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Abstract. The elevation function on a smoothly embedded 2-manifold in R
3

reflects the multiscale topography of cavities and protrusions as local maxima.
The function has been useful in identifying coarse docking configurations for
protein pairs. Transporting the concept from the smooth to the piecewise linear
category, this paper describes an algorithm for finding all local maxima. While
its worst-case running time is the same as of the algorithm used in prior work,
its performance in practice is orders of magnitudes superior. We cast light on this
improvement by relating the running time to the total absolute Gaussian curvature
of the 2-manifold.

1 Introduction

This paper introduces a new algorithm for computing all local maxima of the elevation
function defined on a 2-manifold embedded in R

3. This function has been introduced
by Agarwal et al. [4] for the purpose of improving the prediction of protein interaction
through docking. The approach identifies protrusions (knobs) and cavities (wells) on
the two surfaces and matches them up. This idea goes back to Connolly [12] who used
a function that maps each point of the protein surface to the fraction of a fixed-radius
sphere centered at the point that lies outside the protein volume. As shown by Cazals
et al. [6], this function resembles the mean curvature at the point in the limit, when
the radius approaches zero. The fixed radius makes a choice of the scale the function
reflects.

The elevation function introduced in [4] serves the same purpose, but in contrast to
Connolly’s function, the elevation is scale independent and marks small as well as large
protrusions of varying shape and direction. Its construction is based on the persistence
structure of the 2-parameter family of height functions, as explained in the next section.
The task at hand is then the computation of all local maxima for two proteins and the use
of the type, size, and location of the marked topographic features to identify promising
positions for interaction. The experimental study in [23] shows that this approach is
effective in finding initial positions that can then be refined by local optimization. The
computationally most expensive step in this study is the determination of the elevation
maxima. Using the algorithm in [4], the running time for a triangulated 2-manifold with
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m edges is proportional to m5 log2 m. Since typical proteins give rise to surfaces with
hundreds of thousands of edges, the quintic dependence on m is a serious drawback
that limits the practical deployment of the method.

In this paper, we give a new algorithm that is faster for triangulated surfaces ap-
proximating smooth surfaces that we typically find in practice. They are characterized
by having dihedral angles at edges that are close to half the full angle (molecular skin
surface [14]). We relate the running time of our algorithm to the total absolute Gaus-
sian curvature of the surface and this way determine that we can expect roughly a
ten-thousand fold improvement over the running time of the old algorithm. We note,
however, that we offer no improvement in the worst-case performance.

Since we incorporate the surface complexity in terms of total absolute Gaussian cur-
vature into the analysis of the algorithm, it is worth mentioning that there is a large lit-
erature on the notion of curvatures for triangulated surfaces. We refer to [2] and [17,22]
for details.

Outline. In Section 2, we introduce the geometric and topological background needed
to understand the elevation function. We do this in two steps, discussing the mathemati-
cally cleaner smooth case in Section 2.1 and the computationally more useful piecewise
linear (PL) case in Section 2.2. In Section 3, we present the algorithm for computing all
elevation maxima, along with some implementation details and the analysis. In Section
4, we present our experimental results, employing our software to compute elevation
maxima for a number of triangulated protein surfaces. We gather statistics on critical
regions, pairwise intersections, and elevation maxima. We use these statistics as evi-
dence that our assumption is a reasonable approximation of the reality for our data and
that the new algorithm runs about four orders of magnitude faster than the old one.

2 Preliminaries

2.1 The Smooth Case

Morse functions. The class of smooth, real-valued functions is a challenging object
that simplifies considerably if we add genericity as a requirement. Letting f : M → R

be a smooth function on a 2-manifold, a point x ∈ M is critical if the derivative at
x equals zero. The value of f at a critical point is a critical value. All other points
are regular points and all other values are regular values of f . A critical point is non-
degenerate if the Hessian, that is, the matrix of second partial derivatives at the point
is invertible. In this case, the matrix has two non-zero eigenvalues, λ1 �= λ2, and the
index of the non-degenerate critical point is the number of negative eigenvalues. A non-
degenerate critical point of index 0 is a minimum, of index 1 is a saddle, and of index 2
is a maximum. Finally, f is a Morse function if all its critical points are non-degenerate
and its values at the critical points are distinct. Given a value a ∈ R, the corresponding
sublevel set consists of all points with value at most a, Ma = f−1(−∞, a]. Sweeping
the manifold in the direction of increasing function value, we get a 1-parameter family
of sublevel sets. The topology of the sublevel set changes precisely when the sweep
passes through a critical point. Let t1 < t2 < ... < tn be the ordered sequence of
critical values and −∞ = s0 < s1 < ... < sn = ∞ a sequence of interleaved values,



