
Noname manuscript No.
(will be inserted by the editor)

On Homotopy Types of Vietoris–Rips Complexes of
Metric Gluings

Micha l Adamaszek · Henry Adams ·
Ellen Gasparovic · Maria Gommel ·
Emilie Purvine · Radmila Sazdanovic ·
Bei Wang · Yusu Wang · Lori
Ziegelmeier

Received: date / Accepted: date

Abstract We study Vietoris–Rips complexes of metric wedge sums and met-
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with a natural metric, is homotopy equivalent to the wedge sum of the Vietoris–
Rips complexes. We also provide generalizations for when two metric spaces
are glued together along a common isometric subset. As our main example, we
deduce the homotopy type of the Vietoris–Rips complex of two metric graphs
glued together along a sufficiently short path (when compared to lengths of
certain loops in the input graphs). As a result, we can describe the persistent
homology, in all homological dimensions, of the Vietoris–Rips complexes of a
wide class of metric graphs.

Keywords Vietoris–Rips and Čech complexes · metric space gluings and
wedge sums · metric graphs · persistent homology

1 Introduction

When equipped with a notion of similarity or distance, data can be thought
of as living in a metric space. Our goal is to characterize the homotopy types
of geometric thickenings of a wide class of metric spaces. In particular, we
consider metric spaces formed by gluing smaller metric spaces together in an
admissible fashion, as we will specify. We then use our results to characterize
the persistent homology of these spaces. Persistent homology is a central tool
in topological data analysis that captures complex interactions within a system
at multiple scales [14,22].

The geometric complexes of interest are Vietoris–Rips complexes, which
build a simplicial complex on top of a metric space with respect to a scale pa-
rameter r. We first study Vietoris–Rips complexes of metric wedge sums: given
two metric spaces X and Y with specified basepoints, the metric wedge sum
X∨Y is obtained by gluing X and Y together at the specified points, and then
extending the metrics. We show that the Vietoris–Rips complex of the met-
ric wedge sum is homotopy equivalent to the wedge sum of the Vietoris–Rips
complexes. We also provide generalizations for certain more general metric
gluings, namely, when two metric spaces are glued together along a common
isometric subset.

One common metric space that appears in applications such as road net-
works [1], brain functional networks [10], and the cosmic web [33] is a metric
graph, a structure where any two points of the graph (not only vertices) are
assigned a distance equal to the minimum length of a path from one point to
the other. In this way, a metric graph encodes the proximity data of a network
into the structure of a metric space. As a special case of our results, we show
that the Vietoris–Rips complex of two metric graphs glued together along a
sufficiently short common path is homotopy equivalent to the gluing of the
Vietoris–Rips complexes. This enables us to determine the homotopy types of
geometric thickenings of a large class of metric graphs, namely those that can
be constructed iteratively via simple gluings.

The motivation for using Vietoris–Rips complexes in the context of data
analysis is that under some assumptions, these complexes can recover topolog-
ical features of an unknown sample space underlying the data. Indeed, in [25,
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28], it is shown that if the underlying space M is a closed Riemannian mani-
fold, if the scale parameter r is sufficiently small compared to the injectivity
radius of M , and if a sample X is sufficiently close to M in the Gromov–
Hausdorff distance, then the Vietoris–Rips complex of the sample X at scale
r is homotopy equivalent to M . In this paper, we identify the homotopy types
of Vietoris–Rips complexes of certain metric graphs at all scale parameters r,
not just at sufficiently small scales.

Our paper builds on the authors’ prior work characterizing the 1-dimensional
intrinsic Čech and Vietoris–Rips persistence modules associated to an arbi-
trary metric graph. Indeed, [23] shows that the 1-dimensional intrinsic Čech
persistence diagram associated to a metric graph of genus g (i.e., the rank of the
1-dimensional homology of the graph) consists of the points

{(
0, `i4

)
: 1 ≤ i ≤ g

}
,

where `i corresponds to the length of the ith loop. In the case of the Vietoris–
Rips complex, the results hold with the minor change that the persistence
points are

{(
0, `i6

)
| 1 ≤ i ≤ g

}
. An extension of this work is [35], which stud-

ies the 1-dimensional persistence of geodesic spaces. In [3,4], the authors show
that the Vietoris–Rips or Čech complex of the circle obtains the homotopy
types of the circle, the 3-sphere, the 5-sphere, . . . , as the scale r increases,
giving the persistent homology in all dimensions of a metric graph consisting
of a single cycle. In this paper, we extend this to a larger class of graphs:
our results characterize the persistence profile, in any homological dimension,
of Vietoris–Rips complexes of metric graphs that can be iteratively built by
gluing trees and cycles together along short paths.

Our results on Vietoris–Rips complexes of metric gluings have implications
for future algorithm development along the line of “topological decomposi-
tions.” The computation time of homotopy, homology, and persistent homol-
ogy depend on the size of the simplicial complex. It would be interesting to
investigate if our Theorem 3 means that one can break a large metric graph
into smaller pieces, perform computations on the simplicial complex of each
piece, and then subsequently reassemble the results together. This has the
potential to use less time and memory.

Outline. Section 2 introduces the necessary background and notation. Our
main results on the Vietoris–Rips complexes of metric wedge sums and metric
gluings are established in Section 3. In addition to proving homotopy equiva-
lence in the wedge sum case, we show that the persistence module of the wedge
sum of the complexes is isomorphic to the persistence module of the complex
for the wedge sum. We develop the necessary machinery in the case of arbi-
trary metric spaces in order to prove that the Vietoris–Rips complex of metric
graphs glued together along a sufficiently short path is homotopy equivalent
to the union of the Vietoris–Rips complexes. In Section 4, we describe fami-
lies of metric graphs to which our results apply and furthermore discuss those
that we cannot yet characterize. In Section 5, we describe Vietoris–Rips com-
plexes of gluings of subsets of product spaces, equipped with the supremum
metric. We conclude in Section 6 with a discussion of our overarching goal
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of characterizing the persistent homology profiles of large families of metric
graphs.

An extended abstract of the present paper previously appeared as a confer-
ence paper [5]. The current paper contains the following extensions beyond [5].
We extend [5, Lemma 2] from joins over a single simplex to joins over a col-
lapsible subcomplex in Lemma 3. Lemma 4 is a more general extension of [5,
Lemma 3] when passing from gluings of finite metric spaces to infinite ones.
We also include the proofs of some corollaries and propositions that were given
without proof in the conference version of this paper. Theorem 2 extends [5,
Theorem 8]. As pointed out by Wojciech Chachólski, Alvin Jin, Martina Sco-
lamiero, and Francesca Tombari, [5, Corollary 9] is incorrect as stated. We
describe their counterexample in Appendix A. This corollary was previously
used in proving Theorem 10 of [5]. However, we now remove the dependence
on this incorrect result in Theorem 3, proving a stronger result than in [5,
Theorem 10]. This has implications for further classes of metric graph gluings
as discussed in Section 4. We also include a more thorough discussion of glu-
ings with the Čech complex. Finally, Section 5, on gluings of spaces using the
supremum metric, is entirely new.

2 Background

In this section, we recall the relevant background in the settings of simplicial
complexes and metric spaces, including metric graphs. For a more compre-
hensive introduction of related concepts from algebraic topology, we refer the
reader to [24], and to [26] and [22] for a combinatorial and computational
treatment, respectively.

