Tracking Low-Level Cloud Systems with Topology
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Figure 1: Topology-driven cloud tracking for a marine stratocumulus dataset over the ocean west of Africa. The two images show the
detected cloud systems at 09:00 and 10:00 UTC on August 1, 2023. Color encodings indicate correspondences between cloud
systems across the one-hour interval, allowing us to observe their evolution as they appear, disappear, merge, and split. Red and
cyan boxes highlight examples of a splitting event and a merging event, respectively.

ABSTRACT

Low-level clouds are ubiquitous in Earth’s atmosphere. Their re-
sponse to atmospheric conditions are essential to understanding the
climate system and its sensitivity to anthropogenic influences. High-
resolution geostationary satellites now resolve cloud systems with
unprecedented detail, promoting cloud tracking as a vital research
area for studying their spatiotemporal dynamics. It enables disentan-
gling advective and convective components driving cloud evolution.
This, in turn, provides deeper insights into the structure and lifecycle
of low-level cloud systems and the atmospheric processes that gov-
ern them. In this paper, we propose a novel framework for tracking
cloud systems using topology-driven techniques based on optimal
transport. We first obtain a set of anchor points for the cloud systems
based on the merge tree of the cloud optical depth field. We then
apply topology-driven probabilistic feature tracking of these anchor
points to guide the tracking of cloud systems. We demonstrate the
utility of our framework by tracking clouds over the ocean and land
to test for systematic differences in the two physically distinct set-
tings. We further evaluate our framework through case studies and
statistical analyses, comparing it against two leading cloud tracking
tools and two topology-based general-purpose tracking tools. The
results demonstrate that incorporating system-based tracking im-
proves the ability to capture the evolution of low-level clouds. Our
framework will inform low-level cloud characterization studies that
fully profit from detailed satellite data.
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1 INTRODUCTION

Low-level clouds (i.e., clouds with a base below 6,500 ft and limited
vertical extend) are an important part of the atmosphere by trans-
porting heat and moisture, and by interacting with radiation [58].
Understanding the structure and evolution of low-level clouds is
key to improving our knowledge of atmospheric processes. Low-
level clouds such as shallow cumulus clouds (colloquially known
as fair weather clouds with their cotton-ball-like appearance) and
stratocumulus clouds (gray or whitish cloud decks patterned by
dark, cloud-free lines or cells [62]) significantly affect the Earth’s
radiative budget because they form cloud fields that can stretch over
hundreds of kilometers. Due to their fine-scale structure, however,
their accurate representation in climate models remains a significant
challenge and a dominant contribution to the uncertainty in climate
projections [36,42]. Accurately describing these clouds in space
as well as time is thus a prerequisite for their reliable representa-
tion in climate models. This emphasizes the importance of cloud
characterization and tracking [44].

Cloud evolution is shaped by convection and advection. Con-
vective motion, driven by buoyancy and atmospheric instability,
especially governs local-scale vertical motion. These dynamics influ-
ence cloud growth, dissipation, and structural changes. In contrast,
advection refers to the large-scale horizontal transport of clouds
by prevailing winds, guided by atmospheric circulation patterns.
Cloud tracking, therefore, helps differentiate convective and ad-
vective processes [1,51], enabling studies on cloud dynamics [51],
lifecycles [49], microphysical processes [14], and the evolution of
cloud patterns [24]. What makes it interesting and different from
classical computer vision problems is that clouds are a representation
of a continuous process (such as condensation, evaporation, split,
and merge) and cannot be treated as a fixed object [6]. Clouds occur
in moist turbulent flow, which results in fractal characteristics of
cloud boundaries, which in turn makes individual clouds difficult to
identify and track. Recent progress in tracking methods, driven by
growing satellite data records, has made it possible to study cloud
characteristics in greater detail and improve our understanding of
their behavior.

We present a novel topology-driven framework for tracking low-



level clouds. We model low-level clouds as cloud systems that may
consist of multiple cloud objects that are geometrically close, and
use probabilistic feature tracking based on optimal transport to track
them in a time-varying setting.

Our contributions are as follows:

* We present a new framework to track cloud systems using time-
varying satellite image data. We first obtain a set of anchor points
for the cloud systems based on the merge tree of the cloud optical
depth field. We then apply merge-tree-based feature tracking of
the anchor points to guide the tracking of cloud systems.

* We demonstrate the utility of our framework by tracking cloud
systems from satellite data over both ocean and land, recogniz-
ing that cloud-tracking challenges may differ across these two
physically distinct regimes.

* We further compare our framework with two leading cloud track-
ing tools and two topology-based general-purpose tracking tools
via visualizations and statistical evaluations.

The source code is publicly available at https://github.com/
tdavislab/cloud-tracking.

2 RELATED WORK: CLOUD PHYSICS AND TRACKING

Clouds form and evolve across various spatiotemporal scales within
Earth’s atmosphere [31]. Low-level clouds in the warm regions of
the lower latitudes are composed of liquid droplets, which makes
them very effective at reflecting incoming sunlight back to space.
This cooling effect is not strongly compensated for by a reduced
emissivity of heat from the surface as low-level clouds re-emit ab-
sorbed long-wave radiation at cloud-top-temperature that are not
much colder than the surface. Low-level clouds over land or ocean
exhibit distinct characteristics. Over land convection is affected by
surface inhomogeneities and strong surface heating, which leads
to pronounced diurnal cycles. In contrast, oceanic convection is
more organized and sustained, shaped by the ocean’s high heat ca-
pacity, abundant moisture, uniform temperatures, and large-scale
atmospheric circulation.

Advanced Geostationary Satellites (GS), such as Meteosat Third
Generation (MTG [19]) and GOES-16’s Advanced Baseline Imager
(ABI [57]), provide high spatial and temporal resolution. However,
they still do not resolve the fine-scale structure of low-level cloud
systems [16, 17], which often span scales of hundreds of meters.
Despite this limitation, treating the aggregation of these individual
cloud objects—spanning hundreds of kilometers—as spatial distribu-
tions enables adequate resolution to capture their variability [4,21].

Cloud tracking begins with the identification of individual clouds
in the dataset, a process that depends on the type of cloud and
the specific scientific objectives of the study. For instance, studies
focusing on deep convective cells often rely on physical threshold-
based approaches, such as brightness temperature [7, 12, 51, 52]
or radar reflectivity [26,41]. In the case of mixed-phase clouds,
methods typically involve a combination of cloud mask (cloudy
or non-cloudy pixel) and cloud optical depth [S]. Cloud optical
depth (COD) quantifies the extent to which the cloud attenuates light
primarily due to the scattering and absorption by cloud droplets. It
is governed by cloud geometric thickness, cloud water mass, droplet
concentration, and particle size distribution [39]. For shallow low-
level clouds, cloud identification methods vary: [49] employs a cloud
mask, while [25] applies a reflectivity threshold. However, shallow
cumulus clouds, being inherently broken and scattered in nature,
pose additional challenges. The resolution of the cloud mask, such
as that provided by the CLAAS-2 product [37], may be insufficient
to fully resolve these fragmented cloud structures.

The present and upcoming generations of geostationary satellites
provide continuous, high spatiotemporal resolution observations, sig-
nificantly advancing our ability to study rapidly evolving dynamic
systems in the Earth’s atmosphere. Historically, tracking approaches

using geostationary satellite data have focused on mesoscale con-
vective systems. Techniques for tracking clouds between successive
observations range from manual methods [23,50,51] to automated
approaches such as spatial correlation [2,8,48] and area-overlapping
methods [35,59,61]. In some cases, a combination of correlation and
overlapping techniques has been applied to improve accuracy [47].
Furthermore, fully automated tracking methods have been developed,
primarily focusing on deep convective clouds to analyze mesoscale
clusters [12] or to establish a generalized framework for diverse
Earth system datasets, enhancing both adaptability and computa-
tional efficiency [33].

Individual clouds in a shallow cumulus cloud fields are not ran-
domly distributed but organized into clustered patterns [21, 55].
Their broken structure leads to distinct patterns of cloud shadows
and illuminations [15, 30]. [49] uses the Spinning Enhanced Visi-
ble and InfraRed Imager [57] on board the European geostationary
Meteosat Second Generation (MSG) satellites and employs particle
image velocimetry to track these clouds over the ocean but does not
account for low-level clouds’ splitting and merging behaviors. This
phenomenon becomes particularly important when a cloud grows
and merges with neighboring clouds, or when a complex cloud splits
into smaller ones. Similarly, [25] uses the Advanced Himawari
Imager (AHI) rapid scan onboard HIMAWARI-8 [22] and applies
the Kalman filter as a motion prediction model to estimate the loca-
tions of cloud objects across successive time frames. However, their
approach assumes a constant velocity field throughout the tracking
process. Complementing observational studies, extensive research
has been conducted to track simulated shallow cumulus clouds in
large-eddy simulations [18, 56, 65], providing valuable insights into
cloud lifecycle and dynamics.

3 RELATED WORK: TOPOLOGICAL FEATURE TRACKING

Topology-based feature tracking for time-varying scalar fields is a
two-step process: first, topological features are extracted at each
time step; and second, these features are matched between adjacent
time steps by solving a correspondence problem (or assignment
problem in cloud science). Various topological descriptors—such as
merge trees and persistence diagrams—have been used for feature
tracking; see [64, Section 7.1] for a review. Soler et al. [34,53] used
persistence diagrams to perform topology tracking. They extracted
points in a persistence diagram that encode homological features
at each time step, and relied on lifted Wasserstein [53] or Wasser-
stein [34] matching between persistence diagrams at adjacent time
steps to establish correspondences.

The main idea of merge-tree-based tracking is to follow the
nodes of merge trees that represent critical points of the under-
lying scalar fields, using tree matching to establish correspondences.
Doraiswamy et al. [7] combined merge trees with optical flow to
track deep convective clouds. Pont et al. [40] extended the work
on edit distance [54] and introduced a new Wasserstein metric be-
tween merge trees to support feature tracking. Yan et al. [63] used
the labeled interleaving distance between merge trees to support
geometric-aware feature tracking.

Most recently, Li et al. [29] introduced a probabilistic framework
for tracking topological features using merge trees and optimal
transport. They represented a merge tree as a measure network—a
network associated with a probability distribution—and introduced
a distance metric for comparing merge trees using partial optimal
transport. This distance offers flexibility in capturing both intrinsic
and extrinsic information of merge trees.

A traditional method for establishing correspondence between
features is to calculate the overlap between regions surrounding the
features. Lukasczyk et al. [20,32] matched superlevel set compo-
nents by measuring the overlap between their corresponding regions.
Similarly, Saikia et al. [45,46] performed topological feature track-
ing using merge trees. Their approach assesses the similarity of
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subregions segmented by merge trees at adjacent time steps, based
on the overlap size between two regions and the similarity between
histograms of scalar values within each region.

4 TECHNICAL BACKGROUND
4.1 Merge Tree

Let f : M — R be a scalar field defined on a 2D domain M C
R?. A merge tree captures the connectivity among sublevel sets
of f. We consider two points x,y € M to be equivalent, denoted
x ~y,if f(z) = f(y) = a and they belong to the same connected
component of the sublevel set f~'(—o0,a]. Mathematically, the
merge tree is a quotient space T'(M, f) = M /~. For topology-based
cloud tracking, f corresponds to the cloud optical depth (COD) field
in a satellite image with a particular timestamp; it quantifies how
much a ray of light is attenuated as it travels through a cloud. A
higher optical depth indicates greater extinction of light within the
cloud. Since we are interested in high-value areas of f, we work
with the merge tree of — f, as shown in Fig. 2.
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Figure 2: Left: a 2D visualization of a scalar field f with an embedded
merge tree of — f. Middle: a 3D visualization of the graph of f. Right:
an abstract visualization of the merge tree of — f. Local maxima are
in red, saddles are in white, and the global minimum is in blue. The
black contour passing through the saddle a3 encloses two peak areas
of the local maxima as and ag, respectively.