Computing Elevation Maxima by Searching the Gauss Sphere 283

that is, si < ti+1 < si+1, for all i. By assumption of f being Morse, we get from the
sublevel set at si to the one at si+1 by passing exactly one non-degenerate critical point.
The change can be characterized in terms of the dimension of the handle we attach to
go from Msi to Msi+1 . For index 0, we add a 0-handle, that is, an isolated point which
we then thicken to a disk. For index 1, we add a 1-handle, that is an interval attached
to the boundary of the sublevel set at its endpoints which we then thicken to a strip.
Finally, for index 2, we add a 2-handle, that is, a disk attached to the boundary of the
sublevel set along its boundary circle.

Persistent homology. Looking at the homology groups [18] of the sequence of sublevel
sets, we use the concept of persistence to measure the lengths of the intervals along
which homology classes exist [15]. Since sublevel sets between two contiguous critical
values are indistinguishable, we may consider the finite sequence

∅ = M0 ⊆ M1 ⊆ . . . ⊆ Mn = M,

where we simplify notation by setting Mi = Msi . Fixing a dimension p (p ≥ 0), each
sublevel set has a p-th homology group and the sequence is connected from left to
right by homomorphisms induced by inclusion, which we denote as f i,j

p : Hp(Mi) →
Hp(Mj). We have a birth at Mi if the map f i−1,i

p is not surjective, and we have a death
at Mj if the map f j−1,j

p is not injective. Furthermore, the death at Mj corresponds
to the birth at Mi if there is homology class γ in Hp(Mi) that is not in the image
of f i−1,i

p , its image in Hp(Mj−1) is still not in the image of f i−1,j−1
p , but its image

in Hp(Mj) is in the image of f i−1,j
p . We call f(tj) − f(ti) the persistence of this

birth-death pair. As explained in [8], this method gives a pairing between births and
deaths that has many interesting properties. Each death corresponds to a unique birth
but not every birth corresponds to a death. To remedy this shortcoming, we extend the
sequence of homology groups for extended persistence as described in [9]. Writing
M

a = f−1[a,∞) for the superlevel set of a, we go up with absolute homology groups
of sublevel sets, as before, and we come back down with relative homology groups,

0 = Hp(M0) → Hp(M1) → . . . → Hp(Mn)
→ Hp(M, Mn) → . . . → Hp(M, M0) = 0,

where we simplify notation by setting M
i = M

si , M
0 = M and M

n = ∅. Now every
birth corresponds to a death. In fact, we have two events at every critical point, one going
up and one coming down, but duality implies that we just get each pair twice, see [9].
As a consequence of duality, the birth-death pairs we get for the negative function, −f ,
are the same. This turns out to be important in the definition of the elevation function.

For 2-manifolds, there is a more elementary way to introduce extended persistence
using the Reeb graph of the function. Instead of giving details, we refer to [4] and we
mention that this approach leads to a fast algorithm. It consists of constructing the Reeb
graph in a sweep [10] followed by deconstructing it in another sweep using cutting and
linking trees [4,16]. We run this algorithm for a piecewise linear function on a triangu-
lated 2-manifold. Letting m be the number of edges in the triangulation, as before, the
running time computing the extended persistence for a given height function is bounded
by some constant times m log2 m.
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Elevation. To define elevation, we assume the 2-manifold M is smoothly embedded
in R

3. For a direction u ∈ S
2, we consider the height function hu : M → R defined

by hu(x) = 〈x, u〉. Generically, hu is a Morse function, but for some directions u it is
not, either because a critical point is degenerate or because two or more critical points
map to the same height value. Considering the entire sphere of directions, we get a
2-parameter family of height functions.

For each u ∈ S
2, we pair up births with deaths using the extended sequence of

homology groups defined by the sublevel and the superlevel sets of hu. In the Morse
function case, each birth-death pair identifies two critical points, x and y, one giving
birth and the other giving death, and we define the elevation at these two points as their
persistence or, equivalently, the absolute height difference in the direction u, E(x) =
E(y) = |hu(x) − hu(y)|. Each point of M is critical in two directions, u and −u, and
is thus assigned two values, the absolute height difference to the paired critical point in
the two directions. Since h−u = −hu, the paired point is the same so we get a unique
value at every point. This is the elevation function of the 2-manifold, E : M → R.