Simplicial complexes. An abstract simplicial complex K is a collection of
finite subsets of some (possibly infinite) vertex set V = V (K), such that if σ ∈
K and τ ⊆ σ, then τ ∈ K. In this paper, we use the same symbol K to denote
both the abstract simplicial complex and its geometric realization. For V ′ ⊆ V ,
we let K[V ′] denote the induced simplicial complex on the vertex subset V ′.
The join of two disjoint simplices σ = {x0, · · · , xn} and τ = {y0, · · · , ym}
is the simplex σ ∪ τ := {x0, · · · , xn, y0, · · · , ym}. If K and L are simplicial
complexes with disjoint vertex sets V (K) and V (L), then their join K ∗ L
is the simplicial complex whose vertex set is V (K) ∪ V (L), and whose set of
simplices is K ∗ L = {σK ∪ σL | σK ∈ K and σL ∈ L} [26, Definition 2.16].

By an abuse of notation, a simplex S ∈ K can be considered as either a
single simplex, or as a simplicial complex {S′ | S′ ⊆ S} with all subsets as
faces. When taking joins, we use ∪ to denote that the result is a simplex, and
we use ∗ to denote that the result is a simplicial complex. For example, for
a ∈ V (K) a vertex and S ∈ K a simplex, we use the notation a∪S := {a}∪S
to denote the simplex formed by adding vertex a to S. We instead use a∗S :=
{S′, a∪S′ | S′ ⊆ S} to denote the associated simplicial complex. Similarly, for
two simplices σ, S ∈ K, we use σ ∪ S to denote a simplex, and we instead use
σ∗S := {σ′∪S′ | σ′ ⊆ σ, S′ ⊆ S} to denote the associated simplicial complex.
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For S a simplex we let Ṡ be the boundary simplicial complex Ṡ = {S′ | S′ ( S},
and therefore a∗Ṡ := {S′, a∪S′ | S′ ( S} and σ∗Ṡ := {σ′∪S′ | σ′ ⊆ σ, S′ ( S}
are simplicial complexes.

A simplicial complexK is equipped with the topology of a CW-complex [24]:
a subset of the geometric realization of K is closed if and only if its intersection
with each m-dimensional skeleton (i.e., the union of all simplices of dimension
at most m) is closed.

Simplicial collapse. Recall that if τ is a face of a simplex σ, then σ is said to
be a coface of τ . Given a simplicial complex K and a maximal simplex σ ∈ K
(i.e., σ is not the face of any other simplex in K), we say that a face τ ( σ is a
free face of σ if σ is the unique maximal coface of τ in K. A simplicial collapse
of K with respect to a pair (τ, σ), where τ is a free face of σ, is the removal
of all simplices ρ such that τ ⊆ ρ ⊆ σ. If dim(σ) = dim(τ) + 1 then this
is an elementary simplicial collapse. If L is obtained from a finite simplicial
complex K via a sequence of simplicial collapses, then the inclusion L ↪→ K is
a homotopy equivalence [26, Proposition 6.14] (which is slightly stronger than
only saying L is homotopy equivalent to K, denoted L ' K).

Metric spaces. Let (X, d) be a metric space, where X is a set equipped
with a distance function d. Let B(x, r) := {y ∈ X | d(x, y) ≤ r} denote
the closed ball with center x ∈ X and radius r ≥ 0. The diameter of X
is diam(X) = sup{d(x, x′) | x, x′ ∈ X}. A submetric space of X is any set
X ′ ⊆ X with its distance function defined by restricting d to X ′ ×X ′.

Vietoris–Rips and Čech complexes. We consider two types of simplicial
complexes constructed from a metric space (X, d). These constructions depend
on the choice of a scale parameter r ≥ 0. First, the Vietoris–Rips complex of
X at scale r ≥ 0 consists of all finite subsets of diameter at most r, that is,
VR(X; r) = {finite σ ⊆ X | diam(σ) ≤ r}. Second, for X a submetric space of
X ′, we define the ambient Čech complex with vertex setX as Čech(X,X ′; r) :=
{finite σ ⊆ X | ∃ x′ ∈ X ′ with d(x, x′) ≤ r ∀ x ∈ σ}. The set X is sometimes
called the set of “landmarks”, and X ′ is called the set of “witnesses” [19]. This
complex can equivalently be defined as the nerve of the balls BX′(x, r) in X ′

that are centered at points x ∈ X, that is, Čech(X,X ′; r) = {finite σ ⊆ X |⋂
x∈σ BX′(x, r) 6= ∅}. When X = X ′, we denote the (intrinsic) Čech complex

of X as Čech(X; r) = Čech(X,X; r). Alternatively, the Čech complex can
be defined with an open ball convention, and the Vietoris–Rips complex can
be defined as VR(X; r) = {finite σ ⊆ X | diam(σ) < r}. Unless otherwise
stated, all of our results hold for both the open and closed convention for
Čech complexes, as well as for both the < and ≤ convention on Vietoris–Rips
complexes.

Persistent homology. For k a field, for i ≥ 0 a homological dimension, and
for Y a filtered topological space, we denote the persistent homology (or per-
sistence) module of Y by PHi(Y ; k). Persistence modules form a category [18,
Section 2.3], where morphisms are given by commutative diagrams.
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Gluings of topological spaces. Let X and Y be two topological spaces that
share a common subset A = X ∩ Y . The gluing space X ∪A Y is formed by
gluing X to Y along their common subspace A. More formally, let ιX : A→ X
and ιY : A → Y denote the inclusion maps. Then the gluing space X ∪A Y
is the quotient space of the disjoint union X t Y under the identification
ιX(a) ∼ ιY (a) for all a ∈ A. In particular, for X and Y simplicial complexes
and A a common subcomplex, the gluing X ∪A Y is obtained by identifying
common faces and is itself a simplicial complex.

Gluings of metric spaces. Following Definition 5.23 in [12], we define a way
to glue two metric spaces along a closed subspace. Let X and Y be arbitrary
metric spaces with closed subspaces AX ⊆ X and AY ⊆ Y . Let A be a
metric space with isometric embeddings ιX : A→ AX and ιY : A→ AY . Let
X∪AY denote the quotient of the disjoint union of X and Y by the equivalence
between AX and AY , i.e., X ∪A Y = X t Y/{ιX(a) ∼ ιY (a) | a ∈ A}. Then
X ∪A Y is the gluing of X and Y along A. We define a metric on X ∪A Y ,
which extends the metrics on X and Y :

dX∪AY (s, t) =


dX(s, t) if s, t ∈ X
dY (s, t) if s, t ∈ Y
infa∈A dX(s, ιX(a)) + dY (ιY (a), t) if s ∈ X, t ∈ Y.

Lemma 5.24 of [12] shows that the gluing (X ∪A Y, dX∪AY ) of two metric
spaces along common isometric closed subsets is itself a metric space. In this
paper all of our metric gluings will be done in the case where X ∩ Y = A and
both maps ιX and ιY are identity maps. This definition of gluing metric spaces
agrees with that of gluing their respective underlying topological spaces, with
the standard metric ball topology.

Pointed metric space and wedge sum. A pointed metric space is a metric
space (X, dX) with a distinguished basepoint bX ∈ X. In the notation of metric
gluings, given two pointed metric spaces (X, dX) and (Y, dY ), let X ∨ Y =
X ∪A Y where AX = {bX} and AY = {bY }; we also refer to X ∨ Y as the
wedge sum of X and Y . Then the gluing metric on X ∨ Y is

dX∨Y (s, t) =


dX(s, t) if s, t ∈ X
dY (s, t) if s, t ∈ Y
dX(s, bX) + dY (bY , t) if s ∈ X, t ∈ Y.