As illustrated in Fig. 2, we construct a merge tree as follows. We
sweep the graph of f (middle) with a hyperplane at the function
value a starting from the maximal value of f. As a decreases, we
initiate a new branch of the merge tree each time we encounter a
local maximum (e.g., at as, as, and a4). Such a branch grows longer
as a decreases, eventually merging with another branch at a saddle
point. For instance, at the saddle a3, the branch starting at as merges
with the branch starting at as. Given a simply connected domain, all
branches eventually merge into a single connected component at the
global minimum a;. Leaves, internal nodes, and the root of the tree
correspond to the local maxima, saddles, and the global minimum
of f, respectively. With a slight abuse of notation, the merge tree
T = (V, E) is arooted tree whose node set V' is equipped with the
scalar function f.

We define a mapping ¢ : Ml — T' between points in the domain
and the merge tree. The inverse image of an edge e € E under
this mapping ¢~ ' (e) is called a topological zone. For example,
the two peak areas enclosed by the black contour in Fig. 2 are the
topological zones of the edges aszas and asas in E, respectively.
The area of a topological zone can serve as an importance measure
for an edge in the merge tree [27], as it reflects the size of the peak
in the domain. We may simplify branches with small topological
zones during computation by employing this importance measure.

4.2 Feature Tracking with Optimal Transport

Li et al. [29] introduced topology-based feature tracking based on
partial optimal transport. Our framework utilizes and significantly
extends the work of Li et al. [29], making it suitable for cloud
tracking. The key idea in [29] is the introduction of partial Fused
Gromov-Wasserstein (pFGW) distance between merge trees. The
pFGW distance generates a probabilistic matching between nodes in
a pair of merge trees; such a matching serves as the starting point for
deriving trajectories of the cloud systems in downstream analysis.

Optimal transport in a nutshell. To illustrate optimal transport,
assume there are a number of factories with specific production

capacities and a number of warehouses with prescribed storage
capacities. Optimal transport aims to find the most efficient way to
transport goods from the factories to the warehouses by minimizing
the transportation cost while respecting the capacity constraints. For
partial optimal transport, we allow losing a certain amount of goods
during transportation.

Measure network. Following [29], we model merge trees as mea-
sure networks. That is, a merge tree can be represented as a triple
T = (V,p,W), where p : V. — [0, 1] is a probability measure
on the node set V' (ie., >, ., p(x) = 1 forall z € V), and
WV x V — R denotes the pairwise intrinsic node relation.

A measure network 7" = (V, p, W) may also be equipped with

node attributes from an attribute space (A, d 4 ) that encodes extrinsic
information. An example of a node attribute is the geometric location
of its corresponding critical point in the domain. In this context,
the attribute distance d 4 is the Euclidean distance between critical
points in the domain. We will discuss our choices for p, W, and
(A, d4) in the context of cloud tracking in Sec. 5.3.
Partial Fused Gromov-Wasserstein distance. The pFGW distance
introduced by Li et al. [29] is based on the theory of partial optimal
transport [3, 60]. Given two measure networks 71 = (V1, p1, Wh)
and Ts = (Va, p2, Wa) equipped with node attributes, let ny = |V |
and no = |V>| be the number of nodes. A coupling C € R"**"2
is a nonnegative matrix that encodes a joint probability measure
between p; and p2, with row and column marginals equal to p; and
p2, respectively. Formally, the set C = C(p1, p2) of all couplings
between 77 and 1% is

Clp1,p2) = {C ERP ™ | Cly, =p1,C 1y =p2}, ()

where 1,, = (1,1,...,1)T € R". Following (1), optimal transport
requires a coupling (matching) to preserve all measures p; and p2.

On the other hand, partial optimal transport [3] allows partial
coupling, thus partial matching between two measure networks. It
relaxes the requirement for the coupling to sum to a number m < 1
(i.e.,m € [0, 1]). The set Crn = Cm (p1, p2) of the relaxed couplings
is

Con(p1,p2)

= {C eRY*™ | Oln, < p1,C " 1ny < p2, 1%, Cly, = m}.
)

The pFGW distance is defined on the set of relaxed couplings C,.
Given a pair of merge trees modeled as measure networks 77 and
T5, the pFGW distance is defined as

dy(T,T) = min >~ (1= ) daas,by)”

i,7,k,l
+a|Wi(i, k) = Wa(3,0)|7) Ciy Cia.
3)

Here, da(as, b;) is the node attribute distance between a; € Vi and
b; € Va. [Wi(i, k) — Wa(j,1))| describes the structural distortion
when we match pairs of nodes (a;, ar) € Th with (b;, b;) € T5. The
pFGW distance incorporates a parameter « to balance the weights
between these two components. In the context of matching a pair of
merge trees, the pFGW distance provides flexibility in preserving
both the node properties (such as critical point locations in the
domain) and the merge tree structure in the optimal coupling. It also
allows the appearance and disappearance of new features.

In the “factory-warehouse” scenario, we are in the setting of
optimal transport when m = 1 in (3). p: and ps prescribe the
capacities of factories and warehouses, respectively, and the cou-
pling C' describes a transportation plan that respects these capacity
constraints. The transportation cost is described by the attribute dis-
tances (e.g., Euclidean distances) between factories and warehouses



as well as the structural relations among them (e.g., factories owned
by a given company should transport goods to warehouses owned
by the same company). Solving an optimization problem of (3)
means finding the transportation plan with the lowest cost. On the
other hand, we are in the setting of partial optimal transport when
0 < m < 11in (3), meaning that we allow 1 — m percent of goods
to be lost/ignored during transportation.

5 METHOD

Cloud tracking faces three major challenges. First, clouds observed
in satellite images are complex, time-varying phenomena involving
numerous events, as cloud systems appear, disappear, merge, and
split. Second, there is no consensus among domain scientists on
the definition of cloud objects and cloud systems. Third, there are
no ground-truth cloud tracking results available for satellite images
supporting any form of supervised learning.

In this section, we describe our novel framework of topology-
driven cloud tracking. Working closely with domain scientists, we
first introduce the definition and detection of cloud objects (Sec. 5.1).
‘We then describe our strategy of using critical points as anchor points
for cloud objects (Sec. 5.2). Subsequently, we compute a matching
between the anchor points using partial optimal transport (Sec. 5.3).
We then generate trajectories for cloud systems formed by (possibly)
multiple cloud objects (Sec. 5.4).

Compared to the work of Li et al. [29], our novel framework
uses customized node probability with existing knowledge of the
cloud data. Additionally, we propose the concept of tracking cloud
systems and introduce a matching algorithm for cloud systems based
on optimal transport. Our choice of merge-tree-based tracking is
justified by its effectiveness in capturing the locality structure among
local maxima.

5.1 Detecting and Simplifying Cloud Objects

In a cloud optical depth (COD) field f from a satellite image, regions
with high function values usually indicate thicker clouds.

Cloud object detection. We use a thresholding strategy for the
detection of cloud objects. We define each connected component
of a superlevel set of f at a chosen threshold a (i.e., f~*[a, 00)) as
a cloud object. Currently, there is no consensus on the threshold
value a to detect low-level clouds. This results in a lack of widely
accepted ground-truth data for cloud detection and tracking. Follow-
ing established practices [33], we test a range of thresholds from
0.5 to 5.0 at a gap of 0.5 to analyze the impact of the threshold
on (a) the number of cloud objects, and (b) their size distributions.
We select a = 2.0 to mitigate both under- and over-segmentation;
further details on threshold selection are provided in the supplement.
Cloud object simplification. We want to separate features from
noise in our real-world cloud data. Stratocumulus clouds often cover
large, continuous areas that can stretch hundreds of kilometers;
therefore, we may consider removing smaller cloud objects that
are deemed insignificant from stratocumulus clouds. On the other
hand, shallow cumulus clouds are characterized by their small size
(covering hundreds of meters across), relatively flat bases, and puffy
tops; they could also grow into deeper convective systems depending
on the available convective mass flux [10], as seen in their COD
values. To handle these differences, we use different approaches to
simplify the identification of cloud objects for stratocumulus and
shallow cumulus, respectively.

For stratocumulus (typically over the ocean), we simplify by
discarding small cloud objects based on area; see Fig. 3. By ignoring
cloud objects smaller than 10 pixels, we can get rid of more than
70% of cloud objects from the field and still cover more than 97%
of the total cloud area; see supplement for statistical details. Fig. 3
gives an example of area-based simplification. The cloud area maps
show cloud objects in gray and the background in black. In the

simplified cloud area map, cloud objects smaller than 10 pixels are
ignored after simplification (cf. the green boxes).

min [ Ml max
Figure 3: Apply area-based simplification to stratocumulus clouds.
From left to right: the COD field, the cloud area map, and the simplified
map by excluding cloud objects smaller than 10 pixels.

For Shallow cumulus (typically over land), instead of filtering by
size, we apply a higher COD threshold to remove regions with low
values, focusing only on the prominent clouds.

5.2 Attaching Anchor Points to Cloud Objects

We need to associate cloud objects with topological features to
perform topology-driven tracking. To that end, we use nodes of
merge trees that correspond to the critical points of the COD field f
as anchor points for cloud objects.

To attach anchor points, we could associate a subtree of the merge
tree to each cloud object. For example, Fig. 4(a) shows five cloud
objects enclosed by the white contours. The tree structure within
each cloud object is a subtree of the global merge tree. We use the
local maxima in this subtree as the anchor points of the cloud object.
These anchor points’ trajectories are subsequently used to derive the
trajectory of cloud objects. In practice, we may reduce the number
of anchor points for computational efficiency; see Fig. 4(b) for an
example and the supplement for technical details.

min Ml max

Figure 4: (a) A set of cloud objects enclosed by white contours; each
contains a subtree of the global merge tree. Local maxima (a.k.a., an-
chor points) are in red, and saddles are in white. (b) Simplifying
subtrees by removing the highlighted anchor points (inside green or
yellow circles) and their parent saddles.

5.3 Anchor Point Tracking with Partial Optimal Transport

We adapt the work of Li et al. [29] to track anchor points with partial
optimal transport. Building on prior knowledge of the characteristics
of the COD field, we enhance this work by incorporating a tailored
probability distribution for critical points.

Model merge trees as measure networks. We first model a merge
tree 1" of the COD field f as an attributed measure network 1T' =
(V, p, W) with node attributes (A, d4). We modify the framework
of [29] to focus on tracking local maxima of a merge tree, which act
as anchor points for cloud systems.

For each local maximum z € V, we set its probability as p(x) =
1/n, where n is the number of local maxima in 7. For saddles and
the global minimum, we assign a probability of O due to the high
complexity and uncertainty of the COD field [43], which causes their
locations to be highly unstable. This instability makes it challenging
to find suitable matchings for these nodes. Furthermore, disregarding
the probability of saddles and the global minimum enables us to
preserve more anchor points without compromising computational
efficiency, ultimately enhancing the robustness of tracking.

We use the pairwise node relation matrix W to encode the tree dis-
tance. Recall that each node v € V' is equipped with a function value



f(v). The tree distance between two adjacent nodes in 7 (i.e., the
edge weight) is W (a, b) = | f(a) — f(b)|, whereas the tree distance
between two nonadjacent nodes is the shortest path distance between
them. Previous works [28,29] show that the tree distance can encode
the scalar field topology via merge tree structures. Specifically, in
the context of cloud tracking, the tree distance reflects the locality
among the anchor points: anchor points attached to the same cloud
object belong to the same subtree. Our framework captures anchor
point locality inherently, regardless of whether saddles or the global
minimum are preserved in the optimal transport.

