it motivates us to seek compact representations of the
datasets by maintaining essential features. Such representa-
tions could potentially speed up analysis and reduce visual
clutter. Our main contributions can be summarized as:

1. We give two different notions of robustness, static and dy-
namic. The notion of static robustness and its computation
for stationary vector field is not new. It was first introduced
in [CPS11] as robustness. Intuitively, static robustness of a

critical point is the minimum amount of local perturbation
necessary to cancel it, measured under a well-defined metric.
Our contribution regarding static robustness is to describe
explicitly, for the first time, its provable properties associ-
ated with quantifying the stability of a critical point with re-
spect to perturbations of the vector field. On the other hand,
we introduce the new concept of dynamic robustness, mo-
tivated by establishing an explicit connection between the
stability of critical points with the stability of well diagrams.
It offers a different view of critical point stability by describ-
ing the global correspondence of a set of critical points with
respect to bounded perturbations. The properties associated
with both types of robustness give a theoretical basis for our
analysis and visualization.

2. Using existing [CPS11] algorithms for static robustness
and new algorithms for dynamic robustness, we map robust-
ness values to critical point trajectories for 2D time-varying
vector fields. The mapping gives us a structural description
of the vector field. In particular, they help us understand the
temporal stability of critical points and how they migrate and
interact with one another.

3. We have applied existing visualization methods to create
a tool that enables interactive exploration of robustness of
critical points for 2D time-varying vector fields. To demon-
strate the practicality of our theories and techniques, we use
this tool on several real world datasets involving combustion
and ocean eddy simulations. We obtain some key insights
regarding their stable and unstable features.

2. Preliminary

In this section, we review previous work [EMP11, CPS11,
CPS12] by providing its relevant background in degree the-
ory, merge tree and well group theory. We provide minimal
algebraic definitions and illustrate the related concepts by
examples whenever possible. For non-specialists, the exam-
ples towards the end of this section may be sufficient to con-
vey a basic understanding of these concepts.

Degrees. The first concept we need is the degree of a con-
tinuous mapping. Here we avoid its algebraic definition (see
[Hat02] page 134 and [CPS12]), but point out that in a 2D
vector field, the degree of a critical point x (that is, the degree
of a mapping f at x), denoted as deg(x), equals its Poincaré
index. That is, a source, a sink and a saddle have degrees +1,
+1 and −1, respectively. Furthermore, for a path-connected
component C in the domain that encloses a set of critical
points {xi}, its degree (more precisely, the degree of f re-
stricted to C) is deg(C) = ∑i deg(xi).

Merge tree. Given a continuous 2D vector field f : R2 →
R2, we can define a scalar function f0 : R2 → R at each
point x ∈ R2 as its Euclidean norm, f0(x) = || f (x)||2. Let
Fr = f−1

0 (−∞,r] be the sublevel set of f0 for some r≥ 0. A
value r > 0 is a regular value of f0 if Fr is a 2-manifold, and
for all sufficiently small ε > 0, f−1

0 [r− ε,r+ ε] and f−1
0 (r)

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



B. Wang & P. Rosen & P. Skraba & H. Bhatia & V. Pascucci / Visualizing Robustness of Critical Points for 2D Time-Varying Vector Fields

are diffeomorphic; otherwise it is a critical value. We further
assume f0 has a finite number of critical values and F0, the
set of critical points of f , is finite.

If we observe the evolution of Fr as r increases, we can
construct a graph that tracks (connected) components of Fr
as they appear and merge. This is called a merge tree (or join
tree [CSA00]). The root represents the entire domain of f0
while the leaf represents the creation of a component at a
local minimum. An internal node represents the merging of
two or more components. We further augment the merge tree
with degree information at each node. That is, to each node,
we record an integer that is the degree of the corresponding
component in the sublevel set. Since the degree of a compo-
nent is the sum of the degrees of the critical points lying in
it, an initial computation of the degrees of critical points is
sufficient to determine the degree of any component of any
sublevel set [CPS12].

Well groups and well diagrams. Let f ,h : R2→R2 be two
continuous 2D vector fields. Define the distance between the
two mappings as d( f ,h) = supx∈R2 || f (x)− h(x)||2. A con-
tinuous mapping h is an r-perturbation of f , if d( f ,h)≤ r.