Metric graphs. A graph G consists of a set V = {vi}i∈I of vertices and
a set E = {ej}j∈J of edges connecting the vertices (with index sets I and
J , respectively). A graph G is a metric graph if each edge ej is assigned a
positive finite length lj [12,13,27]. Under mild hypotheses1, the graph G can
be equipped with a natural metric dG: the distance between any two points

1 For every vertex, the lengths of the edges incident to that vertex are bounded away from
zero [12, Section 1.9].
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x and y (not necessarily vertices) in the metric graph is the infimum of the
lengths of all paths between them.

Loops of a metric graph. Let S1 be the circle. A loop (or cycle) of a metric
graph G is a continuous injective map c : S1 → G. We also use the word
loop to refer to the image of this map. Intuitively, elements of the singular
1-dimensional homology of G may be represented by collections of loops in
G [24]. The length of a loop is the length of the image of the map c.

3 Homotopy equivalences for metric gluings

3.1 Homotopy lemmas for simplicial complexes

In this section, we present a series of lemmas that will be vital to our study
of homotopy equivalences of simplicial complexes. We begin with a lemma
proved by Barmak and Minian [9] regarding a sequence of elementary simplicial
collapses between two simplicial complexes (Lemma 1). We then generalize this
lemma in order to use it in the case where the simplicial collapses need not
be elementary (Lemma 3). While these first few lemmas are relevant in the
context of finite metric spaces, Lemma 4 and Corollary 1 will be useful when
passing to arbitrary metric spaces. This set of lemmas will later allow us to
show that a complex built on a gluing is homotopy equivalent to the gluing of
the complexes.

Lemma 1 (Lemma 3.9 from [9]) Let L be a subcomplex of a finite simplicial
complex K. Let T be a set of simplices of K which are not in L, and let a be
a vertex of L which is contained in no simplex of T , but such that a ∪ S is a
simplex of K for every S ∈ T . Finally, suppose that K = L∪

⋃
S∈T {S, a∪S}.

Then K is homotopy equivalent to L via a sequence of elementary simplicial
collapses.

In [9], Barmak and Minian observe that there is an elementary simplicial
collapse from K to L if and only if there is a simplex S of K and a vertex a
of L not in S such that K = L ∪ {S, a ∪ S} and L ∩ (a ∗ S) = a ∗ Ṡ, where
Ṡ denotes the boundary of S. Indeed, S is the free face of the elementary
simplicial collapse, and the fact that a ∪ S is the unique maximal coface of S
follows from L ∩ (a ∗ S) = a ∗ Ṡ (which implies the intersection of L with S is
the boundary of S). See Figure 1 (left) for an illustration.

It is not difficult to show that Barmak and Minian’s observation can be
made more general. In fact, there is a simplicial collapse from K to L if there
is a simplex S of K and another simplex σ of L, disjoint from S, such that
K = L ∪ {τ : S ⊆ τ ⊆ σ ∪ S} and L ∩ (σ ∗ S) = σ ∗ Ṡ. Indeed, S is again
the free face of the simplicial collapse, and the fact that σ ∪ S is the unique
maximal coface of S in K follows from L ∩ (σ ∗ S) = σ ∗ Ṡ (which implies the
intersection of L with S is the boundary of S). See Figure 1 (middle) for an
illustration.
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Fig. 1: From left to right: examples of simplicial collapses when T = {S} for
Lemma 1, Lemma 2, and Lemma 3.

Lemma 2 (Generalization of Lemma 1) Let L be a subcomplex of a finite
simplicial complex K, and let σ be a simplex in L. Suppose T is a set of
simplices of K which are not in L and which are disjoint from σ, but such
that σ ∪ S is a simplex of K for every S ∈ T . Finally, suppose K = L ∪⋃
{S∈T}{τ | S ⊆ τ ⊆ σ ∪ S}. Then K is homotopy equivalent to L via a

sequence of simplicial collapses.

Proof We mimic the proof of Lemma 3.9 in [9], except that we perform a
sequence of simplicial collapses rather than elementary simplicial collapses.
Order the elements S1, S2, . . . , Sn of T in such a way that for every i, j with

i ≤ j, we have |Si| ≤ |Sj |. Define Ki = L ∪
⋃

i
j=1{τ | Sj ⊆ τ ⊆ σ ∪ Sj} for

0 ≤ i ≤ n.
Our next goal is to show that Ki−1 ∩ (σ ∗ Si) = σ ∗ Ṡi. It suffices to show

that for an arbitrary S ( Si (i.e. S ∈ Ṡi), we have σ ∪ S ∈ Ki−1. We consider
two cases. If S ∈ T , then σ ∪S ∈ Ki−1 since |S| < |Si|. If S /∈ T , then σ ∪S is
in L ⊆ Ki−1. This proves that Ki−1∩(σ∗Si) = σ∗Ṡi, and so by the paragraph
prior to the statement of the lemma Si is the free face of a simplicial collapse
from Ki to Ki−1. Then we are done since K = Kn and L = K0.

We will use Lemma 2 in the proof of Theorem 1. One further generalization,
Lemma 3, is needed for the proof of the more general Theorem 2.

Remark 1 Let L be a simplicial complex, let Σ be a subcomplex of L that
is collapsible, and let u be a vertex not in L. We claim that the space K =
L ∪ (Σ ∗ u) = L ∪

⋃
σ∈Σ{σ ∪ u} is homotopy equivalent to L. Indeed, since Σ

is collapsible, let

σ0 ↘ σ1, σ2 ↘ σ3, . . . , σ2i ↘ σ2i+1, . . . , σ2k ↘ σ2k+1

be a sequence of simplicial collapses from Σ down to a single vertex v. Here,
σ2i ↘ σ2i+1 indicates that σ2i is a free face of σ2i+1, and that all simplices
τ with σ2i ⊆ τ ⊆ σ2i+1 are removed from Σ via a (possibly non-elementary)
simplicial collapse. Then in K we can perform the sequence of simplicial col-
lapses

σ0 ∪ {u} ↘ σ1 ∪ {u}, . . . , σ2k ∪ {u} ↘ σ2k+1 ∪ {u}, {u} ↘ {v, u}



On Homotopy Types of Vietoris–Rips Complexes of Metric Gluings 9

giving a simplicial collapse from K down to L. Indeed, σ2i ∪ {u} is a free face
of σ2i+1 ∪ {u} in the relevant stage of the collapse since σ2i is a free face of
σ2i+1 in the collapse of Σ. Furthermore, once these collapses have been made,
{u} becomes a free face of {v, u} (and thus we have the last simplicial collapse
{u} ↘ {v, u} in the sequence above). Once all simplices containing u have
been removed, we have collapsed from K down to L.

We generalize the above remark in the following lemma. See Figure 1 (right)
for an illustration.

Lemma 3 Let L be a subcomplex of a finite simplicial complex K, and suppose
Σ is a subcomplex of L that is collapsible. Let T be a set of simplices of K that
are not in L and that are disjoint from Σ, but such that σ ∪ S is a simplex of
K for every S ∈ T and σ ∈ Σ. Finally, suppose K = L∪

⋃
σ∈Σ

⋃
S∈T {τ | S ⊆

τ ⊆ σ ∪ S}. Then K is homotopy equivalent to L via a sequence of simplicial
collapses.