We encode the locations of critical points as the node at-
tributes. Given a pair of merge trees 77 = (Vi,p1, W1) and
T> = (Va, p2, Wa), the node attribute for a; € Vi is (x4, y:), in
which z; and y; denote the coordinates of the critical point. Sim-
ilarly, the node attribute for b; € V; is (x;,y;). The attribute
distance d4 between a; and b; is

da(ai,b;) = de((i, v:), (x5, v5)) “)

dg in Eq. (4) represents the Euclidean distance, and our framework
prevents the matching of anchor points that are far apart.
Matching critical points with partial optimal transport. By
computing the pFGW distance between a pair of merge trees 77 and
T> following (3), we obtain an optimal coupling C' between their
nodes. We interpret the coupling as a probabilistic matching between
critical points from adjacent time steps. The sub-matrix of the
coupling matrix, consisting only of rows and columns corresponding
to local maxima, represents the matching between anchor points.
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Figure 5: Partial optimal transport. We match the merge trees of — f;
and — f2 (b) using pFGW with m = 0.8, producing a coupling matrix
C (c). Matched nodes in the two trees share the same color (a-b).

We provide a simple example in Fig. 5. Let fi and f> in (a)
be the scalar fields of adjacent time steps. 77 and 7% in (b) are
the merge trees of —f1 and — f3, respectively. Let p; and p2 be
uniform measures on all the nodes, including local maxima, saddles,
and the global minimum. Based on structural similarity between
Th and 75, it is natural to match nodes a; € 11 with b; € T5 for
¢ € [1, 8]. On the other hand, nodes ag and a1o in 73 are missing
from 1% (c.f., the red boxes). Ideally, we want to ignore ag and
a1o during the matching process. Based on these intuitions, setting
m = 0.8 in the pPFGW distance produces the desired transportation
plan captured by C = C(T1,T%) in (c).

Each entry C; ; in C' denotes the probability of matching a; € T4
with b; € T>. We see that C;; = 0.1, which aligns well with
our expectations. Meanwhile, Cy ; = Cio,; = 0 for j € [1,8],
indicating that ag, a1o € 71 are not matched to any nodes in 5.
A sub-matrix of C, with rows corresponding to a3, as, a7, as,
a1o and columns corresponding to b3, bs, b7, bs, represents the
probabilistic matching between anchor points. While this example
shows a one-to-one node matching, our framework generally allows
multiple nonzero entries in a row or column, which distinguishes
our framework from other topology-based frameworks that produce
one-to-one matchings.

5.4 Computing Trajectories for Cloud Systems

Constructing cloud systems. We first merge cloud objects into
cloud systems. A cloud system may consist of multiple cloud objects
that are geometrically close. Eytan et al. [9] suggested that most of
the radiative effect of a cloud is confined within ~4km around the
cloud. Therefore, we merge cloud objects within 4km away from
each other as a cloud system and identify cloud objects farther than
4km as different cloud systems. The set of anchor points for each
cloud system is the collection of anchor points for all cloud objects
within the system.

Tracking cloud systems. As described in Sec. 5.2, each cloud
system contains one or more local maxima as its anchor point. We
can use the matching between the anchor points (see Sec. 5.3) to
compute the trajectory for cloud systems.

We introduce a matching score between cloud systems at adjacent
time steps. We denote the set of anchor points for a cloud system
X as Px. The matching probability from the optimal coupling
between an anchor point v1 at time step ¢ and vs at time step (¢ + 1)
is Cy(v1,v2). Then, for the cloud systems X (at time step ¢) and Y’
(at time step (¢ + 1)), the matching score between them is

S(X, V)= >

zePx,yePy

Ci(z,y). ®)

Informally, this score is the probability of mass transportation from
X to Y. The higher this score is, the more likely the two are

matched.
@ t t+1 Vi Y2 71 Zp
0 @ x; [0110.02]0.08] 0
Py = (y1,y,) *Xz|00s|o0os| 0 foos
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Figure 6: Cloud system matching score. (a) Cloud system X at time ¢
and cloud systems Y and Z at time (¢ + 1) with their set of anchor
points. (b) Selected rows and columns of the coupling matrix C'.

Fig. 6 gives an example of matching scores involving cloud sys-
tems X, Y, and Z. In (a), there are three anchor points for X at
time step ¢, and two for Y and Z at time step (¢ + 1), respectively.
The coupling matrix C for the anchor point matching probability is
in (b). For example, the matching probability between anchor point
z1 from X and y; from Y is 0.11. The matching score S¢(X,Y)
equals the sum of the first two (orange) columns for anchor points
y1 and y2, which is 0.27. Similarly, S¢(X, Z) equals the sum of the
last two (green) columns for anchor points z; and z2, which is 0.32.

With the matching scores, we can match the cloud systems via a
bipartite graph matching algorithm. Let H; denote the set of cloud
systems at time step ¢. We use S¢(X,-) = ZheHHl S¢(X, h) to
denote the total outgoing probability for a cloud system X € H;
and Si(+,Y) = 37, cpy, St(h,Y) the total incoming probability for
Y € Hyy1. A matching between the cloud system X and Y is valid
if S¢(X,Y) is nonzero and satisfies one of the two conditions:

1. Y = argmax S;(X, h), and X = argmax S;(h,Y);
REH; 41 hEH,
2. S¢(X,Y) > max{S:(X,-), Se(-,Y)} x r.

Condition (1) means that X and Y are mutually the best match;
otherwise, condition (2) implies that the matching score must exceed
a threshold proportional to the maximum cumulative score of both
X and Y. The proportionality factor is governed by the parameter
r, which controls the strictness of the matching criteria. In practice,
we set 7 = 0.1. We justify this parameter choice in the supplement.



Among valid matchings, we search for a one-to-one cloud system
matching strategy that prioritizes the pairing of cloud systems with
larger areas. We implement this process using a greedy algorithm.

1. Sorting by area. First, we sort all cloud systems X € H; in
descending order based on their areas, ensuring that larger cloud
systems are processed first.

2. Greedy matching. For each cloud system X in the sorted list,
we evaluate all candidate cloud systems Y € H;,; that satisfy
matching conditions (1) or (2) and choose the one with the largest
area to be matched to X.

3. Handling unmatched systems. For all remaining cloud systems
that are unmatched, we mark them as terminated (for X € Hy)
or newly formed (for Y € Hyy1).

By combining all the selected matchings across adjacent time steps,
we generate a set of trajectories for the cloud systems. We do
not match clouds across non-adjacent time steps, so a cloud that
disappears and later reappears is recorded as separate trajectories.
Merge and split events. Cloud systems often merge and split as
they evolve, providing weather scientists with insights into their
evolution. Our framework supports computing and visualizing these
events. Following the tracking algorithm outlined above, we have
computed all valid matchings, with one labeled as the main trajectory
and the others identified as secondary trajectories. In the example
in Fig. 6, we let the main trajectory of the cloud system X go to
Z if the area of Z is larger than Y. However, the trajectory from
X to Y can also be considered secondary due to the high matching
score between X and Y. Including this secondary trajectory allows
us to interpret the scenario as follows: at time step ¢, cloud system
X splits into two systems, Y and Z, at time step ¢t + 1, with Z
continuing along the main trajectory.

6 EXPERIMENTAL RESULTS

In this section, we experiment with two datasets from geostationary
satellites. The first Marine Cloud dataset focuses on marine stra-
tocumulus clouds over the ocean west of Africa during August 2023,
whereas the second Land Cloud dataset covers shallow cumulus
cloud systems over central Europe from April to September between
2018 and 2019; see supplement for details on these datasets. We
review and compare against two state-of-the-art cloud tracking tools
(Sec. 6.1), with parameter justifications (Sec. 6.2). We then perform
statistical evaluations (Sec. 6.3) and discuss our tracking results
in Secs. 6.4 and 6.5. Additionally, we compare our approach with
two topology-based general-purpose tracking tools in Sec. 6.6.

6.1 Two Leading Cloud Tracking Tools

We report the results from two state-of-the-art open-source cloud
tracking tools for comparative analysis: tobac [13,33] and PyFLEX-
TRKR [11]. We refer to our tool as the pFGW framework.

We briefly compare the two cloud tracking frameworks with ours.
All three tools involve superlevel thresholds for cloud detection. The
tool tobac applies the Watershed algorithm [38] with the threshold,
whereas PyFLEXTRKR and pFGW use superlevel set components
to identify cloud objects. For cloud tracking, tobac tracks the
centroids of cloud objects and computes the matching plan with
the minimum sum of the Euclidean distances between matched
cloud centroids. PyFLEXTRKR computes the region overlap for
cloud tracking. In comparison, pFGW combines topological and
geometric information of anchor points and summarizes the tracking
results for all anchor points within a cloud system. Furthermore,
instead of tracking cloud objects, pPFGW considers multiple cloud
objects as a cloud system and tracks the system as a whole. For
simplicity, we use cloud entity to refer to either cloud object or cloud
system for the rest of the paper. We report other algorithmic details
of tobac and PyFLEXTRKR in the supplement.

6.2 Parameter Configurations

Computing the pFGW distance requires two parameters « and m
(see Sec. 4.2). We intend to put a higher weight on preserving the ge-
ometric location of nodes while still considering the intrinsic merge
tree structure, leading to o < 0.5. We set a = 0.4 for the Marine
Cloud dataset and oo = 0.2 for the Land Cloud dataset. We adopt
the strategy of [29] to tune m. Specifically, we impose a threshold
on the maximum distance between matched nodes across adjacent
time steps and select the largest m such that no matches exceed
this threshold. This approach preserves high-probability couplings
while avoiding clearly spurious matches. For a fair comparison,
we use the same superlevel set threshold for cloud detection for all
three methods. See the supplement for other parameters of the three
methods and a discussion about parameter choices.

6.3 Evaluation Metrics

Tracking clouds over time using satellite observations is challenging
due to their dynamic nature, including their appearances, disap-
pearances, splitting, merging, and transformation. Based on earlier
studies in cloud science [12,26], we utilize three evaluation metrics
to assess the tracking results.

First, we study the distribution of timespans for cloud entities
(cloud objects or cloud systems). The timespan is the duration of
time (i.e., the number of time steps) a cloud entity travels along its
trajectory. This metric indicates how consistently a tracking method
monitors cloud entities. However, we do not postulate that every
cloud entity should be long-lived.

Second, we investigate the distribution of the standard deviation
of a cloud property (e.g., mean COD value of a cloud entity at a
given time step) along trajectories, referred to as the SD of mean
COD. The physical properties of a cloud entity are expected to
remain fairly stable over time, with no significant deviations. A
mismatch is likely to result in an increase in the standard deviation
along the trajectory. We consider only trajectories with a timespan
longer than the median timespan and at least three time steps, as the
standard deviation is highly sensitive to small sample sizes.

Third, we examine the distribution of the linearity loss of tra-
jectories. The linearity loss of a trajectory is the root mean square
error (RMSE) of the centroids of cloud entities from the line of best
fit. Given the momentum of clouds, it is reasonable to expect short-
lived trajectories to be nearly linear without abrupt jumps. However,
longer trajectories are more likely to follow the mean flow, which
can vary across time and space and lead to curved paths not captured
by this metric. For consistency, we evaluate this metric on the same
set of trajectories used in the mean mean COD study.