If h is an r-perturbation of f , then H0 = h−1(0) is a sub-
space of Fr. The components of each space generate a vec-
tor space. These vector spaces are called the 0-dimensional
homology groups, H(H0) and H(Fr), of H0 and Fr respec-
tively, whose ranks equal the number of components. Since
we only deal with dimension 0 homology we drop the di-
mension from the homology functor notation. The subspace
relation induces a linear map jh : H(H0)→ H(Fr) between
the two vector spaces. The well group, U(r), is the subgroup
of H(Fr), whose elements belong to the image of each jh, for
all r-perturbation h of f [CPS12]. That is, U(r) =

⋂
h im jh.

Intuitively, an element in U(r) is considered a stable element
in H(Fr) if it does not disappear with respect to any pertur-
bation. Assuming a finite number of critical points, the rank
of U(0) is the number of critical points of f .

For values r ≤ s, Fr ⊆ Fs induces a linear map fs
r :

H(Fr)→ H(Fs) between the two homology groups. It can
be shown that U(s)⊆ fs

r (U(r)), for r≤ s. Therefore, the rank
of the well group decreases monotonically as r increases.
We define the terminal critical value of f0 as the radius r
at which the rank of U(r) decreases. A point r ∈ (0,∞) be-
longs to the well diagram of f0, Dgm( f0), with multiplicity
k if the rank of the well group drops by k at r [CPS12]. For
reasons of stability, the point 0 is counted with infinite mul-
tiplicity. The point∞ is counted with multiplicity k if for all
sufficiently large values of r, the rank of U(r) is k.

The Equivalence Theorem [CPS12] suggests an algorithm
to compute the well diagram. It states that, if r is a regular
value of f0, then the rank of the well group U(r) is the num-
ber of components C of Fr such that deg(C) 6= 0. That is, the
information within a well diagram can be read off from an
augmented merge tree with degree information, as illustrated
by the examples below.

Stability of well diagrams. The well diagram is stable in
the following sense. Let g : R2→ R2 be another vector field
with a finite number of critical points. Construct a bijection
µ : Dgm( f0)→ Dgm(g0) that sends the kth highest point in
Dgm( f0) to the kth highest point in Dgm(g0). Recall, the
point 0 in each well diagram has an arbitrary multiplicity. By
choosing the appropriate multiplicities for 0, µ is a bijection.
The bottleneck distance between Dgm( f0) and Dgm(g0)
is W∞(Dgm( f0),Dgm(g0)) = supa∈Dgm( f0) |a− µ(a)|. The
Stability Theorem of Well Diagrams [EMP11] states that the
bottleneck distance between two well diagrams is bounded
by the distance between the mappings. In other words,
W∞(Dgm( f0),Dgm(g0))≤ d( f ,g).

Examples. We illustrate the computation of well diagrams
through the construction of augmented merge trees as shown
in examples (a) and (b) in Figure 2. We do not show the
non-zero minima of f0 in the visualization since they do not
correspond to critical points of the vector field.
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Figure 2: Example (a) and (b): from left to right, vec-
tor fields f , relations among components of Fr, augmented
merge trees and well diagrams.

Here the augmented merge trees are sufficient to derive
its corresponding well diagram. We use α, β, γ etc. to rep-
resent components of certain sublevel sets. In example (a),
the illustrative vector field f : R2→ R2 on the left contains
four critical points, a sink x1 (red), a source x3 (green), and
two saddles x2 and x4 (blue). The mapping f0 : R2→ R has
three critical values, which we denote by 0 < r1 < r2 < r3.
The merge tree on the right shows how the components of
the sublevel sets Fr evolve. At r = 0 there are four compo-
nents α1,α2,α3, and α4 that contain the four critical points,
each with non-zero degree. At r = r1 there are two compo-
nents, β2 and β3 in Fr with non-zero degree; that is, the num-
ber of components with non-zero degree drops from four to
two; therefore there are two points in Dgm( f0) with value
r1. Similarly, at r = r3 the number of components with non-
zero degree drop from two to zero; therefore there are two
points in Dgm( f0) with value r3.

