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A B S T R A C T

Electrification of vehicle fleets has advanced significantly in recent years to achieve net-zero greenhouse gas 
(GHG) emissions. As a cost-effective strategy, shared charging facilities are increasingly used by public and 
private sectors. For example, the unoccupied time of a bus charging station can be leveraged to charge other 
electric vehicles (EVs). This shared usage model presents both opportunities and challenges for organizations 
considering transitions to electrified mobility. It is especially difficult when considering the variability in daily 
fleet operations and the availability of charging infrastructures. This paper presents a bi-objective optimization 
model designed to strategically guide the replacement of vehicle fleets with EV. The model aligns the spatial- 
temporal dynamics of vehicle routes with the availability of shared charging facilities. It is particularly rele
vant for organizations managing vehicle fleets that are considering a strategic transition to EVs, with the goals of 
minimizing GHG emissions from fuel consumption and vehicle idling, and reducing operational delays (e.g. 
detour and charging time for the EV fleet). We applied this model to the University of Utah campus fleet, utilizing 
shared charging facilities operated by the Utah Transit Authority. The results demonstrate effective strategies for 
replacing vehicles with varied operational characteristics, offering detailed plans and schedules that balance 
GHG emission reductions with operational efficiency. Additionally, we conducted a sensitivity analysis to assess 
the effects of different battery sizes, station disruptions, and traffic delays on the model’s outcomes and a 
feasibility analysis to prioritize the replacement of high-utility vehicles. Our research provides a foundation for 
fleet agencies to develop strategic EV replacement plans that consider multiple goals and leverage shared 
charging infrastructure, ultimately leading to optimized charging facility utilization and reduced maintenance 
costs. These strategies support more efficient, reliable, and sustainable operations in urban fleet systems.

1. Introduction

With ongoing efforts to reduce greenhouse gas (GHG) emissions and 
the growing demand for clean energy, the electrification of vehicle fleets 
is gaining increasing attention from agencies and organizations world
wide. The development of diverse electric vehicle (EV) models facilitates 
the feasible replacement of vehicle fleets, predominantly composed of 
trucks, vans and multi-purpose vehicles (MPVs). Many businesses and 
government agencies have initiated such replacement as part of their 
strategies to achieve net-zero GHG emissions (He, Liu, Zhang, & Song, 
2023; Bragin, Ye, & Yu, 2024). For example, Amazon’s delivery fleet has 
replaced more than 13,500 vans with EVs across the U.S. in 2024, 
aiming for carbon neutrality by 2040 (Amazon, 2024). However, from 

the perspectives of agencies and/or organizations, the initial cost asso
ciated with transitioning to EVs is still relatively high. New York City 
plans to invest $420 million in electrification to achieve all-electric fleet 
in the next five years (Electrive, 2021). A significant portion of the 
budget is allocated to the development of charging infrastructure 
(Madina, Zamora, & Zabala, 2016). Given this, a more cost-effective 
electrification strategy, such as utilizing and sharing existing charging 
facilities appears to be promising (Ye, Gao, & Yu, 2022, Ye, Yu, Wei, & 
Liu, 2022). Comparing to constructing and maintaining their own 
charging infrastructure, fleet operators, especially those managing 
small-scale fleets, can significantly reduce electrification costs by uti
lizing existing charging facilities. This sharing mechanism could also 
enhance the utilization of on-route charging facilities, generating 
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additional revenue for agencies that manage these stations.
The growing network of on-route charging stations, installed by 

many cities to support electric buses at major terminals, presents an 
opportunity for inter-agency collaboration. These facilities are typically 
well-distributed across urbanized areas and often have periods of low 
utilization (Zhou, Liu, Wei, & Golub, 2020). By sharing these charging 
resources, agencies can maximize the efficiency of existing infrastruc
ture while reducing operational costs. A major challenge in such sharing 
mechanism is coordinating EV schedules with the availability of 
charging stations, as fleet schedules could change because of possible 
travel detour, charging activities, and traffic delay. These dynamic 
schedules could result in varying charging windows, which requires 
models to optimize the charging schedules effectively. Existing studies 
focus on maintaining the original schedule by employing strategies such 
as stop-skipping and speed adjustments (Wu, Yu, Ma, An, & Zhong, 
2022). These strategies are often challenging to be implemented effec
tively in real-world operations. Some other studies may attempt to 
reassign vehicle routes to accommodate EV charging. However, unlike 
personal vehicles, fleet vehicles often follow predefined routes and fixed 
sequences of stops assigned by the fleet management department, such 
as in the case of school bus fleets (Jonas, Borlaug, Bruchon, & Wood, 
2025). Changing the route solely for charging may be unnecessary and 
overly restrictive, as the energy consumption of EVs is uncertain, leading 
to variability in both the timing and location of charging needs. As a 
result, the optimal charging route may change dynamically in the future. 
This uncertainty implies that charging routes must remain flexible and 
may vary over time as operational conditions change. Alternatively, a 
detour-based strategy offers greater flexibility and aligns better with 
daily predetermined route assignment. In this approach, vehicles follow 
their assigned routes but may detour to a nearby charging station if 
needed, particularly when the route passes close to a facility and the 
battery level is low. This method avoids unnecessary route changes 
while accommodating uncertain energy consumption. Furthermore, the 
traditional electric vehicle routing problem (EVRP) is known to be 
nondeterministic polynomial-time hard (NP-hard), making it computa
tionally infeasible to solve exactly for large-scale instances. In the 
context of shared charging infrastructure, even after solving the routing 
problem, the core challenge lies in coordinating the charging schedule 
among multiple vehicles and stations. Limited research addresses dy
namic scheduling issues under shared charging facility setting for elec
trification adoption, particularly in optimizing charging schedule to 
account for additional charging and detour times.

For fleet operators, another challenge they face is managing diverse 
fleets with multiple vehicle types and routes, each with varying charging 
requirements and operational complexities. A single fleet agency may 
operate multiple vehicle models with varying battery capacities and use 
them for different purposes (Estrada, Mensión, Salicrú, & Badia, 2022). 
Moreover, each vehicle may follow different routes on different days, 
depending on the assigned tasks. As a result, a complete understanding 
of a vehicle’s operational pattern may require analysis over multiple 
days. This complexity makes it difficult for existing models to optimize 
charging resources effectively and ensure that EVs can consistently meet 
operational demands. Most existing models focus on single-day opti
mization, which limits their ability to account for multi-day variability 
in fleet operations. Campus fleets exemplify these aforementioned fea
tures. With growing environmental awareness, many colleges/univer
sities have initiated efforts to electrify their campus fleets (Booth et al., 
2022; Juang et al., 2024). For example, Aniegbunem and Kraj (2023)
analyzed the electrification potential of the University of Saskatch
ewan’s campus fleet, demonstrating that full electrification could 
eliminate GHG emissions from the fleet, leading to substantial savings in 
fuel and operational costs. Institutions like the University of Buffalo 
(Buffalo, 2025), Temple University (Temple News, 2021), and Harvard 
Kennedy School (Lee & Clark, 2018) are similarly motivated to replace 
their campus fleets with EVs. However, these fleets all face similar 
challenges during electrification: on one hand, they aim to reduce GHG 

emissions within a limited budget; on the other hand, they seek to 
minimize the operational impact of EV charging, avoiding significant 
deviations from original routes and reducing delays associated with 
charging activities.

In response to these challenges, this research proposes a bi-objective 
optimization model that addresses both environmental and operational 
goals in the context of EV fleet replacement. By integrating vehicle 
detour variability, shared charging infrastructure, and scheduling co
ordination, the model generates cost-effective and spatially-aware so
lutions to minimize GHG emissions and operational delays. The first 
objective is to maximize the replacement of conventional vehicles with 
EVs, thereby minimizing GHG emissions from the campus fleet. The 
second objective is to minimize delays due to detours and charging ac
tivities. A strategic vehicle replacement plan and a dynamic charging 
schedule are designed, using a campus fleet as a case study and 
leveraging existing on-route bus charging facilities. The key contribu
tions of this research are: 

• Proposing a dynamic EV scheduling model that integrates shared 
charging facility availability, detour flexibility, and partial charging 
feasibility into fleet-level operations;

• Developing a fleet replacement strategy that accounts for multi-day, 
vehicle-specific route variability and real-time opportunity charging 
within spatial-temporal constraints; and

• Incorporating idling-related GHG emissions into a bi-objective opti
mization framework that jointly minimizes emissions and opera
tional delays, enabling more realistic and environmentally grounded 
electrification planning.

The remainder of this paper is organized as follows. Section 2 re
views the literature on EV fleet optimization, shared charging facilities, 
and vehicle idling. Section 3 describes the EV fleet replacement problem 
in detail. Section 4 analyzes the results from detailed replacement plans 
under different GHG emission reduction targets and shared charging 
facility occupancy. Finally, Section 5 concludes the study.

2. Literature review

Transportation electrification has been a popular topic in recent 
years, focusing on exploring the planning, operation, and management 
of EV fleets. Key areas of emphasis include vehicle routing (Eskenazi, 
Joshi, Butler, & Ryerson, 2023; Mu & Li, 2024), operational scheduling, 
and the deployment of charging infrastructure (He, Liu, & Song, 2023; 
Liu et al., 2023). Our literature review begins with research on GHG 
emission reduction, particularly studies that assess the impact of vehicle 
idling on fuel consumption and emissions, an often underemphasized 
but significant contributor to overall GHG output. Next, we review 
literature on EV fleet replacement, focusing on optimization models for 
EV scheduling and the integration of shared charging facilities, both of 
which are essential for effective electrification. Finally, we examine 
existing approaches for solving bi-objective optimization problems, 
which provide the methodological foundation for our proposed model.

