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Abstract. Euler diagrams are an intuitive and popular method to vi-
sualize set-based data. In an Euler diagram, each set is represented as
a closed curve, and set intersections are shown by curve overlaps. How-
ever, Euler diagrams are not visually scalable and automatic layout tech-
niques struggle to display real-world data sets in a comprehensible way.
Prior state-of-the-art approaches can embed Euler diagrams by split-
ting a closed curve into multiple curves so that a set is represented by
multiple disconnected enclosed areas. In addition, these methods typi-
cally result in multiple curve segments being drawn concurrently. Both
of these features significantly impede understanding. In this paper, we
present a new and scalable method for embedding Euler diagrams using
set merges. Our approach simplifies the underlying data to ensure that
each set is represented by a single, connected enclosed area and that the
diagram is drawn without curve concurrency, leading to wellformed and
understandable Euler diagrams.

Keywords: Euler diagrams - Set visualization - Hypergraph visualiza-
tion - Scalability.

1 Introduction

Set-based data are found in many real-world examples. In personalized recom-
mendation systems, sets capture multivariate relationships among users, query
topics, item features [11], and reasoning [4,20]. Set-based data are also prevalent
in biological systems to encode multiway relationships among entities in pro-
tein complexes, transcription factor and microRNA regulation networks, protein
function annotations, and metabolic processes [36].

An intuitive way to visualize set-based data is through an Euler diagram,
which captures sets and their relationships. In an Euler diagram, sets are repre-
sented by closed curves that enclose regions. The way the regions overlap reveals
the intersections between the sets. Representing sets using an Euler diagram is
visually intuitive; however, these approaches can suffer from comprehensibility
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issues even with a small number of sets, and scaling is considered to be limited
to 10 sets [2]. Recall that a planar graph is a graph that can be drawn on a
plane without edge crossings, finding a visualization of a set system as an Euler
diagram is equivalent to finding a planar embedding of its dual graph [9]. How-
ever, for many set systems, no planar embedding exists. In these cases, previous
algorithms to embed Euler diagrams represent a set by splitting it into two or
more closed curves [25,32], resulting in the set not being represented by a single
connected enclosed area. This has the advantage that all instances of set systems
are embeddable, but has the disadvantage that the diagram is much harder to
understand, as the same set can be represented in different parts of the diagram.

In addition, these prior layout methods typically introduce concurrency,
where multiple curves share a line segment. Both concurrency and disconnected
enclosed areas are violations of important wellformedness conditions, which are
known to impede understanding [26].

We present a new method that simplifies an Euler diagram via set merges.
A set merge takes the union of two or more sets in a set system and represents
the resulting set as a single closed curve. This increases the scalability of data
that the method can successfully visualize compared to previous methods. Our
contributions are as follows:

— We produce Euler diagrams that satisfy a number of wellformedness con-
ditions. In particular, our simplification process ensures that each set (or
merged group of sets) is represented by a single connected enclosed area and
that there is no concurrency.

— We demonstrate via experiments that, typically, a small number of set merges
leads to Euler diagrams that are wellformed and understandable.

2 Related Work

The visualization of set-based data has been an active area of research. We use
the terms “set system” and “hypergraph” interchangeably with the understand-
ing that these terms arise from different research communities. Hypergraphs
generalize graphs by allowing hyperedges, that is, edges that contain more than
two nodes. Hence, a hyperedge is a set and a hypergraph is a set system.

Many set visualization techniques use geometric elements such as lines, cir-
cles, ovals and closed curves to connect or enclose set elements. Other concepts
use tables or matrices (see [2,8] for surveys). However, in this section, we con-
centrate on the closely related background in Euler diagrams and simplification.
Euler and Venn Diagrams. Various methods for embedding a set system using
closed curves have been developed. These methods vary by the type of shape
applied, for instance, constraining the Euler diagram curves to circles [14,33-35]
or hexagonal/square grid cells [28]. In these cases, the diagram is represented
using only these shapes. However, only a subset of set systems are embeddable
with such shape restrictions, a limitation not present in our work.

Other work takes elements that have been previously embedded and super-
impose polygons on top of them [6]. Similarly, GMap [10] creates one or more
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polygons around areas of a graph that are in the same set. GMap relies on a
prior layout of data to be grouped, which our work does not require.