In example (b), vector field f ′ contains four critical
points: x′1 (red sink), x′2 (green source) , x′3 and x′4 (blue sad-
dles). Following the previous argument, e.g. at r′1 the num-
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ber of components with non-zero degree drops from four to
three, therefore there is a point in Dgm( f ′0) with value r′1.

3. Static Robustness and Its Properties

The static robustness of a critical point is the height of its
lowest degree zero ancestor in the merge tree, as first de-
fined in [CPS11]. In this section, we describe explicitly how
the static robustness quantifies the stability of a critical point
with respect to perturbations of the vector fields through the
following lemmas, whose algebraic proofs are included in
the supplementary material.

Lemma 3.1 (Critical Point Cancellation) Suppose a crit-
ical point x of f has static robustness r. Let C be the con-
nected component of Fr+δ containing x, for an arbitrarily
small δ > 0. Then, there exists an (r+ δ)-perturbation h of
f , such that h−1(0)∩C = ∅ and h= f except possibly within
the interior of C.

Lemma 3.2 (Degree and Critical Point Preservation) Sup-
pose a critical point x of f has static robustness r. Let C be
the connected component of Fr−δ containing x, for some
0 < δ < r and r− δ being a regular value. Then for any
ε-perturbation h of f where ε ≤ r− δ, the sum of the de-
grees of the critical points in h−1(0)∩C is deg(C). Fur-
thermore, if C contains only one critical point x, we have
deg(h−1(0)∩C) = deg(x). In other words, there is no ε-
perturbation (ε ≤ r− δ) that could cancel the critical point
in C; that is, x is preserved.

In example (a), the static robustness of the critical points
x1, x2, x3, and x4 are r1, r1, r3, and r3, respectively. Since the
static robustness of x1 is r1, Lemma 3.1 implies that there ex-
ists an (r1 + δ) perturbation for arbitrarily small δ that can-
cels x1 by locally modifying the component C ⊆ Fr1+δ con-
taining it. In example (b), the static robustness of all four crit-
ical points are r′3. Let C⊆ Fr′ be a component containing x′1
and r′2 < r′ < r′3. By construction, deg(C) = ∑

3
i=1 deg(x′i) =

+1. Lemma 3.2 states that any r′-perturbation preserves the
degree of C. In addition, since x′4 also has robustness r′3, let
C′ ⊆ Fr′ be a component containing only x′4 for r′2 < r′ < r′3.
Lemma 3.2 implies that any r′-perturbation preserves x′4.

The algorithm that assigns static robustness to each criti-
cal point involves traversing an augmented merge tree. The
time complexity to build such a tree is based on the 2D con-
tour tree construction O(n logn) [dBvK93], where n is the
number of vertices in the triangulated domain.

Static robustness for a stationary vector field can be ex-
tended trivially to its time-varying setting. Suppose we have
properly resolved the critical point correspondence problem
and we are given the trajectories of critical points over time
(so-called critical paths). We could obtain a robustness as-
signment along each critical path by first computing robust-
ness at each discrete time slice and linearly interpolate the
robustness values between time slices. This enables us, for

the first time, the opportunity to study temporal stability of
critical points.

4. Dynamic Robustness and Its Properties

In addition to static robustness, we now introduce a different
stability quantifier called dynamic robustness. Given a con-
tinuous vector field f : R2→ R2 and its corresponding well
diagram Dgm( f0), let X be the set of critical points of f and
Dgm( f0) the set of point values in the well diagram (includ-
ing multiplicity). Since the rank of well group U(0) is equal
to the number of critical points, we have |X | = |Dgm( f0)|.
The dynamic robustness of a critical point x ∈ X is the im-
age ρ(x) of a set bijection ρ : X → Dgm( f0), such that ρ(x)
is chosen among the terminal critical values of its ancestors
in the merge tree which are no greater than its static robust-
ness. The bijection ρ is referred to as a dynamic robustness
assignment.