Currently, electrification efforts are being pursued across various 
travel modes, including road freight (Ye, Gao, & Yu, 2022; Ye, Yu, et al., 
2022), personal vehicles (Yi et al., 2023), public transit systems (Estrada 
et al., 2022). A key motivation for transitioning from conventional fuel- 
powered vehicles to EVs is the reduction of GHG emissions. These 
emissions are produced not only during vehicle movement but also 
during periods of idling, which can significantly contribute to overall 
fuel consumption and environmental impact. Vehicle idling is a preva
lent issue in fleet operations, occurring when vehicles remain stationary 
with the engine running for reasons such as waiting at red lights, 
experiencing traffic congestion, performing tasks, warming up the en
gine, or regulating interior temperature. It is an environmental concern 
worldwide, contributing significantly to traffic-related pollution, 
including carbon dioxide (CO2), carbon monoxide (CO), particulate 
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matter (PM), and nitrogen oxides (NOx) (Perrot, Constantino, Kim, 
Hutton, & Hagan, 2004). The emissions produced during idling vary 
depending on vehicle type and the tasks performed. For instance, pas
senger vehicle idling accounts for over 93 million metric tons of CO2 and 
consumes approximately 10.6 billion gallons of gasoline annually 
(Sharma, Kumar, Dhyani, Ravisekhar, & Ravinder, 2019). Truck fleets, 
in particular, generate higher emissions and cause significant noise 
pollution at large truck stops (Perrot et al., 2004; Sharma et al., 2019). 
Previous research primarily focuses on estimating emissions and fuel 
wasted during idling. Molari, Mattetti, Lenzini, and Fiorati (2019)
discovered that 6 % of fuel consumption occurs during idling. Rahman 
et al. (2013) found that CO2 emissions can reach as high as 16,500 g/h, 
with fuel consumption rates reaching 1.85 gal/h during idling. Proposed 
solutions include stop-start technologies (Molari et al., 2019) and stop 
electrification (Zhang, Horesh, Kontou, & Zhou, 2023). EV has proven to 
significantly reduce emissions from idling with the recent technological 
advancement (Ye, Zhao, & Zhang, 2023). However, few studies have 
considered the idling time impact of different vehicle types when 
developing EV replacement plans.

While reducing GHG emissions is the primary motivation, the 
development of optimization models serves as a key methodological 
approach to effectively implement fleet electrification. Schedule opti
mization is a well-studied area for EV fleets, particularly for electric 
buses. Most existing research focuses on bus fleets with different vehicle 
types and battery sizes but assumes fixed routes and schedules within a 
single day (Ye, Gao, & Yu, 2022; Ye, Yu, et al., 2022). This emphasis on a 
single-day schedule reflects the typically static nature of electric bus 
operations, where schedules barely change for day-to-day operations. 
Estrada et al. (2022) optimized the charging schedules for electric bus 
systems, finding that opportunity charging is more cost-effective than 
depot charging for small battery EVs, particularly when fast chargers are 
available at terminal facilities. Yao, Liu, Lu, and Yang (2020) developed 
an optimized schedule for electric bus fleets, accounting for different 
vehicle types, driving ranges, recharging durations, and energy con
sumption rates. A heuristic procedure was developed to solve the opti
mization model. Their findings indicate that optimal scheduling can 
significantly reduce operational costs. Other research has focused on 
optimizing charging schedules from the perspective of charging facil
ities. Lo Franco et al. (2022) introduced a smart charging scheme 
designed to enhance facility utilization based on vehicles’ state of charge 
and desired end-of-charge times. Ye, Gao, and Yu (2022), Ye, Yu, et al. 
(2022) combined optimization models with reinforcement learning to 
develop an optimal charging schedule aimed at maximizing the profit
ability of charging facilities (Liu et al., 2024). A spatio-temporal opti
mization model was developed that incorporates electricity carbon 
emissions and vehicle-to-grid technology. Much of the research related 
to passenger EV has also focused on optimizing the charging strategy at 
charging facilities by considering the spatio-temporal variations in 
charging demand (e.g. smart charging, vehicle-to-grid (V2G), and dy
namic pricing (Qureshi, Ghosh, & Panigrahi, 2024; Tang et al., 2024). In 
recent years, there is a growing interest in joint schedule optimization 
(Dai, Liu, Chen, & Ma, 2020), which considers not only EV schedules but 
also factors like passenger schedules. Wu et al. (2022) explored the 
alignment of passenger and vehicle schedules for demand-responsive 
buses, proposing timetable adjustments that incorporate stop-skipping, 
speed adjustments, and bus holding strategies to minimize operating 
and passenger waiting costs. Li, Lo, and Xiao (2019) tackled the 
scheduling problem for multiple vehicle types by considering the time- 
space flow of buses and passenger detours. Within shared charging fa
cilities or hub strategies, an important consideration is the coordination 
of charging facility schedules. Effectively aligning the available charging 
facility schedules with dynamic fleet schedules from different agencies 
presents a significant challenge. However, few studies on joint schedule 
optimization focus on this crucial aspect of integrating charging facility 
schedules with fleet operations.

In addition to the fleet schedule optimization in transportation 

electrification, charging infrastructure deployment is also an important 
area. Yi, Liu, and Wei (2022) optimized the spatial layout of charging 
stations by maximizing the station utilization. A modified geographical 
PageRank model and capacitated maximal coverage location problem 
model is developed. Results revealed that there are mismatches between 
the existing charging infrastructures and charging demand across 
different areas. Kuby, Martinez, Kelley, and Tal (2023) investigated 
planning and modeling methods for the deployment of hydrogen refu
eling stations, while Luo, Kuby, Honma, Kchaou-Boujelben, and Zhou 
(2024) optimized station distribution by accounting for dynamic de
mand and supply conditions. In recent years, the strategy of sharing 
charging facilities among passenger EVs and different EV fleets is 
gaining increased attention (Ye, Gao, & Yu, 2022; Ye, Yu, et al., 2022). 
Research that focuses on the deployment of shared charging facilities is 
often resorting to either optimization model or simulation method (Zhou 
et al., 2024). For instance, Ye, Gao, and Yu (2022), Ye, Yu, et al. (2022)
investigated the deployment of shared charging facilities between 
electric buses and passenger cars, with a focus on minimizing GHG 
emissions. A spatio-temporal optimization model is built by considering 
the electricity carbon and vehicle-to-grid technology. The findings 
demonstrate that the shared charging facility strategy can significantly 
reduce GHG emissions while also meeting the electricity demands of 
various types of EVs. Su and Kockelman (2024) explored the potential 
deployment of public-private charging facilities in Austin, Texas. An 
agent-based simulation, POLARIS model, is used to analyze the EV 
charging demand and behavior. Similarly, Gong, Tang, Buchmeister, 
and Zhang (2019) examined the deployment challenges of shared 
charging facilities for EVs, taking into account factors such as mileage, 
vehicle types, and passenger distribution. An agent-based model is also 
used based on Anylogic. Results show that charging frequency can 
greatly impact the station deployment. The charging frequency of EVs 
will also impact the charging schedule of shared charging facilities. 
Research on existing shared charging facilities often emphasizes opti
mizing their scheduling. Zhang et al. (2023) investigated the scheduling 
problem of charging hubs for shared chargers within a community, 
aiming to minimize waiting times. A rule-based heuristic algorithm is 
proposed to solve random EV arrivals. Their study revealed a trade-off 
between the total waiting time at the hub and the associated charging 
costs. Bragin et al. (2024) explored joint routing and charging schedule 
optimization, by modeling a mixed-integer linear programming problem 
which is solved by a surrogate level-based lagrangian relaxation 
method. Results show that battery capacity and charging power can 
greatly impact the final cost and replacement plan. This study allows EV 
fleet to adopt alternative routes to better optimize the charging schedule 
of shared charging facilities. However, in reality, vehicle fleets typically 
adhere to certain routes and specific schedules that prioritize the 
shortest possible distance to reach their destination. When EV fleets are 
introduced, the need to detour for charging at shared facilities can 
disrupt their planned schedules. Additionally, optimizing charging 
schedules for EV fleets can affect the utilization of the charging infra
structure itself, creating a complex interdependence. Coordinating fleet 
schedules with the availability of shared charging facilities to ensure 
optimal charging times remains a challenge that requires further 
research. Moreover, when an EV has different destinations and routes on 
different days, the modeling complexity increases significantly. This is 
due to the varying shared charging facilities encountered each day, 
along with a sharp rise in input variables, including the number of routes 
and time dimensions.

In developing optimization models for fleet electrification, whether 
focused on scheduling, routing, or station distribution, the choice of 
objective functions is critical. To reflect real-world needs, it is often 
necessary to incorporate multiple objectives. For example, Zhou et al. 
(2020) proposed a bi-objective model that accounts for both environ
mental equity and replacement costs. Qureshi et al. (2024) developed a 
multi-objective framework that considers various types of replacement 
costs, while He, Liu, Zhang, and Song (2023) designed a bi-objective 
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model to balance bus mileage and electrification costs. However, few 
studies have jointly considered two key concerns in fleet electrification: 
minimizing GHG emissions, which is the central environmental goal, 
and minimizing operational delays, which is a major priority for fleet 
managers aiming to maintain reliable service. To solve bi-objective 
models, three classical approaches are commonly used. The first is the 
constraint method, which converts one objective into a constraint with 
varying thresholds, allowing phased progress toward a target (Zhou 
et al., 2020). The second is the scalarization method, where multiple 
objectives are converted into a single objective by expressing them in the 
same unit (e.g., cost or time) (Qureshi et al., 2024). The third is the 
Normalized Normal Constraint (NNC) method, which is often used to 
generate a well-distributed set of Pareto-optimal solutions, providing a 
complete representation of the solution space (He, Liu, Zhang, & Song, 
2023). There is no universal standard for selecting among these 
methods. And the appropriate approach depends on the specific needs 
and priorities of the application.