Proof We begin with the case when T = {S} consists of a single simplex S.
In this case, the condition K = L∪

⋃
σ∈Σ{τ | S ⊆ τ ⊆ σ ∪ S} is equivalent to

saying that Σ∗Ṡ is a subcomplex of L and K = L∪(Σ∗S). The same argument
as in the remark above holds; however, note that we collapse Σ ∗S ⊆ K down
to Σ ∗ Ṡ ⊆ L, rather than down to Σ. In particular, since Σ is collapsible, let

σ0 ↘ σ1, σ2 ↘ σ3, . . . , σ2k ↘ σ2k+1

be a sequence of simplicial collapses from Σ down to a single vertex v. Then
in K we can perform the sequence of simplicial collapses

σ0 ∪ S ↘ σ1 ∪ S, σ2 ∪ S ↘ σ3 ∪ S, . . . , σ2k ∪ S ↘ σ2k+1 ∪ S, S ↘ {v} ∪ S

yielding a simplicial collapse from K down to L. Indeed, σ2i ∪ S is a free face
of σ2i+1 ∪ S in the relevant stage of the collapse since σ2i is a free face of
σ2i+1 in the collapse of Σ. Furthermore, once these collapses have been made,
S becomes a free face of {v} ∪ S and thus we can perform simplicial collapse
S ↘ {v} ∪ S. Now that all simplices containing all of S have been removed,
we have collapsed from K down to L.

We move to the general setting where T may consist of more than a single
simplex. Order the elements S1, S2, . . . , Sn of T in such a way that for every
i, j with i ≤ j, we have |Si| ≤ |Sj |. Define Ki = L∪

⋃
σ∈Σ

⋃
i
j=1{τ | Sj ⊆ τ ⊆

σ ∪ Sj} for 0 ≤ i ≤ n. Our next goal is to show that Ki−1 ∩ (Σ ∗ Si) = Σ ∗ Ṡi.
It suffices to show that for an arbitrary S ( Si, we have σ ∪ S ∈ Ki−1 for all
σ ∈ Σ. We consider two cases. If S ∈ T , then σ ∪ S ∈ Ki−1 for all σ ∈ Σ
since |S| < |Si|. If S /∈ T , then σ ∪ S is in L ⊆ Ki−1 for all σ ∈ Σ. This
proves that Ki−1 ∩ (Σ ∗ Si) = Σ ∗ Ṡi, and so Ki simplicially collapses down
onto Ki−1 by the special case in the prior paragraph. This completes the proof
since K = Kn and L = K0.
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The next lemma will be useful when passing from gluings of finite metric
spaces to gluings of arbitrary metric spaces. Let π0(Y ) denote the set of path-
connected components of a topological space Y .

Lemma 4 Let g : L→ K be a simplicial map between (possibly infinite) sim-
plicial complexes. Let the vertex set of L be V , and let the vertex set of K be
W . Suppose that for every finite V0 ⊆ V and finite W0 ⊆ W , there exists a
finite subset V1 with V0 ⊆ V1 ⊆ V and W0 ⊆ g(V1) ⊆W such that the induced
map g1 : L[V1] → K[g(V1)] is a homotopy equivalence. Then g : L → K is a
homotopy equivalence.

Proof We will use a compactness argument to show that the induced mapping
on homotopy groups g∗ : πk(L, b)→ πk(K, g(b)) is an isomorphism for all k ≥ 0
and for any basepoint b in the geometric realization of L. The conclusion then
follows from Whitehead’s theorem [24, Theorem 4.5].

First, suppose we have a based map f : Sk → K where Sk is the k-
dimensional sphere. Since f is continuous and Sk is compact, it follows that
f(Sk) is compact in K. Then by [24, Proposition A.1] we know that f(Sk) is
contained in a finite subcomplex of K. Therefore, there exists a finite subset
W0 ⊆ W so that f factors through K[W0] ⊆ K. By assumption, there exists
a finite subset V1 with V1 ⊆ V and W0 ⊆ g(V1) ⊆ W such that the map
g1 : L[V1] → K[g(V1)] is a homotopy equivalence. Thus, we can find a based

map f̃ : Sk → L[V1] such that [g1f̃ ] = [f ] ∈ πk(K[g(V1)], g(b)) and hence

[gf̃ ] = [f ] ∈ πk(K, g(b)). This proves that g∗ is surjective.

Next, suppose that f : Sk → L is a based map such that gf : Sk → K
is null-homotopic. Let F : Bk+1 → K be a null-homotopy between gf and
the constant map, where Bk+1 is the (k + 1)-dimensional ball. By compact-
ness of Sk and Bk+1, we can find finite subsets V0 ⊆ V and W0 ⊆ W such
that f factors through L[V0] and F factors through K[W0]. By assumption,
there exists a finite subset V1 with V0 ⊆ V1 ⊆ V and W0 ⊆ g(V1) ⊆ W
such that the map g1 : L[V1] → K[g(V1)] is a homotopy equivalence. Note
that g1f : Sk → K[g(V1)] is null-homotopic via F , and since the map g1 is
a homotopy equivalence, it follows that f is null-homotopic, and thus g∗ is
injective.

By taking g : L→ K to be the inclusion of a subcomplex L into a simplicial
complex K on the same vertex set, we obtain the following corollary. This
corollary will be the version we most frequently use when passing from wedge
sums or gluings of finite metric spaces to wedge sums or gluings of arbitrary
metric spaces. However, Lemma 4 in its full generality is needed in Section 5.

Corollary 1 Let K be a (possibly infinite) simplicial complex with vertex set
V , and let L be a subcomplex also with vertex set V . Suppose that for every
finite V0 ⊆ V , there exists a finite subset V1 with V0 ⊆ V1 ⊆ V such that the
inclusion L[V1] ↪→ K[V1] is a homotopy equivalence. Then the inclusion map
ι : L ↪→ K is a homotopy equivalence.
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Proof The hypothesis in Lemma 4 about the existence of the subset V1 follows
from the analogous hypothesis in Corollary 1. Indeed, choose V1 in Corollary 1
to be the union of V0 and W0, which is in V since K and L have the same
vertex sets, in order to obtain a set V1 = ι(V1) satisfying the hypothesis of
Lemma 4.

3.2 Vietoris–Rips and Čech complexes of wedge sums

As a warm-up, we first show in this subsection that the Vietoris–Rips complex
of a metric wedge sum (i.e., gluing along a single point) is homotopy equiva-
lent to the wedge sum of the Vietoris–Rips complexes. In the next subsection
we extend the wedge sum results to gluings of metric spaces which intersect
in more than a single point in Theorems 1 and 2. Then, in Subsection 3.4,
Proposition 1 will be extended in Theorem 3 to gluings of metric graphs along
short paths. Intuitively, such results allow us to characterize the topology of a
bigger space via the topology of smaller individual pieces.

Given pointed metric spaces X and Y , we use the symbol b ∈ X ∨ Y
to denote the point corresponding to the identified distinguished basepoints
bX ∈ X and bY ∈ Y .

Proposition 1 For X and Y pointed metric spaces and r > 0, the inclusion
map VR(X; r) ∨VR(Y ; r) ↪→ VR(X ∨ Y ; r) is a homotopy equivalence.

Proof We first consider the case where X and Y are finite. We apply Lemma 1
with L = VR(X; r) ∨ VR(Y ; r), with K = VR(X ∨ Y ; r), with T = {σ ∈
K \ L | b /∈ σ}, and with basepoint b ∈ X ∨ Y serving the role as a. It is easy
to check the conditions on K, L, and T required by Lemma 1 are satisfied.
We now check the required conditions on vertex b. If σ ∈ T , then at least one
vertex of X \ {bX} and one vertex of Y \ {bY } are in σ. Hence diam(b∪σ) ≤ r
and b ∪ σ is a simplex of K. Since K = L ∪

⋃
σ∈T {σ, b ∪ σ} (by the definition

of T ), Lemma 1 implies L ' K.