To get a feeling for this function, we consider a protrusion (a mountain) of the
2-manifold. To measure the height of the mountain, we measure from the top down,
to the first saddle that separates it from an even higher mountain. We can do this in var-
ious directions, so we do it to maximize the height. This might be in a direction along
which the first saddle is ambiguous. Perhaps there are three such saddles at the same
height value in this direction, similar to the third type in Figure 1 in which we have a
saddle with the same height difference to three minima. In this direction, we have two
violations of genericity required for Morse functions, because there are three critical
points with the same height value. Indeed, local maxima of E tend to arise along non-
generic directions. An exception is the 1-legged maximum defined by only two critical
points (with one leg between them). Besides this case, we have 2-legged maxima de-
fined by three critical points, and 3- and 4-legged maxima defined by four critical points
each; see Figure 1.

Curvature. We will later discover that the running time of our algorithm for finding
all local maxima relates to the total absolute curvature of the surface. We introduce this
concept using the Gauss map, N : M → S

2, defined by mapping a point x of M to the
outer unit normal, N(x), at x. Assuming M is smoothly embedded in R

3, the Gauss
map is continuous and surjective but not necessarily injective. Indeed, the preimage of
u ∈ S

2 consists of all critical points of hu with outer normal u, as opposed to −u.
The multiplicity of N at u and −u together is thus the number of critical points of hu.
We will see shortly that the total coverage of S

2 is exactly the total absolute Gaussian
curvature of M.

Letting x be a point of M and r > 0 a radius, we define the absolute Gaussian cur-
vature at x by taking the limit of a fraction of areas, g(x) = limr→0

Area(N(Ar))
Area(Ar) , where

Ar is the neighborhood of points at distance at most r from x on M. The total abso-
lute Gaussian curvature is the integral of the local quantity, G(M) =

∫
x∈M

g(x)dx.
It should be clear that G(M) is the area of the total coverage of S

2, taking multiplic-
ity into account. For a given direction, the multiplicity is |N−1(u)|. Hence, G(M) =∫

u∈S2 |N−1(u)|du. Writing cavg for the average number of critical points of the height
functions, we thus have the total absolute Gaussian curvature equal to one half times
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Fig. 1. The four generic types of local maxima of the elevation function. From left to right: the
1-, 2-, 3- and 4-legged maximum.

the area of the sphere times that average, G(M) = 2πcavg. This integral geometry
formula for the curvature will come handy in the analysis of our algorithm. For more
information on the integral geometry formulation of curvature see Santaló [21].

2.2 The PL Case

Triangulated surfaces. We do all computations on a piecewise linear approximation
of the smooth 2-manifold. To transport the smooth concepts to the PL category, we
think of the PL surface as being approximated by a smooth surface. Tightening the
approximation, we get a series and take the limit. This is the general intuition we have
in the background guiding the formulation of definitions in the PL case.

A triangulation of a 2-manifold M is a simplicial complex, K , whose underlying
space is homeomorphic, |K| ≈ M. It consists of vertices, edges, and triangles. To put
K into R

3, it suffices to map each vertex to a point; the edges and triangles are the
convex hulls (of the images) of their vertices. This is a geometric realization if the
triangles meet in shared edges and vertices but not in any other point sets. We call the
result a triangulated surface, implicitly assuming that it is geometrically realized in R

3.
The star of a vertex is the set of simplices that contain it, and the link consists of all
faces of simplices in the star that do not belong to the star, St vi = {σ ∈ K | vi ∈ σ};
Lk vi = {τ ⊆ σ ∈ St vi | τ �∈ St vi}. A PL function f : |K| → R is determined
by its values at the vertices. Assuming f(vi) �= f(vj) whenever i �= j, we define the
lower link as the subset of simplices in the link where f is smaller than at the vertex,
Lk−vi = {σ ∈ Lk vi | x ∈ σ ⇒ f(x) < f(vi)}. Finally, vi is regular if its lower
link is contractible, and critical, otherwise. Since K triangulates a 2-manifold, every
link is a circle and the only contractible closed subsets are points and closed paths. The
lower link of a regular vertex is thus a single vertex or a path connecting two vertices.
A minimum is characterized by Lk−vi = ∅ and a maximum by Lk−vi = Lk vi. In the
remaining case, the lower link consists of k+1 ≥ 2 paths and we call vi a k-fold saddle,
or a simple saddle if k = 1.