3. Electric vehicle fleet replacement problem

This study addresses the replacement of conventional fuel vehicles 
with EVs using a campus fleet system as an example. We examine the 
feasibility of replacing campus fleet with EVs, utilizing existing on-route 
charging facilities offered by the transit agency to assist with this tran
sition. A generalizable and transferable model framework for this 
problem is illustrated in Fig. 1. The process consists of three main 
components: data input, model optimization, and the generation of the 
final fleet replacement plan. The framework is designed to accommo
date a diverse set of charging infrastructure and fleet management 
scenarios, making it applicable across various regions and operational 
contexts. The bi-objective optimization model allows for flexible data 
integration, enabling the use of vehicle trajectory data from a single day 
to multiple weeks, depending on data availability, to capture a more 
comprehensive operational profile. It is designed to be adaptable across 
different fleet compositions and service requirements, such as freight 
fleet, school bus fleet. It simultaneously minimizes GHG emissions from 
conventional fuel vehicles and optimizes detour time for newly deployed 
EVs by choosing when and where to be charged, and charging time. A 
dynamic schedule cooperation is considered in the model. The resulting 
fleet replacement plan includes an updated schedule for both the 
charging facilities and the fleet, followed by sensitivity and feasibility 
analyses to accommodate various operational scenarios.

3.1. Problem description

Campus fleets at universities across the U.S. share several common 
characteristics. Vehicles are typically assigned to different departments 
and serve diverse functions such as goods delivery, student trans
portation, grounds keeping, and maintenance. The campus fleet consists 
of various vehicle types, each requiring specific battery capacities to 
accommodate diverse size and performance needs following their tran
sition to EVs. In terms of operational scope, these vehicles often operates 
off-campus, and once replaced by EVs, will require on-route charging to 
maintain operational efficiency and complete tasks. Each vehicle may be 
tasked with different routes on different days as part of a weekly routine. 
We designate the campus vehicle as i and represent the day as v, with its 
associated routes varying across different days. A traditional campus 
vehicle igas will be replaced with an EV iEV only if all its routes across 
operational days are feasible for electric vehicle driving.

Warehouses (triangle in Fig. 2), located off-campus, serve as inter
mediate stops for campus vehicles along their routes or as final parking 
locations at the end of the day. At each stop, the fleet either delivers 
goods to or picks up goods from the designated warehouse. It is assumed 
that all routes originate from and conclude at a terminal each day. A 
terminal (rectangle in Fig. 2) could be a designated campus location or a 
select number of warehouses where vehicles stay overnight. Vehicles 
may pass through different on-route charging facilities, following 
varying routes on different days. Once replaced by EVs, they have the 
flexibility to detour to these facilities for charging as needed. On-route 
charging facilities consist of existing fast-charging stations that service 
electric buses. These stations have a charging power of 300 kW and will 
serve as shared charging facilities, offering a rapid charging solution to 
support dynamic scheduling needs.

A vehicle’s single-day route is used to exemplify the operational 
scenario of the campus fleet. On a typical day v, a gasoline campus 
vehicle, denoted by igas, initiates its journey from a terminal. The vehicle 
then follows a predefined sequence of warehouses (indexed by m) and/ 
or on-route charging facilities (indexed by j), and finally concludes at a 
terminal, forming a complete route. This complete route can be divided 
into sub-segments between two adjacent warehouses or on-route 
charging facilities. Fig. 2(a) illustrates the origin route of a conven
tional gasoline vehicle igas over the course of a day. Fig. 2(b)-(e) illustrate 
potential routing outcomes under different detour decisions for vehicle 
iEV after being replaced with an EV. The battery level of vehicle iEV 

undergoes updates in different sub-segments, indexed by time t. The 

Fig. 1. A generalizable and transferable framework for EV fleet replacement.
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blue lines represent the original routes that vehicles are assigned to 
follow, while the orange lines indicate the optimized detour routes or 
modified paths taken for charging. The detour decision considers both 
the vehicle’s battery status and whether its arrival time at the catchment 
area aligns with the availability of the charging facility. For example, in 
Fig. 2(c), the EV starts from the terminal with a full battery at t1. Based 
on its battery status and the availability of charging facility j1, vehicle iEV 

opt to deviate from the origin route to detour to j1 for charging at t2. Both 
the detour time b1 from the original route to the charging facility and the 
charging time h1 are considered in this analysis. After the vehicle rejoins 
the original route post-charging, the arrival times (shown in orange) at 
all subsequent locations will be recalculated to account for the detour 
time b1 and charging time h1. When passing charging facility j2, vehicle 
iEV decides not to detour, even though the facility is currently available 
(indicated by the green circle). Notably, j2 may represent either a second 
pass of the same facility j1, highlighting that vehicles can revisit the 

same charging facility, or a different charging facility. The dynamic 
schedule changes made along the route is further illustrated in Fig. 3. 
Fig. 2(f) illustrates the optimization strategy in a traditional EVRP 
model, where vehicle routes are directly modified to access charging 
facilities. In this approach, routing and charging decisions are made 
jointly. Even when the warehouse visit sequence is fixed, the model still 
determines whether to insert a charging stop after each warehouse and 
which route to take for charging. These charging stations are added 
directly into the vehicle’s path, often altering the original travel plan. 
This tightly integrated structure significantly increases the model’s 
complexity and contributes to the NP-hard nature of the problem, as the 
solver must continuously explore and evaluate numerous potential 
routing and charging combinations. Consequently, it becomes more 
difficult to obtain optimal solutions, especially for large-scale instances 
(Schneider, Stenger, & Goeke, 2014).

When establishing catchment areas (represented by the grey circle in 

Fig. 2. Operational scenario illustration of EV replacement. Orange lines represent the optimized detour routes from the model, and orange font indicates the 
updated EV schedule. Green circles denote catchment area charging facilities that are available at the time the EV passes. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2) for shared charging facilities, a one-mile radius is set as the 
maximum allowable deviation distance for the campus fleet to access 
these facilities for charging. The determination of this one-mile radius is 
supported by previous studies indicating that optimal accessibility to 
charging facilities ranges from 1000 to 2000 m (Oluwajana, Chowdhury, 
Wang, & Oluwajana, 2023). Accordingly, a one-mile radius corresponds 
to the distance a campus vehicle can cover in approximately 2 min at a 
speed of 30 miles per hour, which is a typical speed limit on urban roads 
in the Wasatch Front of Utah. Therefore, this radius ensures that the 
detouring time for a campus vehicle to access a charging facility and 
return to its original route remains within 4 min which would not induce 
too much operational delay.

Once a vehicle is replaced with an EV, its schedule may be adjusted 
to account for the extra time required for detours and charging, poten
tially altering both the vehicle’s overall schedule and available charging 
windows. The proposed bi-objective optimization model addresses this 
dynamic scheduling problem by considering all relevant EV operations 
and charging facility constraints. Using a specific vehicle as an example, 
Fig. 3 demonstrates how the dynamic EV schedule aligns with the 
availability of on-route charging facilities, implementing a shared 
charging strategy within the framework of the optimization model. The 
optimization process is illustrated in the following steps: 

• First, the initial schedule of vehicle i is provided as an input to the 
optimization model. The variables S0,start

i,j , S0,start
i,m , and S0,start

i,j́  represent 
the times at which vehicle i first arrives within the catchment area of 
charging facility j, then at warehouse m, and finally within the 
catchment area of charging facility j́ . Together with the initial 
schedule, the model incorporates related charging facility schedules, 
idling time, and battery constraints. The optimization model then 
determines whether vehicle i can be replaced by an EV and, if 
replaced, whether it requires on-route charging, considering two 
objectives: minimizing GHG emissions and operational delays, 

alongside factors like vehicle schedules, battery states, and charging 
facility availability.

• If the model determines that vehicle i either cannot be replaced by an 
EV or can be replaced and does not require on-route charging, the 
process concludes at this stage. In such case, the vehicle’s final 
schedule remains unchanged, and the optimization outputs the 
replacement decision and unchanged schedule.

• If the model determines that vehicle i is to be replaced by an EV and 
requires on-route charging to complete its route, the process con
tinues to determine the optimal charging strategy, including the se
lection of charging facilities and the allocation of charging time. This 
process is based on an opportunity charging strategy, which evalu
ates whether the vehicle has sufficient battery capacity to complete 
its route, whether an available charging window exists at the facility, 
and whether there are charging opportunities at subsequent stations. 
For example, the model identifies a suitable charging facility (e.g., j) 
during its first charging opportunity encounter. By comparing the 
utilization of charging facility j (represented by the blue area in 
Fig. 3) against the initial schedule of vehicle i, the potential time 
window for charging (represented in the green area) can be deter
mined. It is important to note that the utilization of charging facility j 
may also be influenced by the charging activities and schedule ad
justments of other EVs. The charging rule follows a first-come, first- 
served principle, where the first EV is prioritized for charging. Sub
sequent EVs will make charging decisions based on the updated and 
most recent utilization status of station j. Once the current charging 
instance is completed, a new schedule for EV i will then be updated. 
The subsequent schedule of vehicle i will be adjusted, resulting in 
S0,start

i,m changing to Sstart
i,m , and S0,start

i,j́  changing to Sstart
i,j́ . Based on this 

new schedule of vehicle i, a new available time window for charging 
at the next encounter with a charging facility is established. For 
instance, if vehicle i visits facility j for a second time, the model 
reassesses whether additional charging is necessary. This scenario 
also applies to cases where the vehicle encounters multiple facilities 

Fig. 3. Dynamic time schedule of replaced EVs. The green area represents the time duration from when vehicle i is traveling within the catchment area of station j. 
Once replaced by an EV, the vehicle will determine whether to detour to station j and how long it will charge at any point within this duration. The start of the purple 
area indicates the moment the vehicle decides to detour to the station and perform charging. The purple area captures the total detour time, including the time spent 
traveling to facility j and the time required to return to its original route, and the charging duration. The end of the purple area extends beyond the end of the green 
area due to the charging activity, reflecting the delay caused by the detour and charging process. The orange area represents the duration at a warehouse, during 
which vehicle idling may occur. The blue area represents the available time window at the shared charging facility that the EV fleet can utilize. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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or revisits the same facility multiple times. Each subsequent charging 
decision updates the schedule dynamically, guiding the vehicle to its 
final destination.