Miékinen [21] introduced an edge-based and a subset-based approach to draw
hypergraphs, where hyperedges are drawn as smooth curves connecting or en-
closing their nodes, respectively. However, an Euler diagram is not embeddable
for all set systems [25,32] with a single closed curve representing each set, as
dual graphs derived from these set systems cannot be drawn in a planar way.
Other methods, such as SPEULER [13], instead arrange set elements using a
circular layout. However, in order to have an embeddable diagram, SPEULER
produces overlaps of two curves when there are no elements within them.

Techniques also exist to refine an Euler diagram drawing once it has been

generated, improving its readability. For instance, eulerForce [22] uses a force-
directed algorithm to refine the set, whereas EulerSmooth [31] uses curve short-
ening flows to achieve the same objective.
Graph and hypergraph simplification. A number of approaches have been
proposed that simplify and summarize graphs (e.g., [29]). Visualization of sim-
plified graphs has been explored [7,16,18], which may be applicable to the node-
link diagrams of set systems. Our approach is related to graph coarsening driven
by visual criteria [1,3], which aggregates subgraphs into single nodes based on
topological properties. Instead of set merges, Euler diagrams may also be sim-
plified via element removal and optimization [27]. Zhou et al. [37] simplified
hypergraphs by combining nodes if they belong to almost the same set of hy-
peredges, and merging hyperedges if they share almost the same set of nodes.
However, it is different from our work in the simplification criteria, algorithm,
and visualization perspectives. Oliver et al. [24] recently proposed a framework
for visualizing scalable hypergraphs, with a convex polygon-based layout. Their
approach incorporates an iterative, reversible simplification process and layout
optimization. They have several merging operations, including hyperedge merg-
ing. As with [37], the simplification criteria, underlying algorithms and resultant
visualization differ markedly. Whereas their method attempts to reduce the un-
wanted overlap of the convex polygons representing hyperedges, our approach
guarantees no unwanted overlaps for the curves representing sets.

3 Technical Background

Euler diagrams and zones. A closed curve ~ in the plane R? is a contin-
uous function ~: [0,1] — R2, where v(0) = (1). An Euler diagram is a pair
& = (I',w), where I' is a finite set of closed curves in R?, L is a set of labels, and
m: I' — L is a mapping that assigns to each curve v € I" a label in L. A minimal
region of an Euler diagram is a connected component of R? — U, e image(y). A
zone of an Euler diagram is a set of minimal regions that represent the intersec-
tion of sets. The set of zones is called the abstract description of the diagram.

‘Wellformedness conditions. An Euler diagram £ may have a number of de-
sirable properties, referred to as wellformedness conditions [34]. These include:

— Simplicity: if all curves in I" are simple curves (i.e., no self-crossings);
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Fig. 1. Key wellformedness conditions: a disconnected zone in pink; (b) a non-
simple curve ¢; (c) a triple point; (d) duphcated curve labels ¢ with an unconnected
closed area; (e) concurrency: a and b, a and ¢, b and ¢; (f) two examples of duplicated
curve label (left and right): label a represents a set with a connected enclosing area
that contains a hole. (g) An Euler diagram (left), its Euler graph (middle), and its dual
graph (right).

— No triple points: if there are no triple points of intersection among the
curves in [

— Transversality: if two curves in I intersect, they intersect transversally;

— Connected zones: if each zone of £ is connected.

Our construction method guarantees that the diagram has simple curves and
connected zones. There is evidence to show that triple points and transversality
have limited impact on user understanding [26]. See Figure 1 for an illustration.
Of particular importance to this paper are the two wellformedness conditions:

— No concurrency: if no pairs of curves in I" run concurrently.
— Unique curve labels: if 7 is an injective function.

Unique to this paper, we further refine the condition of unique curve labels
into two conditions:

— Genus free: if the area enclosed by curves of the same label in I" does not
contain any genus (that is, a hole).

— Connected enclosed area: if the area enclosed by curves of the same label
in I" is connected.