6.4 Case Study: Marine Cloud Dataset

We first examine the Marine Cloud dataset, which focuses on ma-
rine stratocumulus clouds over the ocean west of Africa. We high-
light our topology-driven tracking results in Fig. 1 using two time
steps on Aug 1, 2023, at 09:00 and 10:00 UTC, respectively. We
then perform a detailed analysis of the cloud tracking results using
a subregion from the same dataset also on Aug 1, 2023 in Fig. 7.
There are 28 time steps within the day from 09:00 to 15:45 UTC
with 15-minute intervals.

Cloud detection and tracking. We first compare the cloud detec-
tion results across the three cloud tracking tools: pFGW, PyFLEX-
TRKR, and tobac. All three methods successfully identify cloud
entities from the COD fields, with small discrepancies due to the
minor differences between watershed-based (used by tobac) and
superlevel-set-based (used by PYFLEXTRKR and to some extent
pFGW) strategies.

Meanwhile, we highlight the differences between tracking cloud
objects versus cloud systems in Fig. 7. For PyFLEXTRKR (3rd
column), at 09:45 UTC, the central green object (magenta box) splits
into two distinct objects (green and gray). At 10:00 UTC, these two
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Figure 7: Tracking results of a region in the Marine Cloud dataset on Aug 1, 2023, at
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9:30, 9:45, 10:00, and 10:15 UTC, respectively. Cloud

entities are colored by feature correspondences. From left to right: visualizations of COD fields, tracking results for pFGW, PyFLEXTRKR, and
tobac, respectively. For pFGW, yellow blocks from top to bottom showcase a cloud transition process from the green cloud system to the orange
one. For PyFLEXTRKR and tobac, magenta boxes highlight suboptimal tracking results due to the transient splitting and merging of cloud objects.

objects merge back together, and the trajectory of the newborn gray
object terminates. For tobac (4th column), we observe similar cloud
splitting and merging events at 09:45 and 10:00 UTC, respectively;
however, tobac considers the objects (magenta boxes) at 9:45 and
10:00 UTC to be new entities, giving rise to three new trajectories.
However, the cloud-splitting event at 09:45 UTC is not obvious in
the COD field. In contrast, at 09:45 UTC, pFGW does not split
the same green cloud system in the center, as our tracking method
aggregates nearby cloud objects into a single cloud system.

Previous studies report significant COD uncertainties outside the
5-50 range [43]. With a detection threshold of 2.0, such uncertain-
ties can blur cloud boundaries, leading to transient splits and merges.
Tracking cloud systems (instead of cloud objects) with pFGW mit-
igates this by avoiding numerous short-lived trajectories for these
transient events.

As shown in Fig. 7, we gain additional insights by tracking cloud

systems instead of cloud objects using pFGW. The yellow boxes in
the 1st and 2nd columns highlight a cloud transition process, where
a part of the central green system splits and merges into the bottom
orange system. In contrast, PyFLEXTRKR and tobac track all
cloud objects individually in this region, thus it is harder to infer the
change in proximity between clouds.
Statistical evaluation. We statistically evaluate the Marine Cloud
dataset from Aug 1 to Aug 8, 2023. The observed time period for
each day is from 09:00 to 15:45 UTC with a 15-minute interval.
We calculate the tracking results for each day separately and then
aggregate the statistics from all eight days to evaluate the overall
performance for each method. For pFGW, we include statistics
involving tracking cloud systems (pFGW-system) and tracking cloud
objects (pFGW-object).

Fig. 8 shows the distributions of trajectory timespan. These distri-
butions are comparable across all three methods. The distributions
of pFGW for tracking cloud objects and tracking cloud systems are
also similar. Specifically, PyFLEXTRKR generates more short-lived
trajectories (primarily those lasting less than 15 minutes); tobac
generates fewer longer-lived trajectories compared to the other two
methods. In comparison, pFGW preserves long-term trajectories
while reducing the number of short-lived ones.

Fig. 9 presents the overall statistics for comparison and displays
the trajectory timespan distribution in the form of a box plot (1st
column). PyFLEXTRKR generates more short-lived trajectories
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Figure 8: Marine Cloud dataset: distribution of trajectory timespans
in log-scale for pFGW tracking cloud systems (red) and objects (blue),
PyFLEXTRKR (orange), and tobac (green); data aggregated over
eight days (Aug 1-8, 2023).

compared to the other two methods, with the median trajectory times-
pan being just 15 minutes (one timestep). In contrast, pFGW and
tobac exhibit a higher median value of 30 minutes (two timesteps),
whereas pFGW has a higher interquartile range and mean. It shows
that pFGW performs the best at preserving the trajectory duration
among the three approaches.
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Figure 9: Marine Cloud dataset: box plots showing the median
(orange line), mean (green triangle), and interquartile range (box
boundary) of the distribution for three evaluation metrics.

We compute the standard deviation of mean COD and the linearity
loss for trajectories that last for at least 45 minutes (three timesteps);
see the 2nd and 3rd columns of Fig. 9. Three methods have similar
performance in preserving the mean COD of cloud entities along
the trajectory. On the other hand, pFGW has a higher linearity loss
compared to the other two methods. This is anticipated as cloud
merging and splitting events have been observed to introduce un-
desirable shifts in the centroid position of the cloud system along
the main trajectory. In particular, such position shifts can be drastic
for large cloud systems, which are often long-lived for stratocumu-
lus clouds. In contrast, tobac is less effective at identifying cloud



merging and splitting events for large cloud entities (see Fig. 7 4th
column); PyFLEXTRKR performs worse in maintaining the trajec-
tory timespan. As a result, both tools generate fewer trajectories
with high linearity loss.

6.5 Case Study: Land Cloud Dataset

The Land Cloud dataset is collected above central Europe, where the
complex land-driven convection strongly affects the low-level cloud
systems. As the land warms up during the day, shallow cumulus
often initiates in the morning, grows mature over time, and reaches
its peak in the late afternoon. Hence, during its life cycle, the optical
depth of shallow cumulus changes over time. Therefore, we divide
the data into three periods for each day: 06:00 to 09:00 UTC for the
morning, 09:05 to 15:00 for the midday period, and 15:05 to 17:55
for the late afternoon. In particular, we are interested in the morning
and midday periods, as these are typically when the initiation and
maturation of shallow cumulus occur, respectively.

For the morning period, we set the superlevel set threshold to

9.0, and for the midday period, we set it to 10.0. This decision is
based on the observed quality of cloud segmentation using superlevel
set components, as outlined in [12], and the parameter sensitivity
analysis described in Sec. 5.1, with further details in the supplement.
We do not simplify cloud entities by area because shallow cumulus
clouds (particularly during the initiation stage) are smaller and have
more gaps between individual cloud objects.
Cloud detection and tracking. We use the data from May 1, 2018,
for our case study. We check the transition from 08:30 to 08:35
UTC for data in the morning. For data in the midday, we check the
transition from 12:05 to 12:10 UTC. We color all the new cloud
entities in magenta at 8:35 UTC and 12:10 UTC, respectively. These
new entities may arise from the formation of shallow cumulus, the
splitting of a cloud entity, or the loss of cloud tracking.

The morning period reveals a cluster of shallow cumulus clouds
developing near the center of the COD field, as illustrated in the first
two rows of Fig. 10. These shallow cumulus clouds are identified as
a set of small cloud entities in the tracking results. When comparing
the performance of pFGW and PyFLEXTRKR, it becomes evident
that PyFLEXTRKR loses a significant number of trajectories for
these tiny cloud entities; see the cyan box in the 3rd column. This
limitation stems from the region-overlap-based approach used by
PyFLEXTRKR to track clouds. In small clouds, even slight posi-
tional shifts can lead to insufficient overlaps, causing the tracker to
lose these clouds. In comparison, pFGW is based on the clouds’
geometric location and topological information, making it more
robust when tracking small shallow cumulus clouds.

As the day progresses towards midday, the shallow cumulus
system and many small cumulus cells evolve, growing thicker and
merging into large cloud entities. In the bottom two rows, we observe
large cloud entities in the top half of the image (red box), and clusters
of small cloud entities in the bottom half (orange box). Both pFGW
and PyFLEXTRKR exhibit similar performance in tracking the
large cloud entities. However, for the small clouds, PyFLEXTRKR
generates numerous new cloud entities (see magenta cloud entities
in the orange box), showing its limitations in tracking smaller clouds
consistently. In comparison, pFGW exhibits a better capability in
consistently tracking small shallow cumulus clouds.

tobac shows better performance in preserving the trajectories for
small cloud objects than PyFLEXTRKR (c.f. 3rd and 4th column).
However, we observe that the large cloud objects at 8:30 UTC (1st
row, pink boxes) are not tracked by tobac during the morning period.
These two objects merge into one at 8:35 UTC, which is treated as a
new object by tobac, similar to what we have observed in Sec. 6.4.
Furthermore, tobac also fails to track the large objects during the
midday transition (3rd and 4th row, yellow box).

Statistical evaluation. We perform the statistical evaluation similar
to Sec. 6.4. We collect statistics for the datasets for three days on

May 1, Jun 23, 2018, and May 12, 2019, respectively in Fig. 12. The
1st row shows the distribution of evaluation metrics for the morning
period, and the 2nd row shows the distribution for the midday period.

We start with the trajectory timespan distribution. Among the
three methods, PyFLEXTRKR performs the worst on tracking small
shallow cumulus, which constitutes the majority of the cloud entity
population. Therefore, for both morning and midday periods, most
trajectories from the PyFLEXTRKR last for less than five minutes
(one time step); see Fig. 11 and Fig. 12 1st column. Meanwhile, to-
bac does not generate trajectories with a lifetime above 300 minutes
in the midday period as the other two methods do; see Fig. 11 2nd
row. This reflects our previous observation in Fig. 10 4th column
that tobac performs worse than the other two methods in tracking
large cloud entities, many of which are persistent in the Land Cloud
dataset. In contrast, pPFGW performs the best on maintaining trajec-
tories for small shallow cumulus in the morning and has a similar
trajectory lifetime distribution to tobac in tracking cloud objects dur-
ing the midday period; see Fig. 12 1st column. By merging nearby
cloud objects into cloud systems, pPFGW may get fewer trajectories
with a long lifetime. However, pFGW still performs better than
tobac in maintaining long-term trajectories in the midday period;
see Fig. 11 2nd row.

We compute the standard deviation of mean COD and the linearity
loss for trajectories that last for at least 15 minutes (three timesteps).
When evaluating the ability to preserve mean COD along the same
trajectory, all three methods have comparable performances during
both morning and midday; see the 2nd column of Fig. 12.

Lastly, because there are fewer large cloud entities in the Land
Cloud dataset, the linearity loss of pFGW trajectories is similar to
that of tobac. On the other hand, it is anticipated that PyFLEX-
TRKR generates trajectories with the least linearity loss because
PyFLEXTRKR often loses track of cloud entities on the Land
Cloud dataset.

6.6 Comparison with Topology-based Tracking Tools

For completeness, we further compare pFGW against two topology-
based general-purpose tracking tools: the Lifted Wasserstein
Matcher (LWM) [53] and the Wasserstein distance between merge
trees (MTW) [40].

We first compute the critical point trajectories using LWM and
MTW, respectively. Next, we compute the cloud system trajecto-
ries for LWM and MTW using a postprocessing pipeline similar
to that of pFGW. We use the parameter settings that generate the
best critical point matching results for statistical evaluation; see the
supplement for justifications. We compare the cloud system tracking
performance using the statistics described in Sec. 6.3. Additional
experimental details are in the supplement.

Statistical evaulation. Fig. 13 shows the distribution of cloud tra-
jectory statistics (in Sec. 6.3) for the three topology-based methods.