• Finally, the optimization process concludes with a comprehensive 
output, including the final schedules of all vehicles, charging plans, 
and the replacement plan for transitioning to EVs.

The notation that this bi-objective model considers is summarized in 
Table 1.

Binary decision variable Yv
i represent whether vehicle i at day v is 

replaced with an EV. Di,v
k,α are also binary decision variables which 

indicate whether vehicle i at day v is charged in charging facility k, 
during its α-th visit. Zi,v,j,α

t denote the same value but add a temporal 

dimension to specify the exact charging time in order to match the 
arrival time of vehicle i and available time of charging facility j of α-th 
visit. The actual charging time is given by integer variable Hk,α

i,v . Integer 

decision variable Bi,v
k,α represent the remaining battery of vehicle i at day 

v at facility k, during its α-th visit.

3.2. Fleet operations

To accurately reflect the charging activities, and prioritization 
within the shared charging facility context, this model also incorporates 
the following characteristics of the campus fleet system and shared on- 
route charging facilities. 

Table 1 
Summary of notations for sets, parameters, and variables.

Sets Description

I Set of campus fleet, indexed by i
Vi Set of operation days of vehicle i, indexed by v
Ji,v Set of charging facilities that vehicle i day v will go through, indexed by j
Mi,v Set of warehouse that vehicle i day v will go through, indexed by m
Ki,v Set of warehouse or charging facilities that vehicle i at day v will go through, indexed by k. Ji,v ∪Mi,v = Ki,v

Ti,v
j,α

Set of time sequence for vehicle i at day v at facility j during its α-th visit, indexed by t

αi,v
k

Set of visit indices for vehicle i day v to warehouse or charging facility j, indexed by α
l Integer counter for previously visited locations in summation constraints

Parameters Description

Rj
t Available charging time for on-route charging facility j at time t. Detour time will be 0 if k represents a warehouse

Nj
t Number of vehicles that one on-route charging facility j can charge simultaneously at time t

λi Full battery capacity with the type of vehicle i
σi,v

k,α
Idle time of vehicle i at day v in a warehouse or charging facility k, during its α-th visit

Ci,v Fuel consumption of vehicle i at day v
βk

i Detour time of vehicle i from going to charging facility k and going back to origin route. It is calculated by average speed and 
shortest path from ArcGIS. Detour time will be 0 if k represents a warehouse

θi
k Acceptable waiting time threshold for vehicle i to be charged at charging facility k when i arrive at facility k and there is no 

available charging facilities. It will be 0 if k represents a warehouse
τi

k Available charging time window for vehicle i from entering the catchment area to leave the catchment area of charging facility k. 
Time window will be 0 if k represents a warehouse

Ei Idle fuel consumption rate of vehicle i (liters per minute)
ρfuel Emission factors for fuel consumption (kg CO₂ per liter of fuel)
ρidle Emission factors for idling (kg CO₂ per liter of fuel)
Q Charging power on electric vehicles (kwh per minute)
Pi Power consumption rate of electric vehicle i
S0,start

i,v,k,α
Initial starting time for vehicle i at day v to enter the catchment area of charging facility or warehouse k, during its α-th visit

φi,v
k− 1,k,α

Driving time in a sub- segment from facility or warehouse k − 1 to facility or warehouse k during its α-th visit for vehicle i at day v

W GHG emissions from traditional gas vehicles
ϵ Tolerance level in the GHG emission reduction target
ϑe Charging rate for a day in shared charging facilities
ϑf Fuel price (dollar per liter of fuel)

Decision variables Description

Bi,v
k,α

Battery level of vehicle i at day v at warehouse or on-route bus charging facilities k, during its α-th visit

Hk,α
i,v

Charging time of vehicle i at day v at facility k, during its α-th visit

Ak,α
i,v

Starting time for vehicle i at day v to be charged at charging facility k, during its α-th visit

Xi Xi = 1 indicates vehicle i is replaced with EV. Otherwise, Xi = 0
Di,v

k,α Di,v
k = 1 indicates vehicle i at day v is charged at facility k, during its α-th visit. Otherwise, Di,v

k = 0

Auxiliary variables Description

Sstart
i,v,k,α Starting time for vehicle i at day v to enter the catchment area of charging facility k, during its α-th visit

Fstart
i,v,k,α Starting time for vehicle i at day v to decide to go to the charging facility k during its α-th visit in the catchment area

Zi,v,j,α
t Zi,v,j,α

t = 1 indicates vehicle i at day v is charged at facility j during its α-th visit at time t. Otherwise, Zi,v,j,α
t = 0

Yv
i Yv

i = 1 indicates vehicle i at day v can be replaced with EV. Otherwise, Yv
i = 0

Uj
t Uj

t = 1 indicates facility j is occupied at time t. Otherwise, Uj
t = 0
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• The charging activities of electric buses are prioritized to ensure their 
normal operation, meaning the initial schedule of charging facilities 
remains fixed and unaltered. Consequently, the initial availability of 
these on-route facilities for charging the campus fleet will follow a 
predetermined schedule.

• EVs in the campus fleet can undergo partial and multiple charging 
sessions at the shared on-route charging facilities throughout the day 
as needed. Considering the time constraints at intermediate stops 
and the need for vehicles to conduct essential loading and unloading 
operations, EVs cannot be charged at intermediate stops (ware
house). Terminals will provide overnight charging to ensure that 
each vehicle starts the day with a full battery.

• Vehicle fleet, once replaced by EVs, operate on a flexible schedule. A 
flexible schedule allows each EV to arrive at its designated ware
house within an acceptable range beyond the pre-determined time. 
This flexibility ensures that EVs can accommodate detours and 
necessary charging stops while minimizing delays to their overall 
schedules.

3.3. Problem formulation

3.3.1. Objective function
Considering the GHG emissions arising from both fuel consumption 

and idling in the campus fleet, alongside the objective to minimize 
detour time and charging time, the Electric Vehicle Fleet Replacement 
Problem (EVFRP) is formulated as a bi-objective optimization model as 
follows: 

min
∑

i∈I

∑

v∈Vi

⎡

⎢
⎣Ei

∑

k∈Ki,v

∑

α∈αi,v
k

σi,v
k,αρidle +

⎛

⎜
⎝Ci,v − Ei

∑

k∈Ki,v

∑

α∈αi,v
k

σi,v
k,α

⎞

⎟
⎠ρfuel

⎤

⎥
⎦(1 − Xi)

(1) 

min
∑

i∈I

∑

v∈Vi

∑

k∈Ki,v

∑

α∈αi,v
k

(
βk

i D
i,v
k,α +Hk,α

i,v

)
(2) 

Objective (1) is to minimize the GHG emissions from traditional 
campus fleet considering vehicle idling. Ei

∑
k∈Ki,v

∑
α∈αi,v

k
σi,v

k,αρidle represent 

the GHG emissions due to vehicle idling, while 
(

Ci,v −

Ei
∑

k∈Ki,v

∑
α∈αi,v

k
σi,v

k,α

)
ρfuel represent the GHG emissions from fuel con

sumption. (1 − Xi) indicate that the GHG emissions from vehicle i will be 
zero once it is replaced by an EV. Objective (2) is to minimize the total 
detour time βk

i D
i,v
k,α and charging time Hk,α

i,v of the EV i at location k during 
its α-th visit on day v.

3.3.2. Constraints

3.3.2.1. Battery transition 

Bi,v
k,α = Bi,v

k− 1,α +
(

QHk− 1,α
i,v − φi,v

k− 1,k,αPi

)
Yv

i − βi,v
k− 1,αPiDi,v

k− 1,α, ∀i ∈ I,∀v ∈ Vi,∀k

∈ Ki,v,∀α ∈ αi,v
k , ∀k ≥ 2

(3) 

0.2λi < Bi,v
k,α ≤ λi,∀i ∈ I, ∀v ∈ Vi,∀k ∈ Ki,v (4) 

Bi,v
k=1,α=1 = λi, ∀i ∈ I,∀v ∈ Vi (5) 

Constraints (3) describe the battery energy transition of the vehicle i 
at day v between k and k − 1, where k represents a warehouse or 
charging facility that the vehiclewill stop at or pass through.The 
term βi,v

k− 1,αPDi,v
k− 1,α calculate the power consumption for the detour, while 

QHk− 1,α
i,v represent the potential power obtained from the last facility at 

k − 1. φi,v
k− 1,k,αP account for the power consumption from k to k − 1. 

Constraints (4) specify the range of the vehicle’s energy level, ensuring 
that each vehicle has sufficient power to complete its entire route. To 
maintain a safe battery reserve, the vehicle’s battery power level is kept 
above 20 % of its capacity (Davies et al., 2019). Constraints (5) ensure 
that the initial battery energy for different types of vehicles is fully 
charged before departure in each day.