Now let X and Y be arbitrary (possibly infinite) pointed metric spaces.
For finite subsets X0 ⊆ X and Y0 ⊆ Y with bX ∈ X0 and bY ∈ Y0, the finite
case guarantees that VR(X0; r) ∨ VR(Y0; r) ' VR(X0 ∨ Y0; r). Therefore, we
can apply Corollary 1 with L = VR(X; r)∨VR(Y ; r) and K = VR(X ∨ Y ; r).

Proposition 1, in the case of finite metric spaces, is also obtained in [29].

Corollary 2 Let X and Y be pointed metric spaces. For any homological di-
mension i ≥ 0 and field k, the persistence modules PHi(VR(X; r)∨VR(Y ; r); k)
and PHi(VR(X ∨ Y ; r); k) are isomorphic (whenever defined).

Proof For any r < r′ we have the following commutative diagram, where all
maps are inclusions and where the vertical maps are homotopy equivalences
by Proposition 1:
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VR(X; r) ∨VR(Y ; r) VR(X; r′) ∨VR(Y ; r′)

VR(X ∨ Y ; r) VR(X ∨ Y ; r′)

' '

Applying homology gives a commutative diagram of homology groups, where
the vertical maps are isomorphisms:

Hi(VR(X; r) ∨VR(Y ; r)) Hi(VR(X; r′) ∨VR(Y ; r′))

Hi(VR(X ∨ Y ; r)) Hi(VR(X ∨ Y ; r′))

∼= ∼=

It follows that PHi(VR(X; r) ∨ VR(Y ; r); k) and PHi(VR(X ∨ Y ; r); k) are
isomorphic, and therefore have identical persistence diagrams whenever they
are defined.2

We conclude this subsection with some remarks on the analogous results
for Čech complexes. For a submetric space X ⊆ X ′, let Čech(X,X ′; r) be the
ambient Čech complex with landmark set X and witness set X ′. Note that if
X ⊆ X ′ and Y ⊆ Y ′ are pointed with bX = bX′ and bY = bY ′ , then X ∨ Y is
a submetric space of X ′ ∨ Y ′.

Proposition 2 For X ⊆ X ′ and Y ⊆ Y ′ pointed metric spaces and r > 0,
the inclusion map Čech(X,X ′; r) ∨ Čech(Y, Y ′; r) ↪→ Čech(X ∨ Y,X ′ ∨ Y ′; r)
is a homotopy equivalence.

The proof proceeds similarly to the proof of Proposition 1.

Proof Let d be the metric on X ′ ∨Y ′, and let b denote the common basepoint
in X ∨Y and X ′∨Y ′. We first consider the case where X and Y are finite. We
apply Lemma 1 with L = Čech(X,X ′; r)∨ Čech(Y, Y ′; r), with K = Čech(X ∨
Y,X ′∨Y ′; r), and with T = {σ ∈ K\L | b /∈ σ}. Suppose σ ∈ T . If σ ⊆ X\{bX}
or σ ⊆ Y \{bY }, then σ ∈ L. Hence at least one vertex of each of X \{bX} and
Y \{bY }— say x and y, respectively — are in σ. Fix a point z ∈ ∩v∈σB(v, r).
It follows that d(b, z) ≤ max{d(x, z), d(y, z)} ≤ r. Thus, b ∪ σ is a simplex of
K. Since K = L ∪

⋃
σ∈T {σ, b ∪ σ}, Lemma 1 implies L ' K.

We now consider the case where X and Y are arbitrary. Note that for any
finite subsets X0 ⊆ X and Y0 ⊆ Y with bX ∈ X0 and bY ∈ Y0, the finite case
guarantees that Čech(X0, X

′; r)∨ Čech(Y0, Y
′; r) ' Čech(X0 ∨ Y0, X

′ ∨ Y ′; r).
Hence, we can apply Corollary 1 with L = Čech(X,X ′; r)∨ Čech(Y, Y ′; r) and
K = Čech(X ∨ Y,X ′ ∨ Y ′; r).

2 Not every persistence module with a real-valued filtration parameter has a correspond-
ing persistence diagram, but isomorphic persistence modules have identical persistence di-
agrams when they are defined. It follows from [19, Proposition 5.1] that if X is a totally
bounded metric space, one can define a persistence diagram for PHi(VR(X; r); k) and for
PHi(Čech(X,X′; r); k) (where X ⊆ X′).
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Corollary 3 For pointed metric spaces X ⊆ X ′ and Y ⊆ Y ′ as well as
for any homological dimension i ≥ 0 and field k, the persistence modules
PHi(Čech(X,X ′; r) ∨ Čech(Y, Y ′; r)) and PHi(Čech(X ∨ Y,X ′ ∨ Y ′; r)) are
isomorphic (whenever defined).

Proof The proof is the same as that for Corollary 2, except using Proposition 2
instead of Proposition 1.

3.3 Vietoris–Rips complexes of set-wise gluings

We now develop the machinery necessary to prove, in Theorem 3, that the
Vietoris–Rips complex of two metric graphs glued together along a sufficiently
short path is homotopy equivalent to the union of the Vietoris–Rips complexes.
First, we prove a more general result for arbitrary metric spaces that intersect
in a controllable way.

Theorem 1 Let X and Y be metric spaces with X ∩ Y = A, where A is a
closed subspace of X and Y , and let r > 0. Consider X∪AY , the metric gluing
of X and Y along the intersection A. Suppose that given any ∅ 6= SX ⊆ X \A
and ∅ 6= SY ⊆ Y \ A where diam(SX ∪ SY ) ≤ r, there is a unique maximal
nonempty subset σ ⊆ A such that diam(SX ∪ SY ∪ σ) ≤ r. Then the inclusion
VR(X; r) ∪VR(A;r) VR(Y ; r) ↪→ VR(X ∪A Y ; r) is a homotopy equivalence.
In particular, if VR(A; r) is contractible, then VR(X ∪A Y ; r) ' VR(X; r) ∨
VR(Y ; r).

Proof We first restrict our attention to the case when X and Y (and hence A)
are finite. Let n = |A|. Order the nonempty subsets σ1, σ2, . . . , σ2n−1 of A so
that for every i, j with i ≤ j, we have |σi| ≥ |σj |. For i = 1, 2, . . . , 2n − 1, let
Ti be the set of all simplices of the form SX ∪ SY such that:

– ∅ 6= SX ⊆ X \A and ∅ 6= SY ⊆ Y \A,
– diam(SX ∪ SY ) ≤ r, and
– σi is the (unique) maximal nonempty subset of A satisfying diam(SX ∪
SY ∪ σi) ≤ r.

It may certainly be the case that Ti is the empty set (for example if diam(σi) >
r); this is not a problem.
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Let L0 = VR(X; r) ∪VR(A;r) VR(Y ; r). We apply Lemma 2 repeatedly to
obtain

L0 'L0 ∪
⋃
S∈T1

{τ | S ⊆ τ ⊆ σ1 ∪ S} =: L1

'L1 ∪
⋃
S∈T2

{τ | S ⊆ τ ⊆ σ2 ∪ S} =: L2

...

'L2n−3 ∪
⋃

S∈T2n−2

{τ | S ⊆ τ ⊆ σ2n−2 ∪ S} =: L2n−2

'L2n−2 ∪
⋃

S∈T2n−1

{τ | S ⊆ τ ⊆ σ2n−1 ∪ S} =: L2n−1.

The fact that each Lj is a simplicial complex follows since if SX ∪ SY ∈ Tj
(hence diam(SX ∪ SY ∪ σj) ≤ r) and ∅ 6= S′X ⊆ SX and ∅ 6= S′Y ⊆ SY , then
there is some σi with σj ⊆ σi which is maximal with diam(S′X ∪S′Y ∪ σi) ≤ r.
By the ordering of the simplices given at the beginning of the proof, this imples
i ≤ j. For each j = 1, . . . , 2n − 1, we set K = Lj , L = Lj−1, T = Tj , and
σ = σj and apply Lemma 2 to get that Lj ' Lj−1 (this works even when
Tj = ∅, in which case Lj = Lj−1).