We start with the trajectory timespan in Fig. 13 left. Among the
three methods, MTW performs the worst in maintaining trajectory
continuity. The mean and median trajectory timespan for MTW
tracking results are the lowest. In comparison, pFGW and LWM
have similar performance, while LWM has a slightly higher mean
timespan for trajectories. For the standard deviation of mean COD,
all three approaches demonstrate similar distributions for their re-
sults. This indicates that all three methods perform similarly in
matching cloud systems with similar COD distributions, which are
partly reflected by the anchor point COD values. Lastly, pFGW
achieves the lowest linearity error on average, with LWM performing
slightly worse, while MTW performs substantially worse; see Fig. 13
right (where the boxplot of MTW goes beyond the boundary). This
is expected because MTW does not consider geometric locations
when matching anchor points.



Figure 10: Tracking results of a region in the Land Cloud dataset on May 1, 2018. From left to right: visualizations of COD fields, tracking results
for pFGW, PyFLEXTRKR, and tobac, respectively. The top two rows (resp. bottom two rows) are for the transition during the morning (resp.
midday) period. All new cloud entities in the 2nd and 4th rows are colored magenta; others are colored by correspondences. Cyan and orange
boxes (3rd column) highlight the areas where PyFLEXTRKR fails to track many small shallow cumulus clouds (shown as new entities in magenta).
Yellow and pink boxes (4th column) emphasize the suboptimal tracking results from tobac when two large cloud objects merge.
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Figure 11: Land Cloud dataset: distributions of trajectory timespans
in log-scale for pFGW tracking cloud systems (red) and objects (blue),
PyFLEXTRKR (orange), and tobac (green); data aggregated over
three days (May 1 and Jun 23 in 2018, and May 12 in 2019). The top
row is for the morning period, and the bottom is for the midday.
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Figure 12: Land Cloud dataset: statistical evaluation for the morn-
ing data (1st row, 06:00—09:00 UTC) and midday data (2nd row,
09:05-15:00 UTC). Box plots show the median (orange line), mean
(green triangle), and interquartile range (box boundary) for three eval-
uation metrics.

Timespan SD of mean COD Linearity loss

140 2.0 20.0
= _ v
£ 15 15.0
2100 ' ’
E T 1o 10.0
p . | X
g 60 A j F
wv A
2 0.5 5.0
E ‘
£
20 L 00{ ! 00l = = =
pFGW WM MTW PFGW wMm MTW pFGW LWM MTW

Figure 13: Marine Cloud dataset: box plots showing the median
(orange line), mean (green triangle), and interquartile range (box
boundary) of the distribution for three topology-based tracking meth-
ods. The box for the linearity loss for MTW exceeds the plot's upper
bound.

7 CONCLUSION AND DISCUSSION

The case studies and statistical evaluations provide several important
takeaways. First, our framework operates with cloud systems in-
stead of cloud objects, reducing sensitivity to threshold selection and
producing fewer short-lived cloud trajectories. Tracking low-level
clouds as systems offers deeper insights into their proximity and
evolution. Second, our framework demonstrates strong performance
in tracking clouds compared to two state-of-the-art cloud tracking
methods. Notably, it is the most consistent in tracking small shal-
low cumulus clouds over land as well as large stratocumulus over
the ocean. In future work, we aim to enhance tracking quality by
integrating additional cloud variables, such as cloud fraction, cloud
liquid water path, and cloud top height [44].
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SUPPLEMENT

In this supplement, we describe the cloud data in Appendix A,
followed by implementation details in Appendix B. We provide
descriptions for the two other leading cloud tracking tools in Ap-
pendix C. Next, we discuss parameter configurations and limitations
of our comparative analysis in Appendix D. We provide details
on qualitatively and quantitatively comparing three topology-based
tracking tools in Appendix E. Finally, we provide a runtime analysis
in Appendix F.

A CLouD DATA

Geostationary satellites offer continuous measurements of cloud
systems as they evolve over time, a capability utilized in cloud
remote sensing since the launch of the first Applications Technology
Satellite (ATS-1) in 1966 [11]. This study employs two distinct
resolutions of cloud optical depth (COD) retrievals [2,16,20] derived
from the visible and near-infrared channels of the SEVIRI instrument
onboard Meteosat’s second-generation satellites.

The first dataset, referred to as Marine Cloud, utilizes the
CLAAS-3.0 product [4], focusing on marine stratocumulus clouds
over the ocean west of Africa (26.74°S to 4.52°S, 10.52°E to
27.99°W) during August 2023. This dataset retains SEVIRI’s native
resolution, with a 15-minute temporal repeat cycle and a spatial reso-
lution of 3 km at nadir. Stratocumulus cloud systems are prevalent in
this region during the austral winter months (July—September) [5, 6].
Fig. 1 shows an example of the COD field from the Marine Cloud
dataset.

min I max

Figure 1: A snapshot of the COD field at 09:00 UTC on Aug 1, 2023,
from a marine stratocumulus cloud dataset over the ocean west of
Africa.

The second dataset, labeled as Land Cloud, covers shallow cu-
mulus cloud systems over central Europe (47.3°N to 55.4°N, 1.9°E
to 9.3°E) across 13 selected days of low-level cloud occurrences
from April to September between 2018 and 2019. This dataset
simulates the capabilities of the Meteosat Third Generation (MTG)
mission, offering an enhanced spatial resolution of 2 km x 1 km
and a 5-minute temporal repeat cycle. Land Cloud significantly
improves the standard MSG cloud dataset, enabling more detailed
tracking of convective systems in central Europe [2,20].

In the visible range, satellites receive part of the solar radiation
reflected by the clouds or the earth’s surface. The near-infrared
channels going beyond the visible range help examine how objects
reflect, transmit, and absorb the sun’s infrared emission. The re-
trieval algorithm operates on the principle that cloud reflectance is
predominantly governed by COD with minimal sensitivity to particle
size at visible wavelengths. In contrast, at near-infrared wavelengths,
cloud reflectance is primarily influenced by particle size [3,9,13].

Modern retrieval methods, such as the Cloud Physical Properties
(CPP) algorithm used with SEVIRI by the Royal Meteorological
Institute of the Netherlands [16], rely on a combination of non-
absorbing visible wavelengths (0.6 or 0.8 um) and near-infrared

wavelengths (1.6 or 3.8 pym). While the 1.6 um wavelength is well-
suited for thicker clouds, the 3.8 um wavelength is better for thinner
clouds. However, retrievals at 3.8 pm involve greater uncertainty due
to their proximity to thermally emitted radiance and the lower solar
irradiance at this wavelength compared to 1.6 um. Consequently,
the CPP algorithm primarily utilizes 0.6 and 1.6 ym reflectances for
retrieving COD, particle size, and cloud liquid water path (CLWP).

We chose COD as the input for our cloud system tracking frame-
work due to the following reasons: (i) COD eliminates the need
to account for solar zenith angle and surface characteristics, both
of which significantly impact reflectance values, and (ii) COD is
the most accurate retrieval product available at the enhanced resolu-
tion [2]. However, one must note that the COD uncertainties become
large outside a value range of 5 - 50 but remain below 8-10% within
this range [17].

B IMPLEMENTATION

All experiments are done on a laptop with a 12th Gen Intel(R)
Core(TM) 19-12900H 2.50 GHz CPU with 32 GB memory. We use
the python library scipy [14] to identify superlevel set components
for cloud object detection. We use the ParaView 5.11.1 [1] and TTK
1.1.0 [18] to compute merge trees and topological zones. We follow
the work of Li et al. [8] to compute the pFGW distance for merge
tree matching, which has open-source code on GitHub [7]. We will
provide our implementation on GitHub upon publication.

C DESCRIPTION FOR LEADING CLOUD TRACKING TOOLS

In this section, we describe the two leading cloud tracking tools
reported in the experiments: tobac and PyFLEXTRKR.

The tool tobac takes a sequence of thresholds to identify con-
nected components of the superlevel set of the COD field. Specifi-
cally, for a fixed threshold, it calculates the bounding box of each
superlevel set component and selects a feature point from the bound-
ing box using one of four strategies: the center, the maxima, or
the barycenter weighted by either the absolute COD value or its
difference from the threshold. Then, tobac uses the watershed
algorithm [12] to detect cloud objects. The watershed algorithm
first identifies the local peak area for each feature point. A cloud
object is then created at the local maxima of the identified peak
area and expanded by iteratively adding the surrounding pixels with
the highest COD values. The expansion terminates when the cloud
object touches another one or reaches the boundary of the superlevel
set component. Subsequently, the trajectory of the cloud object
is defined by the trajectory of the feature point. To match a fea-
ture point to one in the next time step, tobac searches for possible
candidates within a user-defined neighborhood in the domain. The
matching strategy that minimizes the sum of the squared Euclidean
distance between the feature point and its matched point produces
the tracking result.

PyFLEXTRKR identifies cloud objects using either superlevel
set components or the watershed algorithm. Then, it computes
the region overlap between cloud objects at adjacent time steps and
determines the trajectory of the cloud object based on the overlapped
region size.

For cloud detection, tobac employs the watershed algorithm to
expand each cloud from its respective feature point. This expansion
is essential as tobac relies on feature points to facilitate tracking in
subsequent stages. In particular, if one can guarantee that each super-
level set component has exactly one feature point inside, the cloud
object detection result is identical to the superlevel set component.
However, since tobac selects the feature point from the component’s
bounding box, none of the four feature detection strategies can guar-
antee this outcome. In contrast, pPFGW identifies cloud objects using
superlevel set components, whereas PYFLEXTRKR offers flexibil-
ity by supporting both superlevel sets and the watershed algorithm
for cloud detection.



During cloud tracking, pFGW combines topological and geo-
metric information of anchor points and summarizes the tracking
results for all anchor points within a cloud system. In contrast, both
tobac and PyFLEXTRKR rely exclusively on geometric informa-
tion. tobac tracks clouds using a single feature point for each cloud
object; it may produce an unstable trajectory due to the instability
in a feature point’s location across time steps. On the other hand,
PyFLEXTRKR tracks features based on region overlap; however, it
could be challenging to handle small or fast-moving features with
insufficient overlaps between adjacent time steps [8].

D EXPERIMENTAL PARAMETERS

We discuss experimental settings and parameters in addition to those
mentioned in Sec. 5 and Sec. 6.

D.1 Cloud Object Detection and Simplification

Object detection parameter sensitivity analysis. Currently, there
is no consensus on the threshold value a to detect low-level clouds.
Following established practices [10], we test a range of thresholds
from 0.5 to 5.0 at a gap of 0.5 to analyze the impact of the threshold
on the cloud area size and numbers. This approach is similar to
using brightness temperature thresholds for tracking deep convective
cloud systems [10] and references therein. We use the statistics
computed on the Marine Cloud dataset as an example. Fig. 2(a)
shows the cumulative distribution of cloud object number density
as cloud size increases. The distribution curves appear consistent
across different superlevel set thresholds, indicating that the cloud
area size distribution is not highly dependent on the superlevel set
threshold within the range of [0.5, 5.0]. In particular, more than 70%
of cloud objects are below 10 pixels regardless of the threshold; see
the zoom-in view at Fig. 2(c). In Fig. 2(b), the differences among
curves are more noticeable. For example, when the threshold is 0.5,
cloud objects with more than 1000 pixels contribute to 92.15% of
the total cloud coverage. In comparison, 80.36% of the cloud area
coverage comes from clouds with more than 1000 pixels when the
threshold is 5.0. This result indicates that when choosing a threshold
that is too small, large clouds will dominate the cloud area coverage,
and we may mistakenly interpret multiple cloud systems as a single
one altogether. On the other hand, if we use a very high threshold,
we may obtain too many small cloud objects over-segmented from a
large one. Therefore, we choose a threshold of 2.0 to avoid potential
issues with extreme values.
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Figure 2: (a) the accumulative proportion of cloud object number
density. (b) the accumulative proportion of cloud area size. Each
curve represents a superlevel set threshold value between 0.5 and
5.0. (c) and (d) are the zoom-in views for (a) and (b), respectively.
Notice that the x-axes in (a) and (b) are based on log-scale, whereas
those in (c) and (d) are not. Statistics are computed on the Marine
Cloud dataset from Aug 1 to Aug 14, 2023.