3.3.2.2. Charging time and cost 

Hj,α
i,v ≤ Di,v

j,α

∑

t∈Ti,v
j,α

(
Rj

tZ
i,v,j,α
t

)
,∀i ∈ I,∀v ∈ Vi,∀j ∈ Ji,v, ∀α ∈ αi,v

j (6) 

Di,v
j,α ≤ Yv

i , ∀i ∈ I,∀v ∈ Vi,∀j ∈ Ji,v,∀α ∈ αi,v
j (7) 

∑

t∈Ti,v
j,α

Zi,v,j,α
t = Di,v

j,α,∀i ∈ I, ∀v ∈ Vi, ∀j ∈ Ji,v, ∀α ∈ αi,v
j (8) 

Di,v
j,α ≤ Hj,α

i,v ,∀i ∈ I, ∀v ∈ Vi,∀j ∈ Ji,v, ∀α ∈ αi,v
j (9) 

Hm,α
i,v +Di,v

m,α = 0,∀i ∈ I, ∀v ∈ Vi,∀m ∈ Mi,v,∀α ∈ αi,v
m (10) 

Zi,v,j,α
t Qϑe ≤ 0.3Ci,vYv

i ϑf (11) 

Constraints (6) ensure that the charging time for vehicle i on day v 
does not exceed the available time window at charging facility j. 
Constraint (7) stipulates that only vehicles replaced by EVs can utilize 
the charging facilities. Constraint (8) ensures that a vehicle can only 
select a single time slot for charging. Constraints (9) mandate that when 
a vehicle detours to a charging facility and initiates charging, it must 
charge for a minimum of 1 min. Lastly, Constraint (10) ensures that 
warehouses as intermediate stops do not provide on-route charging 
services. According to the U.S. Department of Energy and the National 
Renewable Energy Laboratory (NREL), electric vehicles can achieve fuel 
cost savings of approximately 30–60 % compared to gasoline vehicles, 
depending on electricity rates and vehicle efficiency (NREL, 2024; AFDC 
Calculator). Accordingly, Constraint (11) ensures that the charging cost 
for each vehicle does not exceed 30 % of the corresponding fuel cost for a 
given trip.

3.3.2.3. Available charging status 

Sstart
i,v,k,α = S0,start

i,v,k,α +
∑k− 1

l=1

(
Di,v

k− l,αβk− l
i +Hk− l,α

i,v

)
,∀i ∈ I, ∀v ∈ Vi,∀k ∈ Ki,v,∀α

∈ αi,v
k , l ∈ Integer, ∀k ≥ 2

(12) 

Fstart
i,v,k,α ≥ Sstart

i,v,k,α,∀i ∈ I,∀v ∈ Vi,∀k ∈ Ki,v, ∀α ∈ αi,v
k (13) 

Fstart
i,v,k,α ≤ Sstart

i,v,k,α + τi
k,∀i ∈ I,∀v ∈ Vi,∀k ∈ Ki,v, ∀α ∈ αi,v

k (14) 

Ak,α
i,v ≥ Fstart

i,v,k,α +
1
2

βk
i ,∀i ∈ I,∀v ∈ Vi,∀k ∈ Ki,v, ∀α ∈ αi,v

k (15) 

Ak,α
i,v ≤ Fstart

i,v,k,α +
1
2

βk
i + θi

k, ∀i ∈ I, ∀v ∈ Vi, ∀k ∈ Ki,v,∀α ∈ αi,v
k (16) 

Sstart
i,v,1,1 = S0,start

i,v,1,1 , ∀i ∈ I,∀v ∈ Vi (17) 

Uj
t = 1,∀i ∈ I, ∀v ∈ Vi,∀j ∈ Ji,v, ∀t ∈

[
Aj,α

i,v ,A
j,α
i,v +Hj,α

i,v

]
,∀α ∈ αi,v

k (18) 

Once vehicle i is replaced by an EV, it firstly adheres to an initial 
schedule that dictates the timeline for passing through charging facilities 
and warehouses. Since detour time and charging time are significant 
factors, if vehicle i opts to detour to a charging facility, its subsequent 
schedule for reaching other potential charging facilities will be altered. 
Therefore, a dynamic schedule for each vehicle is required to compare 
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with the availability schedule of charging facilities to determine if 
vehicle i can be charged. Consequently, Constraint (12) is established to 
determine the earliest time vehicle i can arrive at the catchment area of 
charging facility or a warehouse k during its α-th visit, based on all 
previously visited facilities or warehouses k − l. Constraints (13) and 
(14) collectively define the time windows during which the vehicle can 
choose to detour to charging facility k, during its α-th visit. If k repre
sents a warehouse, then τi

k = 0, ensuring that the warehouse does not 
provide charging services or a charging window. Constraints (15) and 
(16) specify a time window during which vehicle i arrives at a facility 
and may wait for θi

k minutes to be charged if the facility is occupied. 
Similar, if k is a warehouse, then 1

2βk
i + θi

k = 0. Constraint (17) defines 
the arrival time of vehicle i at the first facility or warehouse. Lastly, 
Constraint (18) introduces a decision variable to indicate whether fa
cility j is occupied during a given time.

3.3.2.4. Interaction of charging facility and vehicle 

Zi,v,j,α
t=Aj,α

i,v
= 1,∀i ∈ I, ∀v ∈ Vi,∀j ∈ Ji,v, ∀α ∈ αi,v

j (19) 

∑

i∈I

∑

v∈Vi

Zi,v,j,α
t ≤ Nj

t ,∀j ∈ Ji,v,∀t ∈ T,∀α ∈ αi,v
j (20) 

∑

j∈Ji

∑

α∈αi,v
j

Zi,v,j,α
t ≤ 1,∀i ∈ I, ∀v ∈ Vi, ∀t ∈ T (21) 

Uj
t +Zi,v,j,α

t ≤ 1, ∀i ∈ I,∀v ∈ Vi, ∀j ∈ Ji,v,∀t ∈ Ti,v
j,α, ∀α ∈ αi,v

j (22) 

Xi ≤ Yv
i , ∀i ∈ I,∀v ∈ Vi (23) 

Constraint (19) introduces a decision variable to indicate whether 
vehicle i will be charged at facility j during its α-th visit and time t. The 
index α is used to distinguish multiple visits to the same station by the 
same vehicle on the same day, while t captures the dynamic charging 
schedule over discrete time intervals. Constraint (20) ensures that the 
number of vehicles being charged at any given time does not exceed the 
available charging facilities. Constraint (21) stipulates that each vehicle 
can only be charged at one charging facility at a time. Constraint (22) 
guarantees that if a charging facility is occupied, no other vehicles can 
be charged at that facility. Finally, Constraint (23) ensures that all 
operational routes on different days for a single vehicle are serviced by 
EVs, thereby permitting the replacement of the vehicle with an EV.

In summary, these constraints collectively ensure that eligible vehi
cles can be replaced with EVs based on the shared on-route charging 
facilities.

3.4. Reformulation

To solve the bi-objective EVFRP model, we adopt the classical 
constraint method, where the first objective (GHG emissions from 
traditional campus vehicles) is transformed into a constraint (see Con
straints (24) and (25)). By setting various GHG emission reduction tar
gets ϵ, the model generates corresponding fleet replacement and 
scheduling plans. This approach allows us to obtain optimal solutions 
under specific, policy-relevant emission targets rather than solving for 
the entire Pareto frontier. It reflects the practical decision-making 
context in which agencies set phased sustainability goals and require 
targeted operational strategies that meet those targets. 

∑

i∈I

∑

v∈Vi

⎡

⎢
⎣Ei

∑

k∈Ki,v

∑

α∈αi,v
k

σi,v
k,αρidle +

⎛

⎜
⎝Ci,v − Ei

∑

k∈Ki,v

∑

α∈αi,v
k

σi,v
k,α

⎞

⎟
⎠ρfuel

⎤

⎥
⎦(1 − Xi)

≥ W(1 − ϵ) (24) 

∑

i∈I

∑

v∈Vi

⎡

⎢
⎣Ei

∑

k∈Ki,v

∑

α∈αi,v
k

σi,v
k,αρidle +

⎛

⎜
⎝Ci,v − Ei

∑

k∈Ki,v

∑

α∈αi,v
k

σi,v
k,α

⎞

⎟
⎠ρfuel

⎤

⎥
⎦(1 − Xi)

< W[1 − ϵ+0.01] (25) 

To integrate the dynamic schedules of EVs with the availability 
schedules of shared charging facilities, several key constraints were 
established, including Constraint (6) related to charging time, 
Constraint (18) concerning the available charging status, and Constraint 
(19) regarding the combination of facility and vehicle. Notably, Con
straints (18) and (19) involve decision variables that continuously assess 
the availability of shared charging facilities and whether EVs with dy
namic schedules can utilize them. A significant challenge arises from 
variable-dependent indexing in these constraints, particularly in 
Constraint (18), where the facility occupancy variable Uj

t is defined over 
a time range determined by other decision variables: 

t ∈
[
Aj,α

i,v ,A
j,α
i,v + Hj,α

i,v

]
. Similarly, Constraint (19) involves a condition 

where the charging decision variable Z depends on the dynamically 
determined charging start time Aj,α

i,v . These formulations introduce im
plicit dependencies that solvers cannot directly handle, leading to 
nonlinearity and computational inefficiencies. To address this, a Big-M 
method was employed to transform these constraints into a linear 
form. As a result, the EVFRP model remains computationally tractable 
while accurately capturing the scheduling dependencies. Assuming ℶ 
represents an infinitely large positive value, Constraint (18) is refor
mulated as follows: 

Uj
t ≤

(
t − Aj,α

i,v + ℶ
)

ℶ
, ∀i ∈ I,∀v ∈ Vi, ∀j ∈ Ji,v,∀t ∈ Ti,v

j , ∀α ∈ αi,v
j (26) 

Uj
t ≤

(
Aj,α

i,v + Hj,α
i,v − t + ℶ

)

ℶ
, ∀i ∈ I, ∀v ∈ Vi, ∀j ∈ Ji,v,∀t ∈ Ti,v

j , ∀α ∈ αi,v
j

(27) 

Constraint (18) is thus reformulated as following constraints: 

Zi,v,j,α
t ≤

(
t − Aj,α

i,v + ℶ
)

ℶ
,∀i ∈ I, ∀v ∈ Vi, ∀j ∈ Ji,v,∀t ∈ Ti,v

j , ∀α ∈ αi,v
j (28) 

Zi,v,j,α
t ≤

(
Aj,α

i,v − t + ℶ
)

ℶ
,∀i ∈ I, ∀v ∈ Vi, ∀j ∈ Ji,v,∀t ∈ Ti,v

j , ∀α ∈ αi,v
j (29) 

New constraints, Eqs. (26)–(29), could enforce time-dependent 
conditions on charging and facility occupancy. This ensures that an EV 
is only charged or occupying a facility within its available time window.