While static robustness quantifies the stability of a critical
point by measuring the amount of perturbation required to
cancel it independently, dynamic robustness quantifies the
stability of a critical point by describing the global corre-
spondence of a set of critical points with respect to bounded
perturbations. The latter is motivated by establishing an ex-
plicit connection between the stability of critical points with
the stability of well diagrams. Algebraically, static robust-
ness has properties rooted in degree theory, in particular, the
Hopf extension theorem [GP74]. Dynamic robustness, on
the other hand, originates from the stability theorem of well
diagrams [EMP11]. When the values of these two stability
quantifiers coincide, their combined properties apply, imply-
ing simple relations among critical points; Otherwise, it rep-
resents more complex interactions between critical points.

The following lemma describes one of its key properties
whose proof is included in the supplementary material. Intu-
itively, it shows the existence of a correspondence between
two sets of critical points with bounded perturbations.

Lemma 4.1 (Dynamic Robustness Stability) If a criti-
cal point x of f has dynamic robustness r, then for all δ-
perturbations h of f , where δ < r, there exists a critical point
y of h such that it has a dynamic robustness between r±δ.

By definition, a dynamic robustness assignment is not
necessarily unique. To obtain such an assignment, we find
a perfect matching in the bipartite graph G = (X ,Y ) where
X is the set of critical points in f and Y is the set of points
in the well diagram. G is constructed such that there is an
edge between x ∈ X and y ∈ Y if y is among the terminal
critical values of x’s ancestors in the merge tree and y is no
greater than the static robustness of x. If G contains m edges
and n nodes, the algorithm can be derived from the max flow
problem with a complexity of O(mn).

In example (a) dynamic and static robustness coincide.
In example (b) there are four possible dynamic robustness
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assignments by finding all possible perfect matchings in
G = (X ,Y ), where X = {x′1,x′2,x′3,x′4}, Y = {r′1,r′2,r′3,r′3},
and edges E = (X × Y ) \ {(x′3,r′1),(x′4,r′1),(x′4,r′2)}.
The four perfection matchings with respect to critical
points {x′1,x′2,x′3,x′4}, are (r′1,r

′
2,r
′
3,r
′
3), (r′2,r

′
1,r
′
3,r
′
3),

(r′1,r
′
3,r
′
2,r
′
3) and (r′3,r

′
1,r
′
2,r
′
3). Here, the static and dy-

namic robustness assignments differ due to the fact that
the degrees of the immediate ancestors of the given critical
points are not necessarily zero.

Computing dynamic robustness over all time slices is non-
trivial since the dynamic robustness assignment at each time
slice is not necessarily unique. We are interested in a robust-
ness assignment that is as continuous as possible between
time t and t+1; that is, suppose there is a bijection i : X→X ′

(correspondence) between critical points X at time t and X ′

at time t + 1, we find assignment ρ : X → Dgm( f0) and
ρ
′ : X ′ → Dgm( f ′0) at their respective time slices such that

the total variation ∑x∈X |ρ(x)− ρ
′(i(x))| is minimized. In

the case where adjacent time slices have different numbers
of critical points, we could map points to 0 (counted with
infinite multiplicity in the well diagrams). We can find lo-
cally minimal solutions using alternating optimizations. In
particular, we employ forward and sandwich propagation.
The former fixes a perfect matching ρ at time t and find a
min-cost perfect matching ρ

′ at time t + 1 based on ρ. The
latter fixes perfect matchings ρ and ρ

′′ at time t and t + 2
respectively, and find a min-cost perfect matching ρ

′ at time
t +1 based on ρ and ρ

′′. Finding min-cost perfect matching
between t and t + 1 uses the Hungarian method and takes
time O(n3) where n is the number of nodes in the graph. In
the datasets tested, such an optimization converges in a mat-
ter of a few seconds. We conjecture that finding the optimal
assignment is NP-hard.

While we try to find matching which are continuous as
possible, it not difficult to construct cases where no contin-
uous assignment exists. This is due to global changes in the
structure of the vector field (specifically surrounding bifur-
cations), indicating that discontinuities of dynamic robust-
ness may highlight interesting behavior. We finally note that
we use the word dynamic in our definition to reflect its non-
uniqueness nature and its assignments across multiple time
slices, it does not represent any information about the dy-
namic behavior of the flow.