For example, in Figure 1(f), the connected enclosed area condition is not violated
because the curve “a” is duplicated, but the region represented by “a” is not split
into two components. However, the diagram is not genus free as “a” has a hole.
However, in Figure 1(d) curve “c” is duplicated and the region represented is
split into two components, one inside “a” and “b”, with the other region outside
them. As a result, “c” does not have a connected enclosed area.

Euler graph and dual graph. An Fuler graph G¢ constructed from an Eu-
ler diagram & has vertices defined at all curve intersection points, and edges
defined as the curve segments that connect the vertices. By construction, each
face of G¢ is a minimal region of £. The dual graph of an Euler diagram & is
the standard dual graph of the Euler graph G¢. The vertices of the dual graph
represent the zones in the Euler diagram and the edges of the dual graph connect
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adjacent zones. Vertices are labeled by the curves that enclose their correspond-
ing zones, and edges are labeled by the symmetric difference of their endpoints.
See Figure 1(g).

We consider the main cause of poor interpretation with duplicate curve labels
to be caused by violations of connected enclosed area rather than genus free.
Having genus present in a diagram means that curves with the same label are
inside other curves with the same label, whereas the presence of a disconnected
enclosed area means that the curves with the same label can be anywhere in the
diagram, and therefore users may not spot all such curves when interpreting the
diagram. Our approach is designed to ensure that the resulting Euler diagrams
have simple curves and connected zones. We then further simplify with set merges
to ensure connected enclosed areas and avoid concurrency.

4 Algorithm

In this section, we describe our novel algorithm for simplifying Euler diagrams
with set merging. The code is available under a GPL open source license from
https://github.com/tdavislab/EulerMerge. We use JGraphT [23], which pro-
vides planarity testing.

4.1 Algorithm Preliminaries

An Euler diagram is a visual representation of a set system. A set system is a set
of sets S = {51, S2, ..., Sm }, where each set S; € S (1 < i < m) is a nonempty
subset of a universe U = |J;~, S;. With an abuse of notation, for an element
u € U, S(u) contains sets from S that contain u, i.e., S(u) ={S; € S |u € S;}.
We assume a set system is always given with a label-assigning map [ and I(.5;)
is the label associated with the set S;.

Our algorithm merges sets in S through an iterative process. In each iteration,
two sets are selected from S and replaced in S by their union. During this
process, the algorithm maintains a set of zones Z, which at any time is uniquely
defined as follows: Z contains the empty set zp := () and multiple nonempty sets
Z1, 29, .. ., 2, that partition U, such that any two elements u,v € U are contained
in the same zone if and only if S(u) = S(v). In other words, elements of U are
in the same zone if they are contained in the same subset of sets from S.

We work with a graphical representation G of the set of zones. We design
our algorithm such that, preferably after few iterations, G will be the dual graph
of a wellformed Euler diagram of the simplified set system. Although, initially,
G may lack the property of a dual graph of a wellformed Euler diagram, for
simplicity, we refer to it as dual graph throughout the whole merging process.

Let G = (Z,E,lz,lg). With an abuse of notation, the vertices Z represent
the zones and the edges E model pairwise relationships among the zones, where
lz and lg are (mappings of) zone labels and edge labels, respectively. The zone
label Iz(z) of each z € Z is formed by a subset of S that constitutes the zone.
The edge label [g(e) of each edge e = {z;, z;} € E is the symmetric difference of
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the two zone labels, i.e., Ig(e) := Iz (z;)Alz(z;). These labels are updated along
with the set system as the algorithm progresses. As noted in Section 3, the set
of zone labels is the abstract description of the set system.

4.2 A Running Example

We illustrate the set merging process with a running example. This is a set
system S of a director from a movie database, see Section 6. Each set is a movie,
and set elements are the actors that appear in the movie. Therefore in an Euler
diagram, curves represent movies, and the curves overlap if the movies share at
least one actor.

For the running example, the director is Bonowicz, Brett Ryan. He has seven
movies, forming a set system of seven sets:

(a) Garriage; actors: Caps, Bonowicz, Fox, Kessler, Kostenbaudor, Kozlow.

(b) Last Days of Ki, The; actors: Herbst, Stilwell, Trad-DeStefano, Ashkin, Bonowicz,
Chai, Chernyak, Dixon, Harpole, Lindo, Peters, Sawyer, Suppa.