To complete the proof of the finite case it suffices to show L2n−1 = VR(X∪A
Y ; r). This is because any simplex τ ∈ VR(X ∪A Y ; r) \ L0 is necessarily of
the form τ = SX ∪ SY ∪ ρ, with ∅ 6= SX ⊆ X \A, with ∅ 6= SY ⊆ Y \A, with
ρ ⊆ A, and with diam(SX ∪SY ∪ρ) ≤ r. (Note that ρ could be the empty set.)
By the assumptions of the theorem, there exists a unique maximal non-empty
set σj ⊆ A such that diam(SX ∪ SY ∪ σj) ≤ r, and hence ρ ⊆ σj . Therefore
SX ∪ SY ∈ Tj , and τ will be added to Lj since SX ∪ SY ⊆ τ ⊆ SX ∪ SY ∪ σj .
Hence τ ∈ L2n−1 and so L2n−1 = VR(X ∪A Y ; r).

Now let X and Y be arbitrary metric spaces. Note that for any finite sub-
sets X0 ⊆ X and Y0 ⊆ Y with A0 = X0∩Y0 6= ∅, we have VR(X0; r)∪VR(A0;r)

VR(Y0; r) ' VR(X0 ∪A0
Y0; r) by the finite case. Hence we can apply Corol-

lary 1 with L = VR(X; r) ∪VR(A;r) VR(Y ; r) and K = VR(X ∪A Y ; r) to
complete the proof.

Remark 2 We remark that Theorem 1 remains true under the setting in which
X and Y are not metric spaces. Indeed, suppose that X and Y are equipped
with arbitrary nonnegative symmetric functions dX : X×X → R and dY : Y ×
Y → R with dX(x, x) = 0 for all x ∈ X. That is, perhaps dX does not satisfy
the triangle inequality, or possibly dX(x1, x2) = 0 for some distinct values
x1 6= x2, and similarly for dY .3 If A is a subset of X and Y (no “closure”
assumption is needed, as X ∪A Y need not be a metric space here), then we
can use the same formula as in Section 2 to define the nonnegative symmetric
function dX∪AY : (X ∪A Y ) × (X ∪A Y ) → R. We can define Vietoris–Rips

3 One might also call this a pseudosemimetric.
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complexes and diameters as before. The proof of Theorem 1 still goes through
unchanged.

Next, we provide a generalization of Theorem 1. While this generalized
result is not currently used to produce further results in gluing metric graphs,
we believe it may be useful to extend Theorem 3 to glue metric graphs beyond
a single path. In order to state the generalization, we need to define the concept
of a maximal valid set. Fix a parameter r > 0. Then, given ∅ 6= SX ⊆ X \ A
and ∅ 6= SY ⊆ Y \A, the maximal valid set with respect to SX and SY is the
collection of all nonempty finite sets σi ⊆ A satisfying diam(SX ∪SY ∪σi) ≤ r.
We denote it by ΣSX ,SY

:= {σ1, . . . , σm}. This implies that diam(σi) ≤ r, and
hence, σi is a simplex in VR(A; r). Moreover, if σ ∈ ΣSX ,SY

and τ ⊆ σ then
τ ∈ ΣSX ,SY

, and so the maximal valid set ΣSX ,SY
is a simplicial complex.

Theorem 2 Let X and Y be metric spaces with X ∩ Y = A, where A is a
closed subspace of X and Y , and let r > 0. Consider X ∪A Y , the metric
gluing of X and Y along the intersection A. Suppose that given any ∅ 6= SX ⊆
X \ A and ∅ 6= SY ⊆ Y \ A where diam(SX ∪ SY ) ≤ r, its maximal valid set
ΣSX ,SY

is a (non-empty) collapsible simplicial complex. Then the inclusion
VR(X; r) ∪VR(A;r) VR(Y ; r) ↪→ VR(X ∪A Y ; r) is a homotopy equivalence.
In particular, if VR(A; r) is contractible, then VR(X ∪A Y ; r) ' VR(X; r) ∨
VR(Y ; r).

Proof We first restrict our attention to the case when X and Y (and hence A)
are finite. Let S(A) be the set of all simplicial complexes on the base set A with
the containment partial order. We can use this partial order to construct a total
order on the set of simplicial complexes on A by choosing a linear extension of
the containment partial order. Specifically, let Σ1, Σ2, . . . , ΣN ∈ S(A), where
N is the total number of simplicial complexes in S(A),4 be such a total order
listed in inverse order; that is, if Σi ⊆ Σj , then i ≥ j.

Using this total order, we consider a sequence of subsets of X∪Y for which
Σi is the maximal valid set. For i = 1, 2, . . . , N , let Ti be the set of all simplices
of the form SX ∪ SY satisfying the following conditions:

– ∅ 6= SX ⊆ X \A and ∅ 6= SY ⊆ Y \A,
– diam(SX ∪ SY ) ≤ r, and
– ΣSX ,SY

= Σi ∈ S(A).

4 See http://oeis.org/A014466.

http://oeis.org/A014466
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Note that Ti may be the empty set. Let L0 = VR(X; r)∪VR(A;r) VR(Y ; r). We
apply Lemma 3 repeatedly to obtain

L0 'L0 ∪
⋃
σ∈Σ1

⋃
S∈T1

{τ | S ⊆ τ ⊆ σ ∪ S} =: L1

'L1 ∪
⋃
σ∈Σ2

⋃
S∈T2

{τ | S ⊆ τ ⊆ σ ∪ S} =: L2

...

'LN−2 ∪
⋃

σ∈ΣN−1

⋃
S∈TN−1

{τ | S ⊆ τ ⊆ σ ∪ S} =: LN−1

'LN−1 ∪
⋃

σ∈ΣN

⋃
S∈TN

{τ | S ⊆ τ ⊆ σ ∪ S} =: LN .

The fact that each Lj is a simplicial complex follows from the following claim.

Claim If SX ∪ SY ∈ Tj and ∅ 6= S′X ⊆ SX and ∅ 6= S′Y ⊆ SY , then ΣSX ,SY
⊆

ΣS′X ,S′Y .

Proof It is easy to see that for any σ ∈ ΣSX ,SY
, we have diam(S′X∪S′Y ∪σ) ≤ r.

Hence σ ∈ ΣS′X ,S′Y . The claim then follows.

In fact, the above claim implies that if SX ∪ SY ∈ Tj and ∅ 6= S′X ⊆ SX
and ∅ 6= S′Y ⊆ SY , then we have S′X ∪ S′Y ∈ Ti for some i ≤ j (as ΣS′X ,S′Y ⊇
ΣSX ,SY

). Therefore, all faces of newly added simplices are necessarily already
present in Tj .