5. Implementation

Our analysis and visualization framework relies on sev-
eral implementation modules described below. Our compu-
tational pipeline also requires implementations of basic data
structures such as merge tree [CSA00] and bipartite graph
matching [CLRS09].

Critical point detection and critical paths tracking. The
augmented merge tree algorithm is provably correct. It does,
however, require correct identification of critical points. This

numerical step in the computation can lead to errors and in-
correct output of the well-diagram computation. In our im-
plementation, we use a reliable critical point detection tech-
nique based on Simulation of Simplicity [EM90] that takes
numerical instability into consideration [BGW∗13].

Once the critical points and their degrees are computed,
the next step is to track critical paths. We use a nearest
neighbor construction, where each critical point identifies
its nearest neighbor of the same type in the adjacent time
step. Since the datasets we use have high sampling density,
this simple method obtains critical point correspondences
consistent with region overlapping approaches [PVH∗03].
We are aware of other advanced feature tracking techniques
[TWSH02, TS03, RKWH11] such as feature flow fields that
could be used to construct critical paths. We are also aware
of some new research that interprets feature tracking through
the lens of robustness [SW13]. Our current visualization tool
is designed as an illustration of how robustness could be vi-
sualized in the time-varying setting along critical paths. We
would explore more advanced critical point tracking tech-
niques in combining with the robustness framework in the
near future.

Robustness assignment. For static robustness assignment,
we simply traverse the augmented merge tree. For dynamic
robustness assignment, we use the C++ Boost library to
compute perfect matchings for bipartite graphs. For compact
2-manifolds without boundary, we expect all the robustness
values to be finite. Note there is a technical condition on the
domain for the algorithm to work (trivial tangent bundle),
which excludes the sphere. If the domain has boundary, both
static and dynamic robustness could be infinite due to bound-
ary effects. Robustness values are then assigned to critical
paths, which are visualized as explained below.

Interactive visualization. Our interactive system (as show-
cased in Figure 1 and the supplementary video) is capable of
visualizing time-varying datasets in both 2D and 3D modes.
While all robustness information is computed off-line, the
interactivity allows users to adjust the visual appearances
of critical points, critical paths and their associated robust-
ness. The 2D mode shows a single time slice of the dataset.
The vector field is visualized using a line integral convolu-
tion (LIC) implementation [CL93] with critical points indi-
cated with spheres. The critical points are colored using one
of a number of different transfer function modes based on
their types, degrees, robustness values, or robustness part-
ners. Critical points are considered partners (or they are
paired with one another) if they share the same robustness
value and belong to the same connected components at that
value. We use a white, blue and red color scheme for robust-
ness values, with white being high and red being low. We
use black to indicate infinity. Users interact with the system
by using a time slider. The 3D mode demonstrates the time-
varying behavior of the dataset. 2D vector fields are set up
as slices through 3D space with time as the third dimension.

c© 2013 The Author(s)
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The critical point paths are visualized using colored tubes
which are stylized with black borders to be better differen-
tiated from one another. The tubes are colored by the same
transfer functions as those applied to the critical points in the
2D case. Critical point birth and death events are indicated
by gray spheres. In the case that the vector field is defined
on a periodic domain (i.e. a torus), its continuous bound-
aries need to be represented, i.e., when a critical point exists
from one side and enters from the opposite side. Such events
are indicated by spheres at the exits and entrances along the
boundary. For a more focused analysis, our visualization tool
can support a number of advanced functionalities. We enable
switching on and off critical point paths so that we can fo-
cus on specific features in the data, along with the ability to
chose subsets of time intervals for targeted analysis. We also
support the usage of the 2D slice view within the 3D context
for correlation of features between the 2D and 3D visual-
ization modes. In addition, the system has the capability to
visualize sublevel sets and their corresponding robustness.
This is discussed in the next section.

6. Results

We showcase our interactive tool by focusing on different as-
pects of static and dynamic robustness for 2D and 3D views
of time-varying vector fields. We obtain some intuitive and
interesting insights by exploring the important and some-
times unexpected features of our testing datasets under the
robustness setting. Although these insights are yet to be val-
idated by the domain experts, they are still useful as they
showcase the potential of the presented techniques in corre-
lating domain-specific understanding of the flow dynamics
with quantitative stability measures of the critical points.