4. Data description

We use University of Utah (UU) campus fleet and its strategic 
initiative to transition a portion of its fleet to EVs as a case study. The 
fleet comprises 88 gasoline vehicles serving 43 departments for various 
transportation tasks, many of which involve multiple routes within a 
week. The campus fleet is categorized into three vehicle types: trucks, 
multipurpose vehicles (MPVs), and passenger cars. To align with the 
original vehicle classifications, three similar EV types are considered 
candidates for replacement: Nissan e-NV200 and Nissan Leaf, each 
equipped with 40 kWh batteries, will replace the MPVs and passenger 
cars, respectively, while Ford E-Transit, with a 68 kWh battery, will 
replace the trucks.

Existing on-route bus charging facilities will be leveraged to provide 
fast charging services when the campus fleet operates off-campus. These 
charging facilities, constructed by the Utah Transit Authority (UTA), 
represent a critical infrastructure element in the Wasatch Front region. 
UTA, providing public transportation services in this region, currently 
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operates 34 battery-electric buses, supported by on-route and in-depot 
charging facilities (Utah Transit Authority, n.d.). This study utilizes 
vehicle operation data from the UU campus fleet for the week of 
February 13, 2023 (Monday) to February 18, 2023 (Saturday), and in
corporates charging schedule from 11 UTA on-route charging facilities 
to conduct a comprehensive analysis. There was a total of 268 opera
tional routes over the six-day period.

Five datasets were used in this study: trajectory, warehouse, fuel 
consumption, vehicle data, and on-route charging facility data. Trajec
tory data captures the GPS movements of each vehicle across different 
days, providing the basis for deriving initial schedule for each vehicle. 
This schedule outlines the expected arrival times at various warehouses 
along the vehicle’s route and offers a detailed timeline of daily opera
tions. Warehouse data details the locations and service times, including 
idling periods, for the vehicles. Fuel consumption data provides insights 
into the fuel usage for each vehicle over a complete daily route. Vehicle 
data includes comprehensive information about each vehicle, such as 
make, model, vehicle type, and the department it serves. On-route 
charging facility data encompasses the locations and charging sched
ules of existing charging facilities. By analyzing trajectory data along
side on-route charging facility data, a set of charging facilities that the 
campus fleet can access is identified. Furthermore, the charging sched
ules are used to determine when these facilities are not occupied by 
electric buses, allowing us to convert this information into available 
charging window that the campus fleet can utilize.

Fig. 4 presents the trajectories of the campus fleet over the study 
period and the locations of on-route charging facilities with catchment 
areas. The blue area represents the University of Utah campus in Salt 
Lake City, while the green lines depict the trajectories of all 88 campus 
fleet vehicles over a week. These routes span the entire state of Utah, 
with most activity concentrated in the Salt Lake City area.

5. Results

Data preprocessing and EVFRP modeling were performed using Py
thon. The EVFRP model includes 1,231,460 continuous variables, 
6,432,500 integer variables, and 6391 quadratic constraints. The model 

was solved using Gurobi, a commercial optimization solver, on a com
puter with an Intel i5 8400 processor running Windows 10 at 2.80 GHz 
and 16 GB of RAM. The dual simplex method was applied, with a 
computational time of 409.29 s for achieving the maximum GHG 
emission reduction target, resulting in a relative optimality gap of less 
than 0.00001 %. The results are organized to highlight both the tech
nical performance and practical value of the proposed model. First, we 
present a phased fleet replacement plan under varying GHG emission 
reduction targets, offering realistic guidance for gradual EV adoption. 
We then analyze the spatial and temporal distribution of EV charging 
across shared facilities, demonstrating efficient station usage and off- 
peak charging behavior. Sensitivity analyses are conducted on battery 
capacities and short-term traffic delays to assess model robustness under 
real-world conditions. Finally, a feasibility analysis identifies high- 
priority vehicles for replacement based on operational characteristics, 
supporting practical decision-making for fleet managers.

5.1. Replacement of campus fleet

We present multiple EV replacement scenarios, detailing the number 
of campus fleet vehicles to be replaced by EVs, the vehicles requiring 
shared on-route charging facilities, and the associated delays due to 
detours and charging. Total GHG emission from the current campus 
fleet, W, amount to 2131 kgCO₂, as calculated using Eq. (24) and (25). 
The EVFRP model was found to be infeasible when ϵ >0.77, which 
corresponds to a 77 % reduction target in total GHG emissions. It was 
noted that 81 campus fleet vehicles could be eventually replaced by EVs 
when target is set at 77 %. We therefore analyze the replacement plans 
described as GHG emission reduction targets ranging from 0 % to 70 % 
at 10 % intervals to reflect the transition process. This means we run the 
mode total 8 times for each target and one time for the maximum 77 % 
reduction target. Fig. 5 presents the tradeoff curve between different 
GHG emission reduction targets and the corresponding fleet replace
ment plans.

A clear positive correlation was observed between reduced GHG 
emissions and the number of replaced vehicles. In contrast, the trends 
for charged vehicles, charged routes, and charging sessions vary under 

Fig. 4. Study area and trajectory of campus fleet.
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different GHG reduction scenarios. Based on the operational conditions 
of the replaced vehicles and on-route charging activities, the replace
ment scenario is categorized into four phases: 

• Phase 1 (0–20 % GHG reduction): This is the most cost-effective 
phase. Up to 36 vehicles are replaced without requiring any on- 
route charging, thereby incurring no operational delays.

• Phase 2 (20–40 % GHG reduction): This phase introduces minor 
delays as on-route charging begins. A key feature of this phase is that 
the number of charged vehicles, charged routes, and charging ses
sions increased at the same rate, meaning each vehicle required only 
a single on-route charging session in one route over the entire week. 
Delays remain minimal (e.g., 53 total minutes at 40 % reduction), 
with average per-route delays rising gradually to 5.5 min. The 
number of replaced vehicles nearly triples from 21 to 57, suggesting 
an efficient expansion of electrification with minimal disruption.

• Phase 3 (40–50 % GHG reduction): The number of charged routes 
and charging sessions started to increase at a faster rate than the 
number of charged vehicles, showing a diverging growth trend. In 
this phase, more replaced vehicles required on-route charging, 
leading to longer operational delays (up to 131 min total). Some 
vehicles required on-route charging on multiple routes across 
different days, causing average delays to gradually rise from 7.57 to 
8.73 min and slowing the rate of vehicle replacement.

• Phase 4 (50–70 % GHG reduction): The number of charging sessions 
began to increase at a faster rate than the number of charged routes, 
often requiring multiple charges in a single day. Delays grow sub
stantially (up to 412 min). The number of replaced vehicles plateaus 
at approximately 74, with only a marginal increase of 11 %. All 
additional vehicles replaced in this phase required on-route charging 
facilities.

The phased replacement plan provides fleet operators with flexible 
strategies aligned with their operational priorities. Phase 1 is recom
mended for maintaining minimal operational delays and ensuring 
timely warehouse arrivals, making it ideal for operations where punc
tuality is critical. Phase 2 offers a balanced approach, achieving a 
moderate reduction in delays while significantly increasing the number 

of EVs. Phase 3 is suitable for scenarios where vehicles can accommo
date charging delays associated with diverse delivery schedules, 
allowing for extended driving distances and the ability to serve more 
warehouses. Phase 4 achieves the maximum fleet replacement but 
comes with considerable delays, making it appropriate only when the 
highest level of GHG emission reduction is prioritized over operational 
efficiency.

To verify the advantages of our model, which incorporates a detour- 
based strategy rather than full route optimization, we conducted a 
comparative analysis between our EVFRP model and a traditional EVRP 
model. Given the NP-hard nature of the EVRP in large instances, we 
employed a heuristic algorithm proposed by He, Yang, Tang, and Huang 
(2018) to obtain feasible solutions. As shown in Fig. 6, our EVFRP model 
consistently results in lower operational delays across all GHG emission 
reduction targets.

We further examined other operational characteristics of vehicles 
being replaced by EVs in an effort to elucidate the benefits. Fig. 7 pro
vides scenario-based insights into travel distance, travel time, operation 
frequency, GHG emissions before being replaced by EVs, idling time, 
and the number of warehouses served. The total replaced vehicles are 
represented by the blue line, while the charged vehicles, a subset of the 
replaced vehicles, are depicted by the orange dotted line. Two key 
patterns emerged. First, up to the 20 % GHG reduction target, the model 
prioritizes replacing short-distance, high-idling vehicles that do not 
require on-route charging. This aligns with the model’s objective to 
minimize delay, as these vehicles impose minimal disruption on the 
schedule. After 20 %, the replacements shift toward longer-distance and 
higher-utilization vehicles, including those requiring charging, demon
strating that the model adaptively balances GHG reduction and opera
tional efficiency. If we focus only on the replaced vehicles requiring on- 
route charging, additional patterns emerge. As depicted by the orange 
dotted line in Fig. 7, an inflection point emerged at the 40 % emission 
reduction target, marking a shift in replacement patterns. Prior to this 
threshold, all six operational metrics steadily increase, suggesting that 
the model prioritizes high-impact replacements with substantial oper
ational coverage and emission reduction potential. However, beyond the 
40 % target, travel distance, emissions, and operational days begin to 
decline. This trend implies that after 40 %, the model begins to replace 

Fig. 5. Campus fleet replacement plan under different GHG emission reduction targets. Replaced vehicles refer to the number of campus fleet vehicles being replaced 
by EVs. Charged vehicles indicate the vehicles that require shared on-route charging facilities. Charged routes represent the number of routes operated by charged 
vehicles within the study period. Charging sessions refer to the number of times vehicles are charged along these routes. Total delay is the sum of detour time and 
charging time from the charged routes, while average delay is calculated by dividing the total delay by the number of charged vehicles per day.
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vehicles that are less operationally intensive but still logistically com
plex, characterized by shorter routes and lower emissions but higher 
time demands. These findings indicate that the 40 % target represents a 
strategic threshold for effective on-route charging deployment, beyond 
which the marginal benefits of replacement may diminish.