(¢) Interview for a Night Job; actors: Dastoli, James, Vergara, Edwin.

(d) Pressing the Public Opinion; actors: DeVries, Yeager, Bonowicz, Chernyak, Cool-
man, Lindo, Moore (Michael), Nelson.

(e) Baseball and Glory; actors: Caffrey, Dienstag, Seabright, Shults, Chernyak, Cool-
man, Dastoli, Denniberg, Garcia, Grant, Leery, Myers, Reiber, Sawyer, Shields,
Tompkins, Weinstein.

(f) Signs and Voices; actors: Hecht, Moore (Julianne), Shepherd, Bonowicz, Dean.

(g) Banana Shell, The; actors: Baksh, Ashkin, Coolman, Fernandez, Grant, Gunn,
Sawyer, Zawacki, Niki.

Its corresponding abstract description (set of zone labels) can be produced by
finding the nonempty intersections in the set system. That is, if an actor u € U is
in a collection of movies S(u) (and no other movies), S(u) is added to the abstract
description, giving: {0, {a}, {b}, {c}, {d}, {e}, {f}, {g}. {b, d},{b, g}, {c, e}, {e, g},
{b7 d’ e}’ {b’ 67 g}’ {d’ 67 g}7 {a7 b? d? f}}

For example, the actor Dastoli is in movies “c” and “e”: “Interview for a
Night Job” and “Baseball and Glory” and no other sets, which gives rise to an
element {c, e} in the abstract description, and a zone with a label of {c,e} (for
simplicity, also referred to as “ce”).

4.3 An Overview of EulerMerge Algorithm

Our set merging algorithm (Algorithm 1) takes an input set system and generates
an initial dual graph. It then selectively merges pairs of sets to produce a planar
dual graph and finally applies additional set merges to remove concurrency.

The input to our EulerMerge algorithm is a set system S equipped with (a
mapping of) set labels [, and the output is a dual graph of an Euler diagram G
with zone labels [ and edge labels [g; for simplicity, these labels are sometimes
omitted in the pseudocode.
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Algorithm 1: EulerMerge
Input : Set system & = {S1,52,...,Sm}
Output: dual graph G = (Z, E)
G < InitialDualGraph(S);
G + NonPlanarToPlanar(G);
G + ConcurrencyRemoval(G);
return G

The InitialDualGraph algorithm creates an initial dual graph G for an input
set system S. First, the algorithm derives the abstract description by computing
S(u) for each u € U. Second, it creates edges and edge labels of G. Two zones z;
and z; in G are connected with an edge if their zone labels differ by one. Third,
the algorithm computes an induced graph for each set S; € . If this is connected
then there are no duplicate curve labels for that set in the corresponding Euler
diagram. If the induced graph is not connected, the algorithm adds edges to
connect it. However, this operation will introduce concurrency wherever the
labels of the two connected zones differ by more than one element.

The initial dual graph G may not correspond to a wellformed Euler diagram.
First, there may not be a planar dual graph for the initial set system. Second, the
constructive process for initializing a dual graph is heuristic and may not produce
a planar dual even if one exists. However, using a heuristic process is justifiable
as deciding whether a given set system can be drawn as an Euler diagram is
NP-complete [12]. Additionally, G may not correspond to a wellformed Euler
diagram because the diagram may have concurrent edges.

For the running example, the initial dual graph can be seen in Figure 2(a).
The InitialDualGraph procedure ensures that zones that have labels with single
symmetric difference are connected by edges. For example, “b” and “bd” are
connected by an edge. However, this leaves the subgraph induced from the set
“a” disconnected. Hence “a” and “abdf” are linked with an edge. This dual graph
is nonplanar, so set merges via NonPlanarToPlanar (Section 4.4) are applied.

4.4 Set Merging for Planarity

Once we have an initial dual graph, we then find a planar dual by merging sets.
We prioritize the planarity objective because we cannot embed an Euler diagram
without a planar dual. Furthermore, we can move toward planarity and reduce
concurrency simultaneously.