Datasets. We demonstrate the practicality of our theories
and techniques on several real-world datasets. Our first
dataset (Combustion) is a taken from the simulation of ho-
mogenous charge compression ignition (HCCI) engine com-
bustion [HSPC06]. The domain has periodic boundary, and
is represented as a regular grid of resolution 640×640. The
2D time-varying vector field consists of 299 time-steps, each
with a time interval of 10−5 seconds. We also explore the
simulation of global oceanic eddies [MBP10] for 350 days
(therefore 350 time slices) of the year 2002. We use the top
layer of the 3D simulation which is represented as a 2D
time-varying vector field of resolution 3600×2400. Our sec-
ond and third datasets (CentralAtlantic and SouthAtlantic)
are tiles extracted from this simulation data, representing the
flow in the central Atlantic Ocean (60× 60), and the south
Atlantic Ocean (100×100) respectively. We construct stan-
dard triangulations on the point samples for these datasets.

In terms of performance, we use a 3.2 GHz Intel Core
i7 with 8 GB of RAM, a Geforce GTX 580 graphics card.
Graphics rendering for our tool is interactive, with 100+
frames per second. For Combustion, CentralAtlantic and
SouthAtlantic datasets respectively (resp.), critical points

computation takes 12 minutes (2.4 seconds / slice), 8 sec-
onds and 21 seconds resp.; merge tree construction, traver-
sal and bipartite graph computation takes 18 minutes (3.6
seconds / slice), 6 seconds and 19 seconds resp.; dynamic
robustness assignment through forward and sandwich prop-
agations takes 6.6 , 0.3 and 3 seconds to converge resp.

Combustion dataset. We give a small number of examples
involving Combustion dataset here, some of which are show-
cased in Figure 1. We first demonstrate robustness for a sin-
gle time slice of the dataset (which can be treated as a sta-
tionary vector field) in Figure 3. We compare the subtle dif-
ferences in static (a) and dynamic (c) robustness assignments
by showing critical points partners that are colored based on
unique values. The merge tree and its corresponding well di-
agram are shown in (b). The gray leaf nodes in the merge tree
refer to the critical points whose static and dynamic robust-
ness values may not coincide. Their exact robustness values
are shown in the table on the right. A common trend ob-
served from our dataset is that in practice low robustness
partners tend to be connected by separatrix, though not al-
ways. Another interesting feature is that the component that
contains saddle point 5 merges with the component con-
taining another saddle point 0 at a relatively high robust-
ness value, therefore creating a degree−2 component, which
later on cancels with components containing source/sink 6
and 4. This is almost identical to our synthetic example (b)
(Figure 2) described earlier (by setting points 0, 5, 6, 4 to
be x′1 to x′4 respectively). Notice that although points 0 and
4 are close in Euclidean distance, their robustness are quite
high, implying that the vector magnitude surrounding their
neighborhood remains quite large such that it requires a large
perturbation to cancel these critical points.

Second we focus on time-varying vector fields and show-
case global views for both static and dynamic robustness as-
signments along critical paths in a 3D cube, see Figure 6.
We visualize both robustness assignment as well as pairing
switches. Visualizing pairing switches showcases how crit-
ical points are related to each other and reflects structural
changes of the vector fields. Again under a time-varying set-
ting, there are subtle differences in how static or dynamic ro-
bustness changes along a critical path. Noticeably, in critical
path a, dynamic robustness evolves more continuously due
to the smaller number of partner switches. Meanwhile for
the first time, we could observe highly robust critical points
evolving over time, for example, along critical path c, where
its corresponding critical point stays robust for more than
150 time steps, indicating an extremely stable feature of the
vector field. In terms of robustness partners, we pay attention
to a few interesting sets of critical paths. Notice for critical
paths at e, under the static robustness setting, two critical
points stay as partners the entire time as they move towards
a fold bifurcation, while they switch partners midway under
the dynamic robustness. Through comparisons, this might
indicate an artifact as a result of alternating optimization ob-
taining a local minimum. On the other hand, for critical path
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(a) (b) (c)
r01

r02
r03

Pt. S D1 D2 D3 D4
0 r′3 r′1 r′2 r′1 r′3
5 r′3 r′2 r′1 r′3 r′1
6 r′3 r′3 r′3 r′2 r′2
4 r′3 r′3 r′3 r′3 r′3