In contrast to the smooth case, it is not possible to turn a k-fold into a simple saddle
by a small perturbation. We therefore treat them directly, without reduction to simple
cases. As an example, consider the Euler-Poincaré Theorem which relates the topology
of the 2-manifold with the critical point structure of its functions. Define the index of a
simple critical point as index (vi), index (vi) = 0 if vi is a minimum, 1 if vi is a simple
saddle, 2 if vi is a maximum. Assuming K is connected, it is characterized by its genus
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and we have 2 − 2 · genus = n − m + l =
∑

i(−1)index (vi), where n, m, l are the
number of vertices, edges, triangles in K and a k-fold saddle is represented by k simple
saddles in the sum.

Critical regions. Another significant complication we encounter in the PL case is that
a vertex is generally critical for an entire region of directions. Letting hu : |K| → R

be the height function defined by hu(x) = 〈x, u〉, the critical region of a vertex is the
closure of the set of directions along which vi is critical,

Ri = cl {u ∈ S
2 | vi is critical point of hu}.

We construct it from the closed polygonal curve defined by the star of vi. Specifically, we
map each triangle in the star to its outer normal direction, a point on S

2, and we connect
the directions of two neighboring triangles by the shorter of the two connecting great-
circle arcs. This gives a closed polygonal curve, πi, which may or may not have self-
intersections. To cope with the former, more complicated case, we orient πi and define
the winding number of a directionu ∈ S

2 not on the curve as the number of times the curve
goes around the directed line defined by u. Viewed along u, we count a counterclockwise
turn as +1 and a clockwise turn as−1. Taking the sum we get the winding number, which
are denoted as w(u, πi). For detailed study on polyhedron Gauss map, refer to [5]. Ex-
amples are shown in Figure 2. The winding number of u relates to the type of the vertex
in the height function defined by u. Specifically, if vi is regular then the winding number
of u is 0, if vi is a simple critical point then the winding number is (−1)index (vi), and if
vi is a k-fold saddle then the winding number is −k.s

Curvature. Thinking of a vertex as a tiny region in an approximating smooth surface,
we define its Gaussian curvature as the area of its critical region weighted by the wind-
ing number. More useful in this paper is its absolute Gaussian curvature defined as
the area weighted by the absolute winding number, g(vi) =

∫
u∈S2 |w(u, πi)|du. The

total absolute Gaussian curvature is then the sum over all vertices, G(K) =
∑

i g(vi).
Equivalently, it is the area of the sphere times half the average number of critical ver-
tices, taking multiplicities into account, as usual. The average is taken over all height
functions, and we count half the critical vertices because vi is critical for u ∈ S

2 as well
as −u ∈ S

2.

3 Computation

In this section, we describe how we compute the elevation maxima for a given trian-
gulated surface in R

3. The algorithm is straightforward and the only new insight is in
the analysis, relating the running time with the total absolute Gaussian curvature of the
surface.

Types and filters. Recall that there are four types of elevation maxima for a generic
smooth surface, as illustrated in Figure 1. We have the same four cases for a generic
triangulated surface K in R

3. Each maximum is given by a set of two, three, or four
points. We consider the case in which all these points are vertices of K . The cases in
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Fig. 2. Left: for a direction u with winding number +1 the corresponding vertex appears either as
a maximum or a minimum. Right: for winding number −1 we have a simple saddle and for −2
we have a 2-fold or monkey saddle for the height function defined by the corresponding direction.

which some of the points in V lies on edges of K are similar. Let V be a set of vertices.
A necessary requirement for V to define a maximum is that its vertices are critical for
a common direction. More specifically, we need them critical in a particular direction
that is determined by V . This direction, uV = (y−x)/||y−x||, is slightly different for
each type.

1-legged case, V = {x, y}. Here, uV is the direction defined by the two points.
2-legged case, V = {x, y1, y2}. Letting y be the orthogonal projection of x onto the

line passing through y1 and y2, uV is defined if y lies between y1 and y2.
3-legged case, V = {x, y1, y2, y3}. Letting y be the orthogonal projection of x onto

the plane passing through y1, y2, y3, uV is defined if y lies in the triangle they span.
4-legged case, V = {x1, x2, y1, y2}. Letting x and y be the feet of the shortest line seg-

ment connecting the line passing through x1 and x2 with the line passing through
y1 and y2, uV is defined if x lies between x1 and x2 and y lies between y1 and y2.