Every nonplanar graph contains a Kuratowski subdivision [17] (i.e., a sub-
division of K5 or K3 3) as a subgraph, denoted G¥ . Moreover, such a subgraph
can be found in linear time [5]. As shown in Algorithm 2, we merge two sets
present in such a subgraph until G becomes planar.

Our process for merging a pair of sets is shown in Algorithm 2. We first
replace any zone label and edge label containing I(Se) with 1(S7). We then merge
vertices in the dual graph with identical labels.
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(d)

a: Garriage: A Documentary in 4 Chapters and an Epilogue;
The Last Days of Ki; Pressing the Public Opinion
c: Interview for a Night Job
e: Baseball and Glory
: Signs and Voices
Q9:The Banana Shell

®

Fig. 2. Steps in the merging process: (a) The initial dual graph. (b) The first planar
dual graph after merging sets “b” and “d”. (c) The first planar dual graph and Euler
diagram without smoothing. (d) The first Euler diagram with smoothing. (e) The dual
graph and concurrency free final Euler diagram after merging sets “a” and “b”. (f)
The final Euler diagram with set labels.

Although achieving planarity is our top priority, we decide on the order of
pairwise set merges based on the reduction of concurrency because the two sets
are in a Kuratowski subdivision and merging them very likely also removes the
subdivision. As a result we can remove concurrency whilst finding a planar dual.
In a limited number of cases (for instance, when the sets to be merged are both
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Algorithm 2: PairwiseSetMerge
Input : dual graph G = (Z, E), Sets S1 and S
Output: dual graph G’ = (Z', E’)
G + G,
for 2 € Z' do

if 1(S2) € I%(2) then
() Ly (2) LIS \ 1(S2)
for e € E' do
if 1(S2) € Iz (e) then
Ug(e) « Us(e) Ul(S1) \ 1(S2)
for 2,2/ € Z' do
if I%(2) = 1%(2') then
G’ < ZoneMerge(G', 2, 2")
return G’;

in exactly the same zones), the subdivision remains, whereas concurrency is
greatly reduced by the set merges and so the second aim of the merging process
is satisfied. In this case, planarity will be achieved through subsequent merges.

We introduce a measure that quantifies the concurrency in a dual graph:

Concurrency (G) = Z lle(e)] — |E|.
eckE

Recall that concurrent curve segments appear in the Fuler diagram because
there are multiple sets on an edge label. Concurrency(G) measures the overall
size of edge labels. Concurrency(G) = 0 means that G has no concurrency as
all edges are labeled with a single set. In Algorithm 3, we merge two sets in G¥
that cause the most reduction in concurrency.

Algorithm 3: NonplanarToPlanar
Input : dual graph G = (Z, E)
Output: dual graph G’ = (Z', E’)
G + G
while !IsPlanar(G’) do
G¥ = (z¥, EX) «+ KuratowskiSubdivision(G")
R <~ UzeZ 15(2)7
GM — @
for R; € R do
for R; € R do
G?® « PairwiseSetMerge(G’, Ri, R;);
if Concurrency(G®°) < Concurrency(G™) then
GIM « GS;
G GM;
return G’
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In our running example, the initial dual graph is nonplanar and so we must
apply Algorithm 3. In this case, we only need a single iteration as merging sets
“b” and “d” results in a planar dual, shown in Figure 2(b). We retain the set
label with the lowest lexicographical order during set merges, in this case, “b”.

This set merge also leads to reduced concurrency. The dual graph in Fig-
ure 2(a) has a Concurrency of 6, whereas the dual graph in Figure 2(b) has a
Concurrency of 2. Once we have a planar dual graph, it can be used to embed an
Euler diagram as shown in Figure 2(c) and with improved layout in Figure 2(d).

4.5 Set Merging to Remove Concurrency

We can apply additional set merges to our planar dual to remove the remaining
concurrency, see Algorithm 4. We apply a greedy approach, that is, by merging
pairs of sets that reduce the most amount of concurrency at each step. We note
that alternative strategies for ordering pairwise set merges are also possible, as
discussed in Section 7. The final if statement, which ensures planarity by calling
Algorithm 3, is for rare cases where nonplanar duals have been produced by set
merging. We have not encountered any example that contains such a rare case.