Figure 3: Static and dynamic robustness of critical points for a stationary vector field. Left: (a) static robustness where critical
points are colored based on partners who share unique robustness values; (b) merge tree and well diagram; (c) dynamic
robustness partners. Right: critical points (from left to right) whose static (S) and dynamic (D) robustness may differ. r′1 =
0.542685, r′2 = 0.550826, r′3 = 0.5549. The range of robustness is [0.0867794,0.5549].

f , critical points partners, “remain faithful to each other until
death,” regardless of static or dynamic assignment.

Next, we focus on several types closely related to lo-
cal bifurcations. For critical path b In Figure 6, we display
the robustness values along with robustness partners, show-
ing one blue sky bifurcation (where two critical points are
suddenly created) happening between two fold bifurcations
(where two critical points of opposite degree collide and an-
nihilate each other). Notice in this case, the pairing remains
stable as the two critical points move towards the bifurca-
tion points, while robustness decreases continuously. Then
we turn on and off critical paths to get unobstructed views of
local features. Figure 4 shows two cases of robustness part-
ner switches, each involving three critical paths joined by a
blue sky bifurcation and a fold bifurcation. Notice that one
of the critical paths with a high robustness value (white path)
suddenly drops its robustness due to the partner switch near
the bifurcation.

Figure 4: A critical point trajectory highlighting the switch
in static robustness pairing near birth-death points.

For a connected component C in the sublevel set Fr, it
is possible to define the static (dynamic) robustness of C as
the maximum static (dynamic) robustness of critical points
it contains. We believe such a definition can help us un-
derstand the stability of a sub-domain of a stationary vec-
tor field, and for a sub-volume in the time-varying setting.
For example, in Figure 5, for the Combustion dataset, we
illustrate the dynamic robustness of connected components
in the sublevel sets where r = 0.1, and observe its evolu-
tion over time. The corresponding volume is rendered with

partial transparency on top of our critical point tube visual-
ization. Here, red indicates low robustness volume which co-
incide with places where low robustness critical points move
towards each other, such as regions surrounding fold and
blue sky bifurcations. The visualization highlights situations
which could be interesting for further investigation.

Figure 5: Combustion. Dynamic robustness of components
in the sublevel sets.

Central Atlantic dataset. Recall that in oceanography,
eddies [Rob83] are considered a dominant physical phe-
nomenon in understanding ocean circulation. Eddies in the
ocean can appear at different time scales, from short-lived
ones (we call small-scale features) to long-lived ones (large-
scale features). Eddies have closed or semi-closed circula-
tion patterns, and in 2D they could be modeled as vortices
whose detection, visualization and simplification [ZM95,
SP99, TSH00b] play a central role in studying features of
fluid flows. The eddy centers could be modeled as vortex
centers, whose trajectory over time are the critical paths. In
our framework, the migration and interaction between ed-
dies over time and space are modeled as critical paths. We
demonstrate that robustness assignments along critical paths
for CentralAtlantic and SouthAtlantic datasets help us quan-
tify the stability of small and large-scale eddy centers.

For the CentralAtlantic dataset, we first illustrate its
global view in Figure 8 (top left) for static robustness as-
signments along the critical paths. There appear to be few
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a

b

c

d

fe

Figure 6: Combustion. Top: robustness assignment along critical paths, for static (left) and dynamic (right) robustness. Bottom:
robustness partners colored by unique values showcasing partner switches, for static (left) and dynamic (right) robustness.

differences between static and dynamic robustness assign-
ments. For simplicity, we illustrate our examples based on
static robustness alone. The complete global view including
dynamic robustness assignments are shown in the supple-
mental material. The critical paths in this example are not
as smooth as Combustion due to their lower resolution. Also
notice the dataset has a strong shearing effect in the sense
that all critical paths move in roughly the same direction.

d

a

d

a

d

a

d

a

(1) (2)

(3) (4)

Figure 7: CentralAtlantic. Regions (a) and (d) are in cor-
respondence with Figure 8 top (a) and (d). From (1) to (4),
time slices 29, 42, 51 and 74.