The Land Cloud dataset exhibits more complex characteristics
and patterns of low-level clouds. Specifically, we can observe the
initiation and maturation process for shallow cumulus clouds at dif-
ferent times of the day due to the overland convection. The variation
of COD for low-level clouds has to be considered when choosing the
superlevel set thresholds. We perform parameter sensitivity analysis
for two time periods: 06:00 to 09:00 UTC for the morning and 09:05
to 15:00 UTC for the midday.
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Figure 3: (a) the accumulative proportion of cloud object number
density. (b) the accumulative proportion of cloud area size. Each
curve represents a superlevel set threshold value between 1.0 and
10.0. Statistics are computed on the Land Cloud dataset, including
the snapshots collected between 06:00 and 09:00 UTC for all 13
selected days between 2018 and 2019. Notice that the x-axes are
based on log-scale.

We test the threshold between 1.0 and 10.0 to perform a parameter
sensitivity analysis similar to the Marine Cloud dataset for the
morning data. Fig. 3 shows the accumulative proportion of cloud
object number density and cloud area coverage. The dotted lines
in Fig. 3(b) highlight a point on the curve for the threshold at 6.0,
indicating that less than 80% of the low cloudiness is due to cloud
clusters smaller than 50, 000 pixels. When the threshold is below
6.0, this percentage becomes lower. This observation indicates that
it may be difficult to identify small shallow cumulus clouds from the
large cloud cluster when the threshold is low. We further examine the
cloud detection results using different superlevel set thresholds. In
these results, we select the lowest threshold that reasonably separates
cloud objects. Fig. 4 shows an example of cloud detection results
with the threshold between 6.0 and 10.0. The COD field in the blue
box has lower COD values compared to the high-value area in the
yellow box. The area in the blue and yellow boxes is identified as a
single cloud object until the threshold reaches 9.0. Therefore, we
choose 9.0 as the threshold for this snapshot.

Figure 4: Individual cloud objects detected using superlevel set thresh-
olds between 6.0 and 10.0 for the COD field data (2nd row, 3rd column)
collected on May 1, 2018, at 07:00 UTC. The white numbers repre-
sent the superlevel set thresholds. Regions within the blue boxes and
yellow boxes are identified as a single cloud object until the superlevel
set threshold reaches 9.0.



Fig. 5 shows the cumulative distribution of cloud number density
and cloud area coverage for the midday data in Land Cloud. We
change the range of thresholds for testing to [3.0, 12.0] because we
expect to see shallow cumulus clouds in higher COD values during
midday. Specifically, the cloud area size distribution (see Fig. 5 right)
is sensitive to the superlevel set threshold below 6.0. We examine
the snapshots using the threshold from 6.0 to 12.0. Fig. 6 shows
an example COD field during the midday period, with a subset of
cloud detection results using the threshold between 8.0 and 12.0.
The COD field within the blue box in Fig. 6 has higher values on
the bottom left and lower values on the top right. 10.0 is the lowest
threshold value that separates these two regions as individual objects.
Therefore, we use 10.0 as the threshold for this snapshot.

We examine snapshots at 07:00, 08:50, 11:00, and 13:00 UTC for
each day in the Land Cloud dataset and determine the best threshold
for each snapshot. We summarize the decisions for snapshots at
07:00 and 08:50 UTC for the morning data and those for snapshots
at 11:00 and 13:00 UTC for the midday data. The final threshold
decision is made by choosing the most popular threshold for the
time period.
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Figure 5: (a) the accumulative proportion of cloud object number
density. (b) the accumulative proportion of cloud area size. Each
curve represents a superlevel set threshold value between 1.0 and
10.0. Statistics are computed on the Land Cloud dataset, including
the snapshots collected between 09:05 and 15:00 for all 13 selected

days between 2018 and 2019.
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Figure 6: Individual cloud objects using superlevel set thresholds
between 8.0 and 12.0 for the bottom right COD field data (2nd row,
3rd column) collected on May 1, 2018, at 11:00 UTC. The white

numbers represent the superlevel set thresholds.

Object simplification parameter tuning. We refer to the statistics
of cloud area size in Fig. 2 to determine the area-based simplification
level for the dataset of stratocumulus: by ignoring cloud objects
smaller than 10 pixels, we can get rid of more than 70% of cloud
objects from the field (see Fig. 2(c)), and still cover more than 97%
of the total cloud area (see Fig. 2(d)), regardless of the superlevel set
threshold. Therefore, we choose the area-based simplification level
to be 10 pixels.

D.2 Cloud Tracking

Parameter tuning for pFGW distance. Following [8], to compute
the pFGW distance, we need to tune the two parameters: « and
m. Recall that « is the parameter balancing the weight between the
intrinsic information of merge trees and the extrinsic information
of nodes. o — 0 leads to a high weight on keeping the geometric
locations of nodes in tracking, whereas a — 1 leads to a high
weight on keeping the merge tree structure. o = 0.5 puts the same
weight on both parts. We attempt o € {0.2, 0.4}, putting a higher
weight on preserving the geometric location of nodes while still
considering the intrinsic merge tree structure. We choose the better
results between the two choices of « for demonstration.

The parameter m determines the amount of probability mass
to be preserved in the partial optimal transport, allowing feature
appearance and disappearance. We follow a similar strategy to [8]
to adjust the parameter m. In particular, we determine the threshold
for the maximum possible distance between matched nodes from
adjacent time steps (we discuss this option in the next paragraph).
Then, we search for the highest m value such that no matching
between nodes farther than the above threshold exists. We want
to keep the highest probability in the coupling without introducing
obviously incorrect matching.

We noticed that the better choice of « is 0.4 for Marine Cloud.
This is because for stratocumulus, there are often a few anchor points
inside the cloud objects due to their relatively large area. Using a
higher « value to emphasize the locality of anchor points within
each cloud object is beneficial. On the other hand, the better o for
Land Cloud is 0.2. This is because many tiny cloud objects in
Land Cloud only have one anchor point, which means that there
is less anchor point locality information than Marine Cloud. It is
necessary to add the weight of geometric location information in the
loss function to obtain accurate tracking.

Maximum matched distance. Both tobac and pFGW have a
parameter of the maximum distance between two matched clouds
at adjacent time steps. For tobac, the parameter helps restrain the
size of the neighborhood from searching within at the next time
step. For pFGW, this parameter helps determine the parameter m,
the probability mass (i.e., the amount of “goods”) to be preserved
in the partial optimal transport (see Sec. 5.3). Because the time
interval between snapshots and the domain area is consistent for
a dataset, we transform this threshold into a limit of the average
speed of clouds. For the Marine Cloud dataset, we use the distance
threshold corresponding to an average moving speed at 20m /s as
the highest translation speed of feature points from tobac, following
the analysis in [10]. For anchor points from pFGW, this average
speed threshold is 30m /s because the anchor point position is more
sensitive to COD values. For the Land Cloud dataset, we increase
the average speed threshold 40m /s to adapt to more complex low-
level cloud changes for both approaches.

Intra-cloud anchor point simplification. When there are too many
anchor points for a given cloud object, we reduce the number of
anchor points for computational efficiency. In particular, we remove
anchor points based on the area of their topological zones. For
example, two of the five cloud objects in Fig. 7(a) contain multi-
ple local maxima as anchor points (in red). We highlight the local
maxima with green and yellow circles, respectively, where the asso-
ciated topological zones of their adjacent edges fall below a specified
threshold. As we remove these local maxima and their pairing sad-
dles, we obtain the simplified subtrees inside each cloud object;
see Fig. 7(b). Subsequently, both cloud objects now contain one less
anchor point.

Anchor point simplification can be prone to instabilities. Al-
though persistence diagrams remain stable under Wasserstein and
Bottleneck distances, the critical points involved in the pairings
themselves may not exhibit such stability. For instance, in Fig. 7 (a),
the lower-left component features a persistence pairing between



a saddle point (shown in white) and a local maximum (in red,
marked with a green circle). A slight perturbation in the under-
lying scalar field could cause the saddle point to change its pairing
partner—potentially switching to the other local maximum (anchor
point) within the same component. In our framework, the user de-
fines a distance threshold to constrain anchor point movement. An-
chor points from consecutive time steps are not matched if their sep-
aration exceeds this threshold. This approach helps reduce, though
not entirely eliminate, the instability problem.

min [ Wl max

Figure 7: Left: a set of cloud objects enclosed by white contours;
each contains a subtree of the global merge tree. Local maxima
(a.k.a., anchor points) are in red, and saddles are in white. Right:
simplifying subtrees by removing the highlighted anchor points (inside
green or yellow circles) and their pairing saddles.

The threshold for intra-cloud simplification is determined based
on the merge tree size and the available computational resources.
Our framework computes the pFGW distance, which requires O (n?)
space and O(n?) time, where n denotes the (maximum) size of the
merge trees. However, the actual runtime is typically lower due
to the use of sparse matrix multiplication. To control merge tree
size, we progressively increase the threshold, eliminating anchor
points located on merge tree edges whose associated topological
zones fall below the threshold. This process continues until the tree
size is reduced to a manageable level. In practice, we increment the
topological zone area threshold by 5, starting from 0, until all merge
trees contain fewer than 5000 nodes. For the Marine Cloud dataset,
this threshold is set at 30 pixels; for the Land Cloud dataset, this
threshold is set at 5 for both the morning data and the midday data.
Strictness of matchings for cloud systems. In Sec. 5.4, we dis-
cussed the strategy to compute the matching between the cloud
system X € H; and the cloud system Y € H,;,1 using the optimal
coupling matrix. A matching between X and Y is valid if either
of the two conditions is satisfied: (1) the two cloud systems X and
Y are the mutual best match, or (2) their matching score S;(X,Y)
exceeds a threshold controlled by a parameter r; see Sec. 5.4 for de-
tails. The parameter  controls the strictness of the matching criteria.
When r is large (e.g., > 0.5), condition (2) is only met if condition
(1) is also fulfilled, rendering condition (2) effectively redundant.
On the other hand, when r is small (e.g., < 0.1), the matching
criteria may become overly permissive, increasing the risk of mis-
matches despite low matching scores. To determine an appropriate
r value, we conduct experiments using the pFGW framework with
r € {0.1,0.2,0.3} and evaluate the resulting trajectory statistics
shown in Fig. 8.

We first examine the trajectory timespan distributions with dif-
ferent choices of r using the histograms in Fig. 8 and the box plots
in Fig. 9 1st column, respectively. For the Marine Cloud dataset,
the histograms of timespan distributions in the 1st row of Fig. 8 are
similar. We only observe minor differences for trajectories with a
timespan of more than 300 minutes. However, in the box plots, the
trajectories with = 0.1 have a higher interquartile range of the
timespan than the ones with » = 0.2 and » = 0.3; see Fig. 9 1st row,
1st column.