Algorithm 4: ConcurrencyRemoval
Input : dual graph G = (V, E)
Output: dual graph G’ = (V', E')
G + G
while Concurrency(G’) > 0 do
R+ U ey lz(2);
GJW «— Gl,
for R; € R do
for R; € R do
G® « PairwiseSetMerge(G’, Ri, R;);
if Concurrency(G®) < Concurrency(G™) then
GM « G%;
G+ GM;
if !IsPlanar(G’) then
G’ + NonPlanarToPlanar(G’)
return G’

In the running example, the dual graph in Figure 2(c) still contains concur-
rency, e.g., between the connected zones “a” and “abf”, as seen in the Euler
diagram curve where segments “b” (orange) and “f” (yellow) run concurrently.
To remove all concurrency in this case, we need only a single iteration by merging
sets “a” and “b”, shown in Figure 2(e). The merge renames “abf” as “af” remov-
ing the concurrency as they have a single symmetric difference with “a”. With no
concurrency, the merging process is complete. The final Euler diagram is given

in Figure 2(f). Here, one curve represents the merging of three movies. We have
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now simplified the abstract representation and the Euler diagram, embedding
an Euler diagram without concurrency, at the cost of losing some detail.

Once we have formed an embeddable dual, we apply existing algorithms for
embedding the dual graph [25], followed by smoothing using EulerSmooth [31]
to refine the diagram boundaries.

Finally, we compare against the prior state-of-the-art general Euler diagram
embedding [25], which we refer to as EulerGeneral. As shown in Figure 3, Eu-
lerGeneral produces an Euler diagram where sets “a” and “f” are represented
by disconnected enclosed areas. It has Concurrency of 5.

Fig. 3. The result of the running example with prior state-of-the-art EulerGeneral [25].

5 Evaluation

We compare our EulerMerge algorithm with the previous general Euler diagram
embedder EulerGeneral [25]. Our algorithm produces Euler diagrams that have
connected enclosed areas and no concurrency (see Section 3). It reduces the
number of sets to be visualized. The EulerGeneral algorithm [25] visualizes all
sets at the cost of containing disconnected enclosed areas and concurrency.

For EulerMerge, we need to consider the number of set merges required to
produce a planar dual graph as well as those required to remove concurrency.
We therefore count the number of set merging operations in Algorithm 3 and Al-
gorithm 4. EulerGeneral might not obtain a wellformed diagram as duplicated
curve labels and concurrency appear in many cases. Hence we quantify the num-
ber of duplicated curve labels as well as the amount of concurrency in the dia-
gram. We note that in some complex cases, EulerGeneral does not produce an
embedding at all. These cases have been removed from the data.

We use two collections of real-world set systems for evaluation (Table 1).
First, the MovieDB data from the 2007 InfoVis contest [15]. A set system is
formed from movies directed by a director with the movies as sets and the
actors that appear in a movie as elements in the set. Second, a set system from
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the Twitter Circles [19] collection contains sets that are interests groups formed
by Twitter users. We include only diagrams that contain duplicated curve labels
or concurrency.

For EulerMerge, Table 2 shows the average number of set merges required to
produce a planar dual graph as well as those required to achieve concurrency.
Concurrency reduction is over ten times more common than planarity reduction
for both collections.

Collection ‘#Set Systems‘Mean Sets‘Mean Zones
MovieDB 225 4.4 7.78
Twitter Circles 59 5.92 8.24

Table 1. Real-world data summary, reporting the number of set systems per collection,
the mean number of sets (Mean Sets) and mean number of zones (Mean Zones).

Collection ‘ Planarity ‘ Concurrency ‘ Both

MovieDB 0.11 ‘ 1.23 1.33

Twitter Circles| 0.07 1.97 2.04

Table 2. EulerMerge: the average number of merges for achieving planarity (Planarity)
and removing concurrency (Concurrency), together with the both merges (Both).

Collection ‘ #Duplicated Curve Labels‘ Concurrency
MovieDB 0.35 4.63
Twitter Circles 0.41 6.19

Table 3. With EulerGeneral, the average number of duplicated curve labels (#Dupli-
cated Curve Labels) and the average Concurrency count (Concurrency).