PROJECTION FILTER. The direction uV defined by the points in V is defined and
belongs to the common intersection of critical regions, uV ∈ ⋂

vi∈V Ri.

Note that the non-empty intersection of the critical regions is a necessary but not
a sufficient condition for the set V to pass the Projection Filter. In turn, passing the
Projection Filter is a necessary but not sufficient condition for the direction uV to be an
elevation maximum. For that, the set needs to satisfy another condition. To describe it,
we write x0 for x.

PERSISTENCE FILTER. For each pair xi and yj in V , there is an arbitrarily small
perturbation u of uV such that xi, yj is a birth-death pair for the height function hu.

Algorithm. We compute the elevation maxima in three steps, starting with 2-, 3-, 4-
tuplets V whose points have pairwise overlapping critical regions. The next two steps
narrow down the selection using first the Projection and the Persistence Filter.
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STEP 0. Compute the critical regions of the vertices of K . Letting the critical regions
be the nodes of the intersection graph, R, we draw an arc if the two regions have
a non-empty common intersection. For k = 2, 3, 4, let Qk be the set of k-cliques,
that is, the k-tuplets of nodes connected by all

(
k
2

)
arcs. Let S0 =

⋃
k Qk.

STEP 1. Subject each pair, triplet, and quadruplet in S0 to the Projection Filter and let
S1 ⊆ S0 be the collection that passes the filter.

STEP 2. Subject each pair, triplet, and quadruplet in S1 to the Persistence Filter and let
S2 ⊆ S1 be the collection that passes the filter.

Step 1 and 2 are the same as in [4], so we focus on the implementation of Step 0 in
which we compute the 2-, 3-, 4-tuplets with pairwise intersecting critical regions.

Implementation. We break down Step 0 into three smaller steps, constructing the
critical regions, finding the intersecting pairs, and computing the cliques of size 2, 3,
4 in the intersection graph. Implementation is done with Perl, C and CGAL [1]. All
computations are exact except estimating the area and the bounding box of a critical
region.

STEP 0.1. Recall that each critical region, Ri, is given by a closed polygon with mi

edges on the sphere. Those edges may intersect, and we take time O(m2
i ) to con-

struct the decomposition of the sphere [13], including winding numbers for all sub-
regions. Reflecting Ri centrally through the origin in R

3, we get the region −Ri

of inward normals along which vi is critical. Constructing all critical regions takes
time proportional to

∑
i m2

i .
STEP 0.2. Most critical regions are small and simple. This suggests we use a bounding

volume approach to find the intersecting pairs. Specifically, we find an axis-parallel
box Bi in R

3 that encloses the region Ri on S
2 ⊆ R

3. We do this in two steps, first
computing the smallest enclosing sphere of Ri and second the smallest axis-aligned
box that contains the sphere. Assuming that Ri fits inside a hemisphere of S

2, the
smallest enclosing sphere of its vertices also encloses Ri. To compensate for round-
off errors, we increase the sphere slightly and compute the box Bi to enclose the
enlarged sphere. Computing the smallest enclosing sphere of Ri takes randomized
time O(mi), see [24]. Given the boxes Bi, we find the overlapping pairs using the
segment-tree streaming algorithm as described in [25]. Writing bi for the number
of boxes that overlap Bi, we have a total of b = 1

2

∑
i bi of overlapping pairs. The

streaming algorithm takes time proportional to n log3
2 n + b to find them. For each

pair of overlapping boxes, we check whether or not the critical region they enclose
have a non-empty intersection. Standard computational geometry methods allow
us to determine whether or not Ri and Rj intersect in time O(mij log mij), where
mij = m2

i + m2
j [13].

STEP 0.3. The result of Steps 0.1 and 0.2 is a graph R. Its n nodes are the critical
regions, and its q arcs are the pairs of critical regions with non-empty overlap.
Writing q = 1

2

∑
i qi, where qi is the degree of the i-th node, we compute the

cliques of size 2, 3, 4 by checking all pairs and triplets of neighbors. Finding the
cliques that include Ri thus takes time O(

(
qi

1

)
+

(
qi

2

)
+

(
qi

3

)
).
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Analysis. The time for Step 0 is dominated by the requirement for Step 0.2, which is
some constant times Tnew =

∑
i

(
qi

1

)
+

(
qi

2

)
+

(
qi

3

)
. The time for Step 1 is some constant

times |S0| ≤ Tnew and that for Step 2 is some constant times T = |S1|n log2 n. This
adds up to some constant times Tnew + T , as compared to Told + T for the algorithm
in [4], where Told =

(
n
2

)
+

(
n
3

)
+

(
n
4

)
. Any improvement thus hinges on two properties,

namely that Told is significantly larger than Tnew as well as T . We now show that the
first property holds under grossly simplifying assumptions, and we provide evidence in
the next section that both properties hold for data we encounter in practice.