Now we discuss several selected local features as shown
in Figure 8 (top right), which have their rough boundaries
illustrated in Figure 8 (top left). First, we focus on critical
paths in a. Early in the time sequence, a large number of
critical points appear in an isolated region with low robust-
ness. Over a short period of time, these critical points appear,
move, and disappear. They are characterized by a spaghetti-
like bundle in 3D and a visual clutter of critical points in 2D
(i.e., Figure 7 time slice 74). These small-scale features have

low robustness indicating fluctuations of the currents that are
highly unstable with respect to perturbations. As time moves
forward, the fluctuations settle down as two critical paths in
the flow emerge gradually over time (i.e. Figure 8 (top) b).
These two critical paths show high robustness and they pair
for a significant amount of time. This indicates a stable large-
scale feature that is robust to perturbations. They eventually
move into an area where new fluctuation is formed and dis-
appear into a fold bifurcation. Second, critical paths e in Fig-
ure 8 (top) represent another example of how stable features
evolve within unstable features. However, in this example
two critical points with low robustness pair for a long period
of time. They correspond to large-scale eddies residing in
fluctuating regions. Over time, these critical points become
stable as their robustness increases by eventually switching
partners. Third, in both critical paths c and d in Figure 8
(top), we see large-scale features with high robustness, indi-
cating stability. In addition, we observe in particular a pair
of critical points in d that gradually decrease in robustness
values although their Euclidean distance remains close. This
indicates a gradual decrease in strength (vector magnitude
of current velocity) among the neighborhood of these criti-
cal points. The 2D view of such a phenomenon is shown in
Figure 7 with white color indicating high robustness.

South Atlantic dataset. The global view of SouthAtlantic
dataset in terms of static robustness is shown in Figure 8
(bottom left). Some individual features are highlighted in
Figure 8 (bottom right) with a slightly rotated viewing an-
gle. Here critical paths a form a blue-sky bifurcation fol-
lowed by a fold-bifurcation. The two critical points involved
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Figure 8: Top: CentralAtlantic. Bottom: SouthAtlantic. Left: static robustness assignment along critical paths. Local features
are highlighted. Right: chosen individual features.

become stable for a relatively short period of time before be-
ginning to fluctuate. Critical paths b showcase two relative
large-scale features with high robustness for a long period of
time before disappearing into a fold bifurcation. Similarly,
critical path d illustrates the reverse scenario. Critical path
c corresponds to a large-scale feature that is stable most of
the time with respect to perturbations. For completeness, the
global view of SouthAtlantic dataset for both static and dy-
namic robustness including the pairing switches are shown
in the supplemental material.

7. Conclusion

We believe the robustness framework to be an important ad-
dition in quantifying the stability of critical points. Based on
our experimental results, we have seen how robustness can
help us separate features from noise, and explore the data in a
manner meaningful in the particular application. Sometimes
we may consider high robustness critical points, which are
provably robust to perturbations, as features, while they may
become undesirable in other situations. Based on robustness
measure, we could potentially develop strategies that main-
tain compact representations of the datasets by keeping only
the essential features for efficient analysis and uncluttered
visualization. Finally we would like to note that the theory
and computation of static and dynamic robustness general-
ize naturally to time-varying vector field in arbitrary dimen-
sions. Visualizing robustness for higher dimensional (3D+)
time-varying vectors fields remains an open problem.

Visual clutter. As shown in the result section, as the size of
the data increases, we would observe increasing level of vi-
sual clutter in the visualization of the critical paths. Interac-
tion and filtering are the natural approaches to dealing with
clutter. The user can select critical paths to include/exclude
from the visualization. Filtering (i.e. [BPMS12]) could also
be used on the robustness of critical paths by only includ-
ing those whose robustness fall below a desired range. We
also believe that certain visual clutter gives insight, e.g., a
group with low robustness paths indicates eddies or other in-
stability. Addressing the general scalability issue of visual
interface with respect to big data remains a challenge.
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