Although vehicles requiring on-route charging make up a smaller 
share of the replaced fleet (Fig. 5), they represent a disproportionately 
high operational utility (Fig. 7), with longer travel times and distances, 
more operational days, and higher GHG emissions. These high-utility 
vehicles are crucial to achieving deeper emission reductions. However, 
they are not prioritized in early replacement phases due to their 
charging needs and associated delays. This insight highlights a critical 
trade-off: prioritizing low-impact, easy-to-replace vehicles early on may 

miss the opportunity to address the largest emitters. By strategically 
leveraging shared charging infrastructure, agencies can cost-effectively 
integrate these high-impact vehicles into the electrification plan, espe
cially in later phases, thus maximizing environmental benefits without 
incurring excessive infrastructure costs.

To better understand the operational implications of on-route 
charging, we analyzed the spatial distribution of routes requiring 
charging across varying GHG emission reduction targets. As illustrated 
in Fig. 8, the service area of charged vehicles expanded progressively 
with more ambitious targets. At the 30 % target, only two charged routes 
appeared, concentrated around Salt Lake City and its northern vicinity. 
By 40 %, the coverage extended to southern Utah; by 50 %, to eastern 
regions; and by 70 %, charged routes reached into western Utah. In 

Fig. 6. Comparative analysis of operational delay between the proposed EVFRP model and the traditional EVRP model.

Fig. 7. Scenario-based pattern of EV fleet operation conditions.
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contrast, vehicles not requiring on-route charging, though more 
numerous, remained largely concentrated within the Salt Lake City area 
(Fig. 8f). This finding underscores the broader spatial reach and oper
ational importance of charged vehicles in achieving deeper emission 
reductions.

5.2. Shared charging facility

Integrating campus fleet replacement with existing bus charging 
facilities improves charger utilization across all emission reduction 
targets. As shown in Fig. 9(a), 11 on-route facilities are shared by the 
replaced EV fleet, with total charging time reflecting each facility’s 
usage. The spatial distribution of these charging facilities is depicted in 
Fig. 9(b), where blue areas is the campus area that represent the primary 
terminals of campus fleets, and each circle denotes the catchment area of 
a shared charging facility labeled by station numbers. Different facilities 
exhibit varying levels of utilization depending on the geographical 
location and emission reduction targets. Major charging activities are 
concentrated at station 4 near the campus, with some also occurring in 
more distant locations, such as Stations 8 and 11. Most shared charging 
facilities, such as Stations 1, 4, 8, 9, 10, and 11, experience increased 
utilization as the emission reduction target rises. A few stations, how
ever, exhibit a decline in utilization, such as Station 7 in 60 % to 70 % 
emission reduction. This shows special demand shift phenomenon 
because of opportunity charging and dynamic schedule. This cause 
Station 7’s partial demand shift to the close Station 8. Similarly, Stations 
2 and 5 show a decrease in demand from the 50 % to 60 % emission 

reduction targets, followed by an increase after 60 %. Some stations 
have less utility, such as Stations 3 and 6, are only utilized at specific 
targets.

We further analyzed the utilization patterns of shared charging fa
cilities by the campus fleet throughout the day. For each emission 
reduction target, we aggregated the total utilization durations across all 
charging stations over the entire study period, as illustrated by the blue- 
shaded area in Fig. 10 (a). Charging demand is distributed throughout 
the day, peaking between 8 AM and 2 PM. This distribution aligns 
favorably with time-of-use electricity rates, shown in Fig. 10(b), which 
reflect local pricing for company-managed EV charging stations (Rocky 
Mountain Power, n.d.). Notably, most charging activities occur before 3 
PM, helping to avoid late-afternoon peak electricity prices and grid 
stress (Ye, Gao, & Yu, 2022; Ye, Yu, et al., 2022). Given that the campus 
EV fleet utilize shared charging facilities and incur associated fees, this 
charging pattern can significantly reduce the overall charging costs. The 
model’s ability to shift demand away from high-cost periods illustrates 
the strategic value of coordinated charging in shared facility settings.

5.3. Sensitivity analysis

To evaluate the robustness of the proposed model, sensitivity ana
lyses were conducted across three key dimensions: battery capacity, 
charging station disruption, and short-term traffic delay. For each sce
nario, the model was run multiple times under different GHG emission 
reduction targets (from 0 % to 70 % at 10 % intervals). These analyses 
help assess how changes in vehicle range, infrastructure availability, and 

Fig. 8. Spatial distribution of replaced vehicles under different GHG emission reduction targets. (a)-(e) represent the coverage of charged vehicles under different 
targets. (f) represents vehicles that have been replaced by EVs but don’t require on-route charging.

Fig. 9. Charging time and spatial distribution of shared charging facility.

S. Pan et al.                                                                                                                                                                                                                                      Computers, Environment and Urban Systems 122 (2025) 102353 

13 



operational delays influence fleet replacement decisions and charging 
schedules.

Fig. 11 presents the analysis of the number of replaced and charged 
vehicles across different battery sizes for three types of EVs. The battery 
sizes for MPVs and passenger cars range from 30 to 70 kWh, incre
mented by 10 kWh, while the battery sizes for trucks range from 58 to 98 
kWh. These battery sizes are grouped by vehicle type (MPVs/passenger 
cars, trucks) and used as an input to the EVFRP model. To reflect realistic 
replacement plan, their battery sizes are increased synchronously. As a 
result, five battery groups are established, as shown in Fig. 11. The 
model then outputs the replacement plan including the number of 
replaced vehicles (Fig. 11(a)) and charged vehicles (Fig. 11(b)). 
Generally, increasing battery size has a minimal impact on the number 

of replaced campus fleet vehicles but significantly affects the number of 
vehicles requiring on-route charging. This disparity becomes more 
pronounced with greater reductions in GHG emissions. Specifically, for 
the number of replaced vehicles, as shown in Fig. 11(a), larger battery 
sizes do not consistently result in a higher number of replaced vehicles 
across different emission reduction targets, such as the battery size 
group (70 kWh for MPVs or passenger cars, 98 kWh for trucks) in purple 
line. This counterintuitive trend suggests that simply increasing battery 
capacity does not guarantee greater replacement feasibility. Other fac
tors, such as route compatibility and detour constraints, also play critical 
roles.

For the number of charged vehicles, as shown in Fig. 11(b), larger 
battery sizes delay the need for on-route charging among replaced 

Fig. 10. Shared charging schedule and corresponding dynamic electricity rates.

Fig. 11. Number of replaced and charged vehicles under different battery sizes.
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vehicles and also reduce their overall numbers. For example, the 
smallest battery size group (30, 58) sees 57 vehicles needing on-route 
charging by the 70 % target, while the largest battery size group (70, 
98) only reaches 6 vehicles and only after the 50 % target. Additionally, 
as battery size increases for a given emission reduction target, the 
decline in the number of EVs requiring on-route charging occurs at a 
diminishing rate, highlighting the reduced marginal benefit of further 
increasing battery capacity. Fleet management should adopt a compre
hensive strategy that balances suitable GHG emission reduction targets, 
actual operational needs, and EV models to optimize both cost- 
effectiveness and operational efficiency.

Given that schedule coordination in shared charging facilities is 
highly sensitive to both facility availability and vehicle arrival times, we 
analyzed the impact of disruptions under two scenarios: single-facility 
failure and multiple-facility failure, as well as short-term traffic de
lays, on the performance of the EVFRP model.

For the single-facility disruption analysis, we sequentially disabled 
each charging station and ran the model under various GHG emission 
reduction targets. As shown in Fig. 12(a) and (b), the y-axis represents 

the ID of the disabled station, while the heatmaps illustrate the number 
of vehicles replaced and charged under each emission reduction target 
and disruption scenario. The variation in colour across cells reflects the 
sensitivity of the model to different disruptions. The results indicate that 
the disruption of a single station generally has limited impact on the 
number of vehicles replaced, demonstrating the robustness of the EVFRP 
model. However, certain stations, e.g. Station 4, have a greater influ
ence, resulting in fewer vehicles being replaced when disabled. 
Furthermore, the effect of a station’s disruption can vary depending on 
the emission reduction target level. We then analyzed the impact of 
simultaneous multi-station disruptions. As shown in Fig. 12(c) and (d), 
concurrent failures of multiple charging facilities significantly affect the 
number of vehicles that can be replaced and, more notably, the number 
of vehicles that can be charged. These results highlight the increased 
vulnerability of the system under compound disruptions and emphasize 
the importance of redundancy and coordination in shared charging 
infrastructure.