CAP ASSUMPTION. The critical regions are spherical caps, all of the same size, and
their centers are uniformly distributed on S

2.
Recall that the areas of the critical regions add up to the total absolute Gaussian

curvature,
∑

i Area(Ri) = G(K). This sum is also half the area of the sphere times the
average number of critical points of the height functions, G(K) = 2πcavg. It follows the
area of a single critical region is Area(Ri) = 2πcavg/n, and because the cap is smaller
than the flat disk of the same radius, its radius squared is ρ2 > 2cavg/n. Two caps
overlap if and only if the center of one is contained in the cap of radius 2ρ around the
center of the other. The area of the enlarged cap is less than four times Area(Ri). Hence
the probability for a region Rj to overlap Ri is Prob[Ri∩Rj �= ∅] ≤ 4Area(Ri)/4π =
2cavg/n. Since expectations are additive even if the events are not independent, the
expected number of k-tuplets of neighbors is Exp[

(
qi

k

)
] ≤ (

n−1
k

)
Area(Ri)k/πk ≤

2kck
avg/k!. Adding the expectations for k = 1, 2, 3 and all i gives

Exp[Tnew] ≤ n · (2cavg + 2c2
avg +

4
3
c3
avg).

Recall that cavg = G(K)/2π. It follows the average number of k-tuplets of critical
regions overlapping a given one depends on the shape of the smooth surface and not on
the size of the approximating triangulated surface. Similarly, the time for Step 0 depends
on the shape and otherwise only linearly on the number of vertices in the triangulation.

4 Experiments

Input data. We use two types of triangulated surfaces approximating smooth models
of biomolecular structures all listed in Table 1 Left. The first type is the molecular skin
which uses hyperboloid and concave sphere patches to blend between the spheres that
represent the atoms of a molecule [14]. An algorithm that constructs an approximating
triangulated surface with guaranteed bounds on two- and three-dimensional angles is
described in [7] and software written by Ho-lun Cheng is available at [3]. The second
type is the molecular surfaces generated by Chimera [19]. The MSMS algorithm used
in Chimera [20] constructs a triangulation of the solvent excluded surfaces initially
computed by Connolly [11].

Critical point statistics. For each data set, we estimate the minimum, average, and
maximum number of critical points of the height functions, which we sample at one
thousand directions chosen from S

2. The results are shown in Table 1 Middle. Com-
paring the estimated with the actual average, which we get using cavg = G(K)/2π =
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Table 1. Left: the triangulated surfaces used in our computational experiments together with their
numbers of vertices, edges, and triangles. Middle: estimated minimum, average, and maximum
of the number of critical points of the height functions. Right: minimum, average, and maximum
of the number of triangles needed to triangulate the critical regions. Last column: percentage of
non-simple critical regions. Top: molecular skin surfaces. Bottom: molecular Chimera surfaces.

id name n m � cmin cavg cmax
cavg

n
rmin ravg rmax %

0 1BRS-5to6 1,370 4,104 2,736 2 6.41 16 0.0047 2 3.99 8 12
1 1CLU-DBG 3,149 9,441 6,294 2 13.50 44 0.0043 2 4.01 12 15
2 1BRS-A-5to10 4,248 12,738 8,492 6 17.07 34 0.0040 2 4.01 10 17
3 1BRS-A-30to40 6,114 18,336 12,224 10 25.14 46 0.0041 2 4.01 10 16
4 1BRS-A-17to25 7,799 23,391 15,594 12 29.92 64 0.0038 2 4.01 10 20
5 1BRS-A-5to10 836 2,502 1,668 6 16.01 32 0.0192 2 4.08 11 29
6 1BRS-A-30to40 1,372 4,110 2,740 10 27.13 46 0.0198 2 4.13 15 30
7 1BRS-A-17to25 1,595 4,119 3,186 14 31.02 54 0.0194 2 4.09 10 33

∑
i Area(Ri)/2π, we see that the error is small. For example, for data set 4, the esti-

mated cavg is 29.92 while the actual average is 29.94. Since all our skin triangulations
approximate a smooth surface to about the same accuracy, for different surfaces, the av-
erage number of critical points scales linearly with n. Indeed, cavg/n is between 0.003
and 0.005 for all our skin data sets.