For each j = 1, . . . , N , we set K = Lj , L = Lj−1, T = Tj , and Σ = Σj and
apply Lemma 3 to obtain Lj ' Lj−1. In particular, if Tj = ∅, we have Lj =
Lj−1 without applying Lemma 3. Otherwise if Tj 6= ∅, then by the condition in
the theorem and the construction of Tj , it must be that the maximal valid set
Σj is collapsible. To see that these choices satisfy the conditions for Lemma 3,
note that Tj∩Lj−1 = ∅. Indeed, for each SX∪SY ∈ Tj we have SX∪SY /∈ Lj−1,
since otherwise we would have ΣSX ,SY

= Σi for i < j, contradicting the fact
that ΣSX ,SY

= Σj .
To complete the proof of the finite case, it suffices to show that LN =

VR(X ∪A Y ; r). This is because any simplex τ ∈ VR(X ∪A Y ; r) \ L0 is nec-
essarily of the form τ = SX ∪ SY ∪ ρ, with ∅ 6= SX ⊆ X \A, ∅ 6= SY ⊆ Y \A,
ρ ⊆ A, and diam(SX ∪ SY ∪ ρ) ≤ r. (Note that ρ could be the empty set.)
Hence, there must exist some non-empty σ ∈ ΣSX ,SY

with ρ ⊆ σ. Assume
SX ∪ SY ∈ Tj (and thus ΣSX ,SY

= Σj). Then we will add simplex τ to Lj .
Therefore, τ ∈ LN and so LN = VR(X ∪A Y ; r).

Finally, let X, Y , and A be arbitrary (possibly infinite) metric spaces. Note
that for any finite subsets X0 ⊆ X and Y0 ⊆ Y with A0 = X0 ∩ Y0 6= ∅, we
have VR(X0; r) ∪VR(A0;r) VR(Y0; r) ' VR(X0 ∪A0

Y0; r) by the finite case.
Hence, we can apply Corollary 1 with L = VR(X; r) ∪VR(A;r) VR(Y ; r) and
K = VR(X ∪A Y ; r) to complete the proof of Theorem 2.
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Fig. 2: Illustration of Theorem 3 on metric graph gluings and both finite (left)
and infinite (right) subsets thereof. The metric graphs GX and GY are shown
with thin, dotted red and blue lines respectively; X and Y are shown in the
infinite case with thick, solid red and blue lines respectively; GA corresponds
to the black solid line while A corresponds to the magenta solid line. The finite
subset case uses the same color scheme.

We remark that the condition in Theorems 1 and 2 that the maximal set
σ or the maximal valid set ΣSX∪SY

be nonempty is very important. We thank
Wojciech Chachólski, Alvin Jin, Martina Scolamiero, and Francesca Tombari
for pointing out a counterexample to [5, Corollary 9], and we would like to
mention their forthcoming work on homotopical decompositions of Vietoris–
Rips complexes [15]. We describe their counterexample in Appendix A. The
mistaken proof misses this crucial point of verifying that σ is nonempty. In
the conference version of this paper, [5, Theorem 10] relied on the incorrect
corollary to prove the r > α case. In this version, we remove that reliance and
also prove a stronger version of [5, Theorem 10] in Theorem 3.

3.4 Vietoris–Rips complexes of gluings of metric graphs

We next study gluings of metric graphs. The setup of the following theorem
regarding metric graph gluings is illustrated in Figure 2. In a graph, the degree
of a vertex without self-loops is the number of incident edges to that vertex.
A path graph (or simply a path) is one with n ordered vertices and with
n − 1 edges connecting pairs of successive vertices. Any path graph can be
parameterized by a closed interval. We call the points with the smallest and
the largest values in this parametrization the endpoints of the path. Examples
of how this theorem can be used in characterizing the homotopy types of
Vietoris–Rips complexes of certain families of metric graphs will be given in
Section 4.

Theorem 3 Let G = GX∪GA
GY be a metric graph, where GA = GX∩GY is a

closed metric subgraph of the metric graphs GX and GY . Suppose furthermore
that GA is a path of length α, and that every vertex of GA besides the two
endpoints always has degree 2 as a vertex restricted to GX . Let `X denote the
length of the shortest cycle in GX passing through GA, and similarly, let `Y
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denote the length of the shortest cycle in GY which intersects GA. Let ` =
min{`X , `Y }. Suppose α < `

3 . Let X ⊆ GX and Y ⊆ GY be arbitrary subsets
such that X∩GY = Y ∩GX = X∩Y =: A, where A contains the two endpoints
of GA. Then the inclusion VR(X; r)∪VR(A;r) VR(Y ; r) ↪→ VR(X ∪A Y ; r) is a
homotopy equivalence for all r > 0. In particular, if VR(A; r) is contractible,
then VR(X ∪A Y ; r) ' VR(X; r) ∨VR(Y ; r).

Proof We first consider the case where r < α. Let ∅ 6= SX ⊆ X \ A and
∅ 6= SY ⊆ Y \ A be such that diam(SX ∪ SY ) ≤ r. Let v and v′ in A denote
the endpoints of GA. We claim that exactly one of v or v′ (without loss of
generality let it be v) satisfies the property that every path connecting a point
x ∈ SX to y ∈ SY of length at most r passes through v. First, fix y ∈ SY ;
we claim that every path of length at most r connecting a point in SX to y
must pass through v. Indeed, if not, then pick x and x′ in SX whose shortest
paths to y go through v and v′, respectively. By connecting these paths with
the path from x to x′ we find5 a cycle of length at most 3r < 3α. A portion
of this cycle of length at most 3α

2 lies in either X or Y , by adding a subpath
from GA we obtain a cycle in either X or Y of length at most 5α

2 < 3α, a
contradiction. In other words, all points in SX are within distance r to v (as v
is along the shortest path from a point x ∈ SX to y and d(x, y) ≤ r). On the
other hand, note that for any point x ∈ SX , if it is within distance r to v, then
dX(x, v′) > r; as otherwise, there will be a non-trivial cycle in X containing
GA of length 2r + α < 3α, which contradicts the condition that α < `

3 . This
then implies that all points in SY are within distance r to v: Specifically, if
there exists y′ ∈ SY such that d(y′, v) > r, then d(y′, x) > r for any x ∈ SX ,
which contradicts that diam(SX ∪ SY ) ≤ r. Putting everything together, we
thus have that every path connecting a point x ∈ SX to y ∈ SY of length
at most r passes through v. It is now not hard to see that there is a unique
maximal nonempty subset τ ⊆ A with diam(SX ∪SY ∪τ) ≤ r. Indeed, τ is the
intersection of A with some subpath of GA containing v. Hence, Theorem 1
implies that VR(X ∪A Y ; r) ' VR(X; r) ∪VR(A;r) VR(Y ; r), as desired.

We next consider the case where r ≥ α and will show that for every ∅ 6=
SX ⊆ X \A and ∅ 6= SY ⊆ Y \A with diam(SX ∪SY ) ≤ r, there exists a point
u ∈ A such that diam(SX ∪ SY ∪ {u}) ≤ r. This will ensure that there exists
a nonempty σ ⊆ A satisfying diam(SX ∪ SY ∪ σ) ≤ r. The set of all σ ⊆ A
satisfying diam(SX ∪ SY ∪ σ) ≤ r is closed under unions since diam(A) ≤ r,
and hence there will be a unique non-empty maximal σ. The conclusion will
again follow from Theorem 1.

For any set Z ⊆ X ∪ Y , we say that a ∈ A is a witness for Z if diam(Z ∪
{a}) ≤ r. If Z = {z}, then we say that the point z is witnessed by a. Once
again, let v and v′ denote the endpoints of the path GA. Given an SX and
SY as above, we first claim generally that for any z ∈ SX ∪ SY , the point z is
witnessed by either v or v′. Indeed, if z ∈ SX then for any y ∈ SY the shortest
path from z to y, which has length at most r, must pass through either v or v′

5 The concatenation of these paths may not be injective, but it is not hard to modify the
non-injective loop to obtain an (injective) cycle.
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on its way into the gluing region A because of the degree 2 restriction within
GX for vertices in GA. Therefore the distance from z to one of v or v′ (or
both) must be at most r. A similar argument holds true if z ∈ SY . If either
v or v′ is a witness for SX ∪ SY , then we are done. So suppose neither v nor
v′ is a witness for SX ∪ SY . We proceed with a case analysis. In each case we
will assume that some point in SX ∪ SY is not witnessed by v′ and another
point is not witnessed by v. We will either derive a contradiction or find a new
witness for SX ∪ SY .