For the Land Cloud dataset, the histograms reveal more no-
ticeable differences in the distributions of trajectory timespans;
see Fig. 8 2nd and 3rd rows. For example, when » = 0.3, the
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Figure 8: Distributions of trajectory timespans in log-scale for pFGW
tracking cloud systems with » € {0.1,0.2,0.3}. From top to bottom:
the Marine Cloud dataset (1st row), the Land Cloud dataset during
the morning (2nd row) and the midday (3rd row) period. Other experi-
mental settings are the same as in Sec. 6.4 and Sec. 6.5, respectively.
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Figure 9: Box plots showing the median (orange line), mean (green
triangle), and interquartile range (box boundary) of the distribution
for three topology-based tracking methods. From top to bottom: the
Marine Cloud dataset (1st row), the Land Cloud dataset during the
morning period (2nd row) and during the midday (3rd row).

tracking results contain fewer long-lived trajectories during the mid-
day, indicating that = 0.3 might be too high for the Land Cloud
dataset. Nonetheless, the overall statistics shown in the box plots
of the timespan distributions for the Land Cloud dataset (Fig. 9,



second and third rows, first column) remain largely similar. Chang-
ing the parameter r within the [0.1, 0.3] range does not change the
timespan distribution significantly.

We analyze the standard deviation of mean COD and the linearity
loss for trajectories that last for at least 45 minutes (three timesteps)
in the Marine Cloud dataset and 15 minutes (three timesteps) in the
Land Cloud dataset, respectively. For both datasets, both metrics
show similar distributions across all three experiments with different
r values; see Fig. 9 2nd and 3rd columns. For example, in the
Marine Cloud dataset, the average standard deviation of mean COD
(represented by green triangles in the second column of box plots
in Fig. 9) with » = 0.1 is only 0.51% higher than that with » = 0.3.
Similarly, the mean trajectory linearity loss with » = 0.1 is only
6.05% higher than that with » = 0.3.

Based on the above statistics, we argue that the pFGW tracking
result is not very sensitive to the threshold parameter r within the
[0.1,0.3] range. To highlight the advantage of pFGW in preserving
the trajectory timespan, we select r = 0.1 for the experiments in
Sec. 6.

D.3 Parameter Configuration for Comparative Analysis

For our comparative analysis, we report parameter configurations

for pFGW, tobac, and PyFLEXTRKR respectively.

We start with parameters that are shared by all three methods. For
all datasets, we use 8-way connectivity to search for neighboring
pixels when computing superlevel set components. For the Marine
Cloud dataset, we choose 2.0 as the single COD value threshold to
obtain superlevel set components; we use area-based simplification
and remove the cloud objects below 10 pixels. For the Land Cloud
dataset, we choose 9.0 as the COD value threshold for the morning
period (06:00-09:00 UTC) and 10.0 as the threshold for the midday
period (09:05-15:00 UTC); we do not simplify any cloud objects by

area size.

pFGW uses the following parameters. We use o« = 0.2 for
Land Cloud and oo = 0.4 for Marine Cloud to balance the weight
between intrinsic and extrinsic information. We adopt 30m/s for
the Marine Cloud dataset and 40m /s for the Land Cloud dataset
as the maximum average speed parameter. We search the parameter
m within the range of [0.6, 0.9] and choose the highest one where
the maximum distance between matched anchor points is below the
distance threshold derived from the maximum average speed.

We use the following additional parameters when running the
PyFLEXTRKR framework: We use superlevel set components as
cloud objects. For both datasets, the maximum number of objects
for a cloud object to correspond to in the next time step is 10. The
overlap percentage threshold is 30%. The maximum number of
clouds in the domain is 3000 for every time step. When a cloud
object splits, the minimum region overlap size for the main trajectory
to be assigned to is 3 pixels for Marine Cloud and 1 pixel for Land
Cloud.

Our experiments with tobac use the following additional param-
eters. During cloud detection, tobac uses the barycenter of the
bounding box of detected features as feature points of cloud objects.
The barycenter is weighted by the COD value minus the superlevel
set threshold. This barycenter strategy is labeled “weighted_dift” in
the tobac tool. When tracking feature points, tobac uses the “pre-
dict” method, which predicts the translation direction of the feature
based on its previous trajectory. Besides, tobac uses adaptive search
for the maximum size of a feature point set to locate the matching
feature in the next time step. The initial value of this parameter is 20,
and decays at a speed of 0.9 until it reaches 5. For the Marine Cloud
dataset, the maximum average speed of clouds between adjacent
snapshots is 20m/s. For the Land Cloud dataset, it is 40m/s.

D.4 Limitations of Comparative Analysis

There is a limitation in our comparative analysis: tobac employs
a multi-threshold cloud detection process while both pFGW and
PyFLEXTRKR uses a single threshold for cloud detection. This
multi-threshold detection process can find superlevel sets at different
thresholds and summarize all the detected cloud objects. A typical
use of this process is to break down a large cloud object into several
objects at a higher threshold. For a fair comparison, we use the same
threshold for cloud detection for all three methods.

E COMPARISON WITH TOPOLOGY-BASED TRACKING TOOLS

In this section, we provide additional details for comparing the
three topology-based tracking tools: pFGW, LWM, and MTW,
see Sec. 6.6 for an overview. We start with the experimental settings
for LWM and MTW in Appendix E.2. Next, we provide a qualita-
tive evaluation using the Marine Cloud dataset in Appendix E.3,
followed by a comparison using the Land Cloud dataset in Ap-
pendix E.4.

E.1 Description

LWM extends the Wasserstein distance between persistence dia-
grams by incorporating critical point locations. It aims to solve
a minimum-cost matching problem between persistence diagrams,
where the cost of matching is a linear combination of the Wasserstein
distance and the Euclidean distance between the matched critical
points. Additionally, the cost of adding or removing a persistence
pair is a linear combination of its persistence and the Euclidean
distance between its two critical points. In contrast, the MTW frame-
work extends the edit distance between merge trees by introducing
constraints. It computes the edit distance between branch decom-
position trees generated from merge trees, with the matching cost
based on the persistence of branches. However, this framework does
not consider geometric information when tracking features.

E.2 Experimental Settings

Preprocessing. We follow the same process in Sec. 5.1 and Sec. 5.2
to obtain the simplified merge trees of the COD fields. MTW directly
uses the simplified merge trees as the input. For LWM, we compute
the persistence-based branch decomposition to obtain the persistence
diagrams as the input.

Implementation. Both MTW and LWM are implemented as built-
in modules of the Topology Toolkit (TTK) [18]. We use the TTK
module for MTW computation. However, the TTK module for LWM
only accepts simplified scalar fields as the input, while we can only
obtain simplified merge trees (or persistence diagrams). Therefore,
we implement the LWM approach in-house by modifying the code
from the TTK module.

Parameter settings. For pFGW, we use an Euclidean distance
threshold at 28km for the Marine Cloud dataset, which corre-
sponds to an average speed of ~ 30m/s; see Appendix D.2 for a
discussion on parameter configurations. The parameter settings of
LWM focus on the weight balancing the Wasserstein distance be-
tween persistence pairs and the Euclidean distance between critical
points. We normalize the range of the two distances and set the
weight of the Euclidean distance to 1.0. We then gradually increase
the weight of the Wasserstein distance, denoted as 3, from 0 to as-
sess the impact of persistence information. For MTW, the parameter
€1 is a threshold to determine whether the saddles for two branches
on the tree can be swapped, whereas €2 and €3 are used to control
the persistence scaling during the transformation between branch
decomposition trees and merge trees. Due to the high complexity
and uncertainty [17] of the COD field, we have no prior knowledge
about persistence to tune these parameters. Instead, we follow the
recommended parameter setting from its original work [15].
Postprocessing. We compute the cloud system trajectories for LWM
and MTW using a postprocessing pipeline similar to that of pFGW.
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Figure 10: Tracking results of a region in the Marine Cloud dataset on Aug 1, 2023. From left to right: visualizations of COD fields, tracking results
for pFGW, LWM, and MTW, respectively. Red boxes highlight the area where pFGW and LWM have different tracking results for a cloud splitting
event (see Fig. 12 for zoom-in views). Cyan boxes highlight multiple areas where MTW generate incorrect correspondences for cloud systems.

First, we identify anchor points within the cloud system and deter-
mine matching scores based on the number of anchor point match-
ings. Then, we apply the algorithm described in Sec. 5.4 to extract
the main trajectories of the cloud systems.

Evaluation. We first compare the anchor point matching results
from all three topology-based approaches. Specifically, for LWM, we
report the results using 8 € {0.0,0.1,0.2} to examine the impact
of persistence diagram information on tracking. 8 = 0 means that
the cost function of LWM uses all geometric information. Increasing
[ adds the weight of the Wasserstein distance in the cost function.
When 5 = 1.0, we balance the weight between the Wasserstein
distance and the Euclidean distance in the cost function. In addition,
we evaluate the cloud tracking performance of the three approaches
by comparing the statistics of the metrics for cloud trajectories
described in Sec. 6.3.

E.3 Case Study: Marine Cloud Dataset

Anchor point matching. We examine the distribution of the Eu-
clidean distance between matched anchor points in Fig. 11. The left
histograms show that the distributions of Euclidean distances are
similar between pFGW and LWM, with some differences on the
right tail. The Euclidean distances between all matched points for
pFGW are below 28km. In comparison, there are matched nodes
in the results of LWM with 8 = 0 with the Euclidean distance
beyond 28km, which is less likely to happen due to physical con-
straints [10]. This is because the cost of matching points to the
diagonal is fixed by the saddle-maxima relation of the persistence
pair, losing the flexibility to adapt to what the application needs. As
the 8 value of LWM increases to 0.1 and then to 0.2, the number
of matched nodes with short Euclidean distances decreases, and the
number of faraway matched nodes increases; see Fig. 11 left. In
addition, in Fig. 11 right, the mean and median Euclidean distance
between matched nodes for LWM increases as (3 increases from 0
to 0.2. These observations indicate that adding the weight of the
Wasserstein distance does not benefit the anchor point tracking. In
contrast to LWM, pFGW uses the tree distance between anchor
points to encode the topological information, reflecting the locality
of anchor points within cloud objects. Such information is more
robust than the persistence diagram information when performing
feature-tracking tasks in such complex datasets. Among the three
approaches, MTW performs the worst. Without geometric location
information, MTW does not find many matchings between nearby
anchor points. The mean and median Euclidean distance between
matched anchor points is much higher than the other two methods;
see Fig. 11 right.

Cloud tracking. In Sec. 6.6, we have evaluated the anchor point
the statistics of cloud system trajectories using the three metrics
in Sec. 6.3. In this section, we examine the visualizations of tracking
results using the data from Aug 1, 2023. We check the transition
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Figure 11: Marine Cloud dataset: histograms (left) and box plots in
log-scale (right) for distributions of the Euclidean distances between
matched anchor points. The Euclidean distance threshold for pFGW
is 28km, as highlighted by the vertical dotted line in the histogram.

from 11:45 to 12:00 UTC.

During the transition, a splitting event occurs, as highlighted
by the red boxes in Fig. 10. All three methods have detected the
splitting event. However, pFGW and LWM demonstrate different
cloud system trajectories for this event.

A closer examination in the zoomed-in view in Fig. 12 reveals
that in the pFGW results, cloud system A at 11:45 is matched to
cloud system C' at 12:00, while cloud system B is identified as
newly formed after splitting from a larger green cloud system. This
matching is reasonable given the geometric proximity of A and C'.

In contrast, LWM matches cloud system A’ at 11:45 to B’ at
12:00 and considers cloud system C’ as newly formed. This re-
sults in a significant jump in the centroid location from A’ to B’,
increasing the linearity loss of the trajectory. Moreover, we do not
observe substantial changes in the COD fields in the corresponding
areas in Fig. 10. The matching between cloud system A’ and B’ is
likely a mismatch. Such errors in LWM can occur when the cost of
matching the anchor points in the cloud system B’ to the diagonal
(representing their “birth”) is higher than the cost of matching them
to other faraway anchor points.