As mentioned earlier, each vertex of K is critical for a region of directions, in fact
two antipodal regions. Most of these regions are simple, that is, defined by a polygon
without self-intersections. As shown in the last column in Table 1, the percentage of
non-simple polygons is indeed rather small. Besides checking for self-intersections,
we measure the complexity of a critical region by counting the triangles we need to
triangulate it on the sphere. The minimum, average, and maximum of this number are
given in the right half of Table 1.

Intersection statistics. The following statistics were collected for the finer molecular
skin surfaces only. Recall that we compute the pairs of intersecting critical regions in
two steps, first finding the intersections among the bounding boxes and second among
the critical regions. Table 2 Left gives the statistics for both.

Given a pair of intersecting boxes, we test whether or not the corresponding critical
regions intersect by checking the overlap among the triangles in their triangulations. The
average number of triangle-triangle checks is consistently between 11 and 12, which
justifies the use of this brute-force over a more sophisticated method.

Similar to the number of critical points, we expect that the average number of boxes
intersecting a given box and the average number of critical regions intersecting a given
critical region scale linearly with n. Indeed, bavg/n is between 0.04 and 0.07 and qavg/n
is between 0.02 and 0.03 for all our skin data sets. The latter is about six times the
average number of critical points; compare this with the factor two we got under the
Cap Assumption. The observed relation between these two quantities is only about
three times as loose, which is reasonable considering that real data necessarily violates
the Cap Assumption to some extent (due to irregular shapes and different orientations
of the critical regions). The new algorithm starts with Tnew tuplets. A back-of-the-
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Table 2. Left: the minimum, average, and maximum number of boxes intersecting a given box;
the minimum, average, and maximum number of critical regions intersection a given critical
region. Middle: the number of cliques before and after the Projection Filter and the Persistence
Filter. Right: dominant terms in the running time of the old and the new algorithms.

id bmin bavg bmax
bavg

n
qmin qavg qmax

qavg
n

|S0|/103 |S1| Told/1010 Tnew/106 T/106

0 12 94 207 0.069 9 40 97 0.029 1,608 2,373 15 24 33
1 27 204 626 0.065 11 82 250 0.026 32,119 20,521 410 508 749
2 52 236 556 0.056 20 92 201 0.022 43,572 17,175 1,356 720 882
3 95 243 859 0.040 29 134 330 0.022 198,023 56,797 5,820 3,327 4,368
4 99 423 1,276 0.054 35 160 543 0.021 433,116 94,300 15,411 7,354 9,508

envelope calculation suggests that Tnew is roughly n
(
qavg
3

)
, which is roughly a factor of

ten thousand smaller than
(

n
4

)
, independent of the value of n. We thus might expect the

new algorithm runs about four orders of magnitude faster than the old one.

Running time. Recall that S0 is the set of cliques of size 2, 3, or 4 in the intersection
graph of the critical regions. The subset S1 ⊆ S0 contains all cliques that pass the Pro-
jection Filter, and the subset S2 ⊆ S1 contains all cliques that also pass the Persistence
Filter. The sizes of the first two sets are given in the middle of Table 2.

Most relevant to the running time of the algorithms for computing elevation maxima
is S1. Indeed, both the old and the new algorithm start with sets of 2-, 3-, and 4-tuplets
that contain the cliques in S0 and much more. As shown in Table 2 on the right, the
overestimate by the old algorithm is about ten thousand times that of the new algorithm.
Furthermore, in the new algorithm, the time for Step 0 and Steps 1 and 2 is fairly
balanced. This implies a speed-up of about four orders of magnitude, which is consistent
with back-of-the-envelope calculation mentioned above.

Conclusions. The main result of this paper is a new algorithm for computing all ele-
vation maxima of a triangulated surface in R

3. We provide experimental evidence that
for practical data, the new algorithm runs about four orders of magnitude faster than the
old one. The improvement is achieved by making the running time dependent on the
total absolute Gaussian curvature of the surface and to a lesser extent on the number of
vertices in the approximating triangulation.
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