For EulerGeneral, Table 3 shows the average number of duplicated curves
and the average Concurrency count. Duplicated curve labels occur in less than
half of the diagrams generated, which may be artificially reduced by the failure
of the algorithm to visualize some set systems, particularly complex ones.

In Table 2 and Table 3, it is shown that a smaller number of set merges are
required to remove concurrency with EulerMerge, compared to the amount of
concurrency in EulerGeneral.

6 Examples of Use Cases

Twitter Data Example. Figure 4 illustrates the process of applying our
method to an example group of users from the Twitter data, where each user
may belong to multiple interest groups. The set system consists of 13 sets and
32 intersections. The names of sets are shortened to single letters.

We first construct an initial dual graph, as shown in Figure 4(a) where ver-
tices represent zones, namely, the 32 nonempty intersections of sets. However,
the initial dual graph is nonplanar and, thus, it is not possible to generate an
Euler diagram from it. We therefore employ Algorithm 3 to merge sets until
the graph can be embedded without edge crossings. The first iteration merges
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a: Android, Food; b: Books; C: Cars; d: Design, News, Games;
e: Economics s: h: Health; - Joumalism; j: Media:
.. S " Programming; 1 iPhone

() (@

Fig. 4. The set merging process of a Twitter data set. (a) The original dual graph.
(b) The first planar dual graph (left) and its corresponding Euler diagram (right) with
concurrency. (c¢) From left to right: sets “a” and “f” merge into “a”. (d) The final Euler
diagram without concurrency.

sets “d” and “k”. A second merge is required before reaching planarity, so “d”

and “g” are merged. The two merges produce a planar dual graph with 11 sets

and 21 intersections, see Figure 4(b). However, the result exhibits concurrency.

For example, the vertices “f” and “dfm” are connected, but differ by two sets.

To eliminate concurrency, we continue to merge sets using Algorithm 4, which
W

merges “a” and “f”, as shown in Figure 4(c). The resulting Euler diagram has
no concurrency.

This example demonstrates that EulerMerge has achieved a desirable Euler
diagram: after three set merges, two for planarity and one for concurrency, we
can visualize this as an Euler diagram with connected enclosed areas and without
concurrency, see Figure 4(d).

Movie Data Example (Director: Hooker, Keith). This data set consists
of five sets in total. Each set represents a movie. We show set intersections
where one or more actor appears in those films and no other films. As shown
in Figure 5(a), the initial dual graph is not planar. The simplification process
merges once for planarity (sets “a” and “c” merge into “a”) and merges once
for concurrency removal (sets “a” and “b” merge into “a”). Figure 5(b) left
shows the first planar dual graph. Figure 5(b) right shows the corresponding
Euler diagram, which exhibits concurrency. Figure 5(c) shows the concurrency
removal step, where sets “a” and “b” in the left Euler diagram merge into “a”
in the right Euler diagram. Figure 5(d) gives the final Euler diagram with the
original set names.
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Fig. 5. The set merging process of a movie data set involving the director Hooker,
Keith. (a) The initial dual graph. (b) Planarity merges: merging sets “a” and “c” into
“a” and then merging “a” and “b” into “a”. (¢) Concurrency merges: merging “a” and

“b” in to “a”. (d) The final diagram with the original set names.
7 Conclusion

This paper provides, for the first time, an algorithm that uses set merges to
simplify the layout of Euler diagrams to meet multiple wellformedness condi-
tions. Merging just a few sets (often three or less) using EulerMerge results in a
diagram without split sets or concurrency, thus producing a simplified diagram
that is easier to comprehend than the non-wellformed alternative. Merging two
sets into one reduces the amount of detail available to the user, which may be
seen as a disadvantage. However, we see the simplification of a complex Euler
diagram as a potential benefit. If needed, with the integration of a suitable user
interface, the accepted visualization approach of “overview first, zoom and filter,
then details-on-demand” [30] can be employed to reveal the missing details. We
further perceive a simplified, wellformed diagram as a basis for hierarchical ex-
ploration via interactively expanding/collapsing merged sets, thus reflecting the
precise set relations required by well-matchedness [2]. Finally, a future direction
is to study the balance between visual readability and information loss, built
upon additional set simplification approaches via element removal [27].
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