On the other hand, MTW fails to track many cloud systems ac-
curately. The cyan boxes in Fig. 10 highlight multiple areas in
which MTW does not generate matchings between the two time
steps. This result shows that MTW performs the worst among the
three topology-based approaches for this cloud tracking task.

E.4 Case Study: Land Cloud Dataset

We provide the experimental results and statistical evaluations for
the three topology-based methods on the Land Cloud dataset.

Anchor point matching. Following the approach in Appendix E.3,
we evaluate the effect of persistence diagram information on track-
ing for LWM using 8 € {0.0,0.1,0.2}. The Euclidean distance
distributions between matched anchor points are presented in Fig. 14.
For pFGW, we include all matchings with nonzero probability in the
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Figure 12: Marine Cloud dataset: Zoom-in views for Fig. 10 red
boxes to demonstrate the trajectory differences between pFGW and
LWM. pFGW matches cloud system A to C, whereas LWM matches
A’ to B'.

distributions, whereas LWM and MTW provide one-to-one anchor
point matchings.

For both the morning and midday data, the Euclidean distance
distributions of pFGW and LWM results are similar. In particular,
for LWM (8 = 0), only a small fraction of matched anchor points
have distances greater than 12km; see Fig. 14 1st column. In contrast,
LWM with 8 = 0.1 and 8 = 0.2 generates fewer short-distance
matchings and more long-distance matchings between anchor points
compared to LWM with 5 = 0. This observation indicates that
B = 0 is the optimal choice for LWM. Increasing the weight of
the Wasserstein distance in the cost function does not improve the
accuracy of cloud tracking.

We notice that the mean and median Euclidean distances between
matched anchor points for LWM (8 = 0) are lower than those of
pFGW; see Fig. 14 2nd column. This is because pFGW results in-
clude more pairs of matched anchor points with Euclidean distances
close to 12km; see Fig. 14 1st column. However, pFGW results may
include low-probability anchor point matchings, whose influence
on the cloud system tracking results is minimal. Further evalua-
tion of cloud trajectory statistics is necessary for a comprehensive
comparison.

As with the Marine Cloud dataset, MTW performs the worst in

matching nearby anchor points for the Land Cloud dataset across
the morning and midday. The mean and median Euclidean distances
for matched anchor points using MTW are significantly higher than
the other two methods; see Fig. 14 2nd column.
Statistical evaluation. Fig. 15 presents the distribution of evaluated
metrics for the three topology-based approaches. For LWM, we fix
B = 0 because it performs the best for anchor point matching among
all choices of /3.

We first examine the trajectory timespan distribution. MTW
results exhibit the highest mean trajectory timespan for both the
morning and the midday data. Between the other two methods,
pFGW achieves a slightly higher mean trajectory timespan than
LWM for both the morning and midday periods; see Fig. 15 Ist
column.

Next, we check the standard deviation of the mean COD for
trajectories that last for at least 15 minutes (three time steps). All
three approaches have comparable distributions for this metric across
the morning and midday; see Fig. 15 2nd column.

For the trajectory linearity loss, MTW trajectories exhibit signif-
icantly higher loss than those from pFGW and LWM, indicating
frequent mismatches between distant cloud systems (Fig. 15 3rd col-
umn). Comparing pFGW against LWM, pFGW trajectories have a
lower mean linearity loss and interquartile range than LWM (Fig. 15
3rd column), indicating better preservation of linearity. Overall,
pFGW demonstrates the most reliable performance in maintaining
the linearity of cloud system trajectories among the three topology-

based approaches.

Cloud tracking. Lastly, we compare the cloud tracking results
on the Land Cloud dataset using visualizations for our case study.
We use the same set of data in Sec. 6.5 for evaluation. That is,
we examine the time transition from 08:30 to 08:35 UTC for the
morning data and from 12:05 to 12:10 UTC for the midday. New
cloud entities at 8:35 UTC and 12:10 UTC are colored in magenta,
which we use to evaluate the ability of each method to maintain
consistent cloud system tracking.

The tracking results are demonstrated in Fig. 13. During the
morning transition (1st and 2nd rows), small cloud systems emerge
near the center of the COD field. For this transition, pFGW and
LWM generate similar results in tracking these cloud systems; see the
2nd and 3rd columns of the first two rows. MTW, on the other hand,
identifies many small cloud systems as tracked from the previous
time step in the morning period. For example, in the 2nd row 4th
column of Fig. 13, many small cloud systems in the center of the
image are not colored in magenta, indicating that they are tracked
from other systems at the previous time step. This explains why
the mean and median timespans for MTW trajectories are high.
However, the tracking quality of the MTW results is undesirable.
We cannot find many color correspondences for these small cloud
systems, see the 1st and 2nd rows of the 4th column in Fig. 13. The
cloud system matching between the two time steps looks random.
In other words, MTW trajectories are unlikely to reflect the actual
cloud system movement.

In the Land Cloud dataset, the situation of random matching for
MTW occurs because the anchor points of the small cloud systems
tend to have their COD values (as well as the persistence of their
pairs) similar to the cloud detection threshold. MTW, relying on the
persistence information for critical point matching, tends to match
anchor points with similar persistence information. Consequently,
MTW tends to match these small cloud systems without considering
the geometric proximity.

The tracking results for the midday transition (cf. Fig. 13 3rd
and 4th rows) yield similar findings. Both pFGW and LWM pro-
duce visually comparable results, whereas MTW fails to track cloud
systems correctly. For example, MTW loses the trajectory for two
prominent cloud systems in Fig. 13 cyan boxes during the morn-
ing transition (see 1st and 2nd rows, 4th column) and in Fig. 13
red boxes during the midday transition (see 3rd and 4th rows, 4th
column), respectively. This further demonstrates the limitations of
MTW in tracking cloud systems.

F RUNTIME ANALYSIS OF CLOUD TRACKING TOOLS

We compare the runtime performance of the cloud-tracking methods
using the hardware configuration described in Appendix B. Runtime
for data transfer between modules, including loading and saving, is
omitted. For each method, we first review the computational steps
and then report runtimes for a set of instances from both the Marine
Cloud and Land Cloud datasets. All three methods are evaluated
on the same set of instances for comparison.
PFGW runtime. We begin by discussing the runtime of our pFGW
implementation. The process starts with computing the merge tree of
the scalar field using TTK [19], followed by intra-cloud critical point
simplification for each merge tree. We then construct the measure
network from the merge tree and compute the partial optimal trans-
port for anchor-point probabilistic matching. Finally, we aggregate
the anchor-point matches to obtain the cloud system trajectories.

For the Marine Cloud instances used in the runtime analysis,
the original merge tree contains on average 61,234 nodes, which is
reduced to 3,664 nodes after simplification. For the Land Cloud
dataset, the original merge tree has on average 15,334 nodes, reduced
to 3,900 after simplification. The breakdown of the average runtime
for our pFGW implementation is shown in Tab. 1.

Following Tab. 1, by approximating the number of comparisons as
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Figure 13: Tracking results of a region in the Land Cloud dataset on May 1, 2018. From left to right: visualizations of COD fields, tracking results
for pFGW, LWM, and MTW, respectively. The top two rows (resp. bottom two rows) are for the transition during the morning (resp. midday) period.
All new cloud entities in the 2nd and 4th rows are colored magenta; others are colored by correspondences. Cyan boxes and red boxes highlight
the areas where MTW fails to track cloud systems with noticeable areas in the morning and the midday, respectively.
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Figure 14: Land Cloud dataset: histograms (left) and box plots (right)
for distributions of the Euclidean distances between matched anchor
points. The Euclidean distance threshold for pFGW is 12km, as
highlighted by the vertical dotted line in the histograms. The top row
is for the morning data, and the bottom is for the midday data.

the number of instances (differing by at most one), the total runtime
of pFGW is 417.80 seconds per instance for Marine Cloud and
430.62 seconds per instance for Land Cloud.

tobac runtime. Second, we examine the runtime of tobac. The
first step identifies feature points in the scalar field, followed by
generating cloud object segmentations from these points. Finally,
tobac computes matches between cloud objects and links them into
trajectories. For the runtime analysis, the Marine Cloud instances
contain on average 515 cloud objects per instance, while the Land
Cloud instances contain 259 on average. The average runtime for
each phase of tobac is shown in Tab. 2. Similarly, we estimate the
number of comparisons by the number of instances, and the total
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Figure 15: Land Cloud dataset: box plots showing the median (or-
ange line), mean (green triangle), and interquartile range (box bound-
ary) of the distribution for three topology-based tracking methods. The
top row is for the morning data, whereas the bottom is for the midday
data. The boxes for the linearity loss for MTW exceed the plots’ upper
bound.

runtime for tobac is 3.85 sec per instance for Marine Cloud and
1.96 sec per instance for Land Cloud.
PyFLEXTRKR runtime. Finally, we evaluate the runtime of
PyFLEXTRKR. The first step segments the scalar field into su-
perlevel set components (i.e., cloud objects), followed by computing
region overlaps. The main trajectories are then constructed based on
the overlap areas. For the runtime analysis, Marine Cloud instances
contain on average 569 cloud objects, while Land Cloud instances
contain 356. The average runtimes for each step are summarized
in Tab. 3.

Therefore, by estimating the number of comparisons from the
number of instances, the average total runtime per instance is 22.97
seconds for Marine Cloud and 3.70 seconds for Land Cloud.



Step Marine Cloud Land Cloud
Computing merge trees 0.84 0.11
Intra-cloud simplification 2.96 0.88
Measure network initializa- 92.25 97.52
tion

Optimal transport 309.57" 330.13*
Generate cloud systems and 12.18 1.98

trajectories

Table 1: Average runtime breakdown of the pFGW implementation for
Marine Cloud and Land Cloud. Times are reported in seconds per
instance, except for optimal transport*, which is measured in seconds
per comparison.

Step Marine Cloud Land Cloud
Feature point detection 2.25 0.85
Cloud object segmentation 1.39 1.02
Cloud object tracking 0.21* 0.09*

Table 2: Average runtime breakdown of the tobac implementation
for Marine Cloud and Land Cloud. Times are reported in seconds
per instance, except for cloud object tracking*, which is measured in
seconds per comparison.

Step Marine Cloud Land Cloud
Cloud object segmentation 2.89 0.47
Region overlap computation 8.25" 1.18"
Generating cloud trajectories 11.83" 2.05°

Table 3: Average runtime breakdown of the method for Marine Cloud
and Land Cloud. Times are in seconds per instance, except steps
marked with *, which are measured per comparison.

Summary and discussion. In summary, pFGW exhibits a con-
siderably longer runtime than tobac and PyFLEXTRKR. This is
expected, as pPFGW solves the optimal matching problem over a
much larger set of nodes (anchor points), whereas tobac represents
each cloud object by a single centroid and PyFLEXTRKR restricts
matching to local neighborhoods based on regional overlap. In ad-
dition, both tobac and PyFLEXTRKR rely heavily on optimized
algorithms from Python libraries, while most of pFGW’s computa-
tion—apart from merge tree generation and matrix multiplication in
optimal transport—is implemented directly in Python with limited
use of external libraries. Significant performance improvements
could be achieved by reimplementing these components in C++ and
interfacing them with Python.

On the other hand, because the tracking problem naturally lends
itself to parallelization, all matching and per-instance computations
can be executed independently, with only the final trajectory connec-
tion requiring sequential processing. As a result, all three approaches
remain computationally viable for practical applications. Moving
forward, we aim to further optimize the optimal transport implemen-
tation to enhance runtime performance.
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