Short-term traffic congestion can affect the arrival time of EVs at 
charging facilities, potentially disrupting coordinated charging 

Fig. 12. Impact of shared charging facility failure.
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schedules. To assess this impact, we introduced traffic delays of 5, 10, 
15, 20, 25, and 30 min and analyzed their effects on the vehicle 
replacement and charging activity. We defined two peak periods: a one- 
hour morning peak (7:30–8:30 AM) and a one-hour evening peak 
(4:30–5:30 PM). Vehicles operating within these time windows were 
subjected to the corresponding delay durations. As shown in Fig. 13, the 
impact of delay time on EV replacement and charging behavior under 
the shared charging strategy is not linear. A threshold effect is evident in 
system performance. Specifically, the morning peak line in Fig. 13(a) 
shows that a 15-min delay during the morning peak leads to a sharp 
decline in the number of vehicle replacements, accompanied by 
increased charging and detour time (Fig. 13b). Conversely, the evening 
peak shows a more resilient pattern: a 20-min delay leads to a noticeable 
increase in vehicle replacements without additional charging or detour 
time. This suggests that the EVFRP model, when subjected to delay 
pressure, may strategically favor replacing vehicles that do not require 
on-route charging, thus preserving operational efficiency while still 
achieving emission goals.

5.4. Feasibility analysis

Given the budget constraints associated with transitioning the 
campus fleet to EVs, it is crucial to prioritize which vehicles should be 
replaced first. In the EVFRP model, the primary objective is to minimize 
charging and detour times, which means that vehicles not requiring on- 
route charging are prioritized for replacement. However, these vehicles 
typically have shorter travel time (see Fig. A3). From the perspective of 
the UU Campus Fleet, prioritizing the replacement of high-utility vehi
cles, those that maximize the use of EVs, is essential. To address this, we 
further conducted a feasibility analysis of high-utility vehicles across 
different phases, taking into account factors such as travel time, oper
ating days, and the number of served warehouses. As depicted in Fig. 14, 
a positive correlation exists between these three factors: vehicles with 
longer travel times tend to operate more frequently and serve more 
warehouses. We therefore identified the top five vehicles with the 
highest utility based on travel time. As shown in Table 2, as the EV 
transition progresses from Phase 1 to Phase 4, the travel time, operating 
days, and warehouse coverage of the replaced vehicles exhibit a 
consistent increasing trend. In the final two phases, all the top most 
utilized EVs require on-route charging to complete their routes. Notably, 
vehicles 78, 43, and 79, highlighted in the bold row, consistently rank 
among the highest-utilized across multiple phases.

The spatial distribution of high-utility vehicles across the four phases 
also illustrates varying coverage patterns. As depicted in Fig. 15, these 
vehicles primarily operate within the urban area of Salt Lake City, where 
ample shared charging facilities provide reliable on-route charging once 

these high-utility vehicles are replaced by EVs. Only a few vehicles 
extend their operations northward in Phase 2, eastward in Phase 3, and 
westward in Phase 4.

6. Conclusion

This paper developed a spatially- and temporally-informed bi- 
objective EVFRP model to determine the optimal EV replacement 
strategy and charging schedule by leveraging shared charging facilities. 
The two objectives encompassed the entire electrification process: 
minimizing GHG emissions from the traditional fuel vehicle fleet and 
minimizing charging and detour times after EV replacement. By con
verting the GHG emission reduction target into a constraint and line
arizing the model, the bi-objective problem was transformed into a 
single-objective integer linear problem, which could be efficiently 
solved using commercial optimization solvers. A key highlight of the 
EVFRP model is its ability to dynamically manage EV schedules while 
accounting for charging delays at shared facilities. The model identified 
which vehicles should be electrified, when they should utilize shared 
charging facilities, and how their charging schedules should be coordi
nated. Additionally, since vehicle fleets often operate different routes on 
different days, on-route charging demand can be uncertain. To address 
this, the model incorporated a time-based approach that considered 
multiple operating days, ensuring comprehensive coverage of various 
routes before determining replacement feasibility. The EVRFP model is 
adaptable and can be applied to fleets of different scales, enabling cost- 
effective electrification planning. Another key contribution is the 
consideration of vehicle idling as a significant source of GHG emissions, 
which has received limited attention in previous studies. The model 
prioritizes replacing high-idling vehicles to optimize fleet electrification.

To validate the model’s effectiveness, we applied it to the UU campus 
fleet. A comprehensive analysis was conducted, yielding a detailed 
vehicle replacement plan and charging schedule. Specifically, the results 
segmented the replacement plan into four distinct phases, based on the 
trade-off between GHG emission reduction and charging-related factors. 
The asynchronous variations in the number of charged vehicles, 
charging time, and charging routes across phases highlighted the char
acteristics of each stage. In Phase 1, 36 vehicles were replaced, none of 
which required on-route charging. Delays began to appear in Phase 2, 
and by Phase 3, some vehicles required charging on multiple routes 
across different days. In Phase 4, vehicles required multiple charges 
within a single day, with delay times increasing nonlinearly as the 
phases progressed. Fleet managers can utilize these phase-based insights 
to implement electrification strategies based on their priorities and 
constraints. For the replaced vehicles, further scenario-based analyses 
were conducted, evaluating travel distance, travel time, operational 

Fig. 13. Impact of short-term traffic delay in morning and evening peaks.
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frequency, GHG emissions, idling time, and the number of warehouses 
served. The results indicated that Phase 2, corresponding to a 30 %–40 
% GHG emission reduction target, provided the optimal balance be
tween vehicle replacement and on-route charging, maximizing both 
cost-effectiveness and operational efficiency. Additionally, the spatial 
distribution of replaced vehicles varied across different GHG emission 
reduction targets, ensuring comprehensive service area coverage. The 
spatial-temporal analysis of shared charging facilities demonstrated 
significant improvements in utilization, with facility usage influenced by 
geographic location and emission reduction targets. Charging activities 
were primarily concentrated near the campus and in remote urban 
areas, occurring predominantly during off-peak periods to reduce costs 
and minimize power system strain.

We also conduct a sensitivity analysis to assess the impact of different 
battery sizes, facility failure, and traffic delay on model outcomes. While 
increasing battery size has minimal impact on the number of replaced 

vehicles, it significantly influences the number of vehicles requiring on- 
route charging. Larger batteries delay the need for on-route charging at 
higher GHG emission reduction targets. Single station failures have 
minimal impact on vehicle replacement outcomes, indicating the 
robustness of the model. However, simultaneous failures of multiple 
stations significantly reduce the number of vehicles that can be replaced, 
particularly those requiring charging. Short-term traffic delays affect 
overall model performance non-linearly and delays during the morning 
peak period tend to have a greater impact than those during the evening 
peak. The feasibility analysis offers a replacement priority framework 
considering the utility of vehicles and investment constraint. Vehicles 
with higher utility, characterized by longer travel times, more frequent 
operations, and service to a greater number of warehouses, consistently 
require on-route charging from phase 1 to phase 4. These vehicles pri
marily operated in urban areas, where they could reliably utilize shared 
charging facilities upon electrification.

It is worthwhile to mention some limitations of this research. The 
campus fleet excludes emergency vehicles, such as those required for 
critical patient transportation. GHG emissions from grid electricity are 
not considered in this model. The primary objective is to replace tradi
tional fuel vehicles, which produce higher GHG emissions, with EVs. 
Including GHG emissions from grid electricity would not significantly 
impact the vehicle replacement plan in this context. Looking ahead, 
future work involves considering multiple charging ports per shared 
charging facility to better manage complex scheduling and real-time 
demands. Furthermore, analyzing other types of vehicle fleets, such as 
delivery or drayage trucks, could provide new insights when relevant 
data becomes available.
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Fig. 14. Relationship between travel time, operating days and served warehouse for replaced vehicles.

Table 2 
Top 5 high-utility EVs in different phases.

Phases Vehicle 
ID

Whether 
charged

Travel 
time

Operating 
days

Served 
warehouse

1 106 No 504 5 48
6 No 446 4 24
114 No 442 6 29
104 No 442 4 23
1 No 364 5 46

2 78 Yes 701 6 50
43 Yes 595 4 71
79 Yes 559 4 36
62 No 555 5 55
23 No 539 5 45

3 78 Yes 701 6 50
43 Yes 595 4 71
116 Yes 590 6 46
30 Yes 574 3 27
79 Yes 559 4 36

4 3 Yes 1157 5 79
107 Yes 1017 5 75
110 Yes 1001 5 91
113 Yes 891 3 87
78 Yes 701 6 50

Fig. 15. Trajectory of top 5 replaced vehicles at different phases.
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Appendix A. Operational features of UU campus fleet

Fig. A1 illustrates the temporal distribution of operating vehicles across different times of the day over the one-week period. The campus fleet 
operates near-continuously throughout the day, with peak activity observed during the morning hours between 5:00 AM to 12:00 PM. Vehicle activity 
significantly declines during weekends.

Fig. A1. Number of operating vehicles on different time-of-day.

Fig. A2 shows the distribution of operating vehicles across different days of the week and their operation frequency. In Fig. A2(a), the number of 
active vehicles is notably higher on weekdays, fluctuating around 50, with a significant reduction on weekends. Day 2 (Tuesday) and Day 4 (Thursday) 
have the highest vehicle activity. Fig. A2(b) displays vehicle operating frequency throughout the week, showing that most vehicles operate inter
mittently rather than daily, predominantly for 1, 2, 4, or 5 days. Overall, the active vehicles on weekdays constitute a substantial proportion of the 
total fleet, providing sufficient operational records for EVFRP model inputs.

Fig. A2. Statistics of operating vehicles and days.

Fig. A3 illustrates the distribution of travel time and idling time for all routes. As depicted in Fig. A3(a), the highest bar indicates that 43 routes, 
which account for 16 % of the total routes, fall within the range of 48 to 72 min. Additionally, 96 % of routes are completed in less than 5 h. Fig. 7(b) 
presents the idling time distribution, derived from warehouse data, revealing that 30 % of routes experience long idling times exceeding 15 min, while 
8 % of routes have extremely long idling times of more than 1 h. To effectively reduce GHG emissions during the transition to EVs, it is crucial to 
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prioritize the replacement of those vehicles with long idling times.

Fig. A3. Distribution of route travel time and idling time.

Data availability

Data will be made available on request.
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