Case 1: There is a y ∈ SY not witnessed by v′ and an x ∈ SX not witnessed
by v (the reasoning for this case also holds when v and v′ are swapped). In
this case we know that d(y, v′) > r. But because of our prior claim, y must
then be witnessed by v, so that d(y, v) ≤ r. Observe that

r < d(y, v′) ≤ d(y, v) + d(v, v′) ≤ d(y, v) + α.

This implies d(y, v) > r−α. For all z ∈ SX , since d(y, z) ≤ r via a path going
through v, it must be that d(v, z) < α. So SX ⊆ BX(v, α), i.e., SX must be
contained within an open ball in X of radius α < r centered at v. This is a
contradiction to our assumption that there is an x ∈ SX not witnessed by v,
and hence Case 1 is impossible.

Case 2: There is a y ∈ SY not witnessed by v′ and a y′ ∈ SY not witnessed by
v. By the same argument as above, we have SX ⊆ BX(v, α), and by swapping
y′ for y and v for v′ in that argument, we have SX ⊆ BX(v′, α). Therefore,
SX ⊆ BX(v, α)∩BX(v′, α). Consider an x ∈ SX , so d(x, v) < α and d(x, v′) <
α. Because all a ∈ A with a 6= v, v′ have degree 2 in X, and d(v, v′) = α, the
shortest path6 from x to v′ cannot go through A, which implies that it cannot
go through v. Similarly, the shortest path from x to v cannot go through v′.
Hence as pictured in Figure 3a, let x̂ be the point farthest from x which is
shared between the shortest path from x to v and the shortest path from x to
v′. This creates a non-trivial cycle in GX of length at most 3α < `, which is
a contradiction to the shortest cycle in X having length greater than or equal
to `. Therefore, all of SY must have a common witness.

Case 3: There is an x ∈ SX not witnessed by v′ and an x′ ∈ SX not witnessed
by v. By a similar argument as above, we have SY ⊆ BY (v, α) ∩ BY (v′, α).
Now, since the degree of vertices in A restricted to GY may be greater than
2 we cannot use quite the same argument as in Case 2. Instead we will begin
by proving the following claim.

Claim Suppose we are in the setting of Case 3. For every y ∈ SY , there exists
a unique entry point u ∈ A such that for all z ∈ SX , d(z, y) = d(z, u)+d(u, y).
In other words, when traveling on any shortest path from a given y to any
point in SX , one must enter A at a unique point u ∈ A.

6 This shortest path is unique since there are no cycles of length at most 2α ≤ 3α < `.
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Fig. 3: Illustrations of the contradictions in (a) Case 2 and (b) Case 3 in proof
of Theorem 3.

Proof We will prove this by contradiction. Assume there is a y ∈ SY and
z, z′ ∈ SX such that u is the first point in A on a shortest path from y to z,
and u′ is the first point in A on a shortest path from y to z′ (see Figure 3b for
an illustration). Any shortest path from y to z must go through either v or v′

in order to get out of the gluing path and into X. Therefore, since both d(y, v)
and d(y, v′) are at most α, and u is on the path from y to v, it must be that
d(y, u) ≤ α. A similar argument gives us that d(y, u′) ≤ α. These two distances
plus d(u, u′) ≤ d(v, v′) ≤ α gives us a nontrivial cycle in GY of length at most
3α < `, which is again a contradiction. Therefore for every y ∈ Y , there is a
unique entry point into A common amongst all shortest paths from y to SX .

Let U ⊆ A denote the set of all entry points for all y ∈ SY . Then, we claim
that any u ∈ U is a witness for SX . Indeed, each u is along a shortest path
from some y to all of SX . Therefore, for any x ∈ SX , d(x, u) ≤ d(x, y) ≤ r.

Finally, we will show that any u ∈ U is also a witness for SY . Notice
that any u ∈ U ⊆ A divides the gluing path GA into two regions which
we will call “above” u (the shortest path between u and v) and “below” u
(the shortest path between u and v′). Therefore, every other u′ ∈ U is either
above u or below u. Recall as proven at the beginning of Case 3 that SY ⊆
BY (v, α) ∩ BY (v′, α). In order for the y that matches a given u to get to v,
the shortest path will go through u and then through all of the u′ above u.
Therefore, d(y, u′) ≤ α ≤ r for all u′ above u. Similarly, for y to get to v′,
the shortest path will go through u and then through all u′′ below u, giving
d(y, u′′) ≤ α ≤ r for all u′′ below u. This means that for any y ∈ SY and any
u ∈ U , d(y, u) ≤ r and so u is a witness for SY . By the paragraph above any
u ∈ U is a witness also for SX , and hence for SX ∪ SY . This completes the
proof of Case 3.

This completes the proof for r ≥ α, finishing the proof of Theorem 3.

Corollary 4 Let G, GX , GY , GA, X, Y , and A satisfy the same hypotheses
as in the statement of Theorem 3. Suppose furthermore that VR(A; r) is con-



On Homotopy Types of Vietoris–Rips Complexes of Metric Gluings 21

GA

GYGX

x

a1

a2

a3

w1

w2

w3

w4

w5

0.25

0.75

1

1

1

1

2

y1

y2

12
24

7.75

7

8

8

Fig. 4: Two graphs, GX (blue) and GY (red), glued along GA (purple). Dis-
tances between points are denoted in black.

tractible for all r > 0. Then for any homological dimension i ≥ 0 and field
k, the persistence modules PHi(VR(X; r) ∨ VR(Y ; r); k) and PHi(VR(X ∪A
Y ; r); k) are isomorphic.

Proof The proof is the same as that for Corollary 2, except using Theorem 3
instead of Proposition 1.

3.5 Čech complexes of set-wise gluings

It seems natural to ask if our results in Sections 3.3–3.4 extend to Čech
complexes. For example, is it necessarily the case that Čech(X; r) ∪Čech(A;r)

Čech(Y ; r) ' Čech(X ∪A Y ; r), where X,Y and A are as described in Theo-
rem 3? Interestingly, while the desired result may hold true, the arguments in
the proof of Theorem 3 do not all directly transfer to the Čech case.

Theorem 1 can be extended to the Čech case, with an analogous proof, by
replacing the condition diam(SX ∪SY ∪σ) ≤ r with

⋂
z∈SX∪SY ∪σ B(z; r) 6= ∅.

Note that if SX ∪ SY ∪ σ is finite, then
⋂
z∈SX∪SY ∪σ B(z; r) 6= ∅ means that

SX ∪ SY ∪ σ ∈ Čech(X ∪A Y ; r).

Theorem 4 (Čech-version of Theorem 1) Let X and Y be metric spaces
with X ∩ Y = A, where A is a closed subspace of X and Y , and let r > 0.
Suppose that if

⋂
z∈SX∪SY

B(z; r) 6= ∅ for some SX ⊆ X \ A and SY ⊆
Y \ A, then there is a unique maximal nonempty subset σ ⊆ A such that⋂
z∈SX∪SY ∪σ B(z; r) 6= ∅. Then the inclusion Čech(X; r)∪Čech(A;r)Čech(Y ; r) ↪→

Čech(X∪AY ; r) is a homotopy equivalence. Hence if Čech(A; r) is contractible,
we have that Čech(X ∪A Y ; r) ' Čech(X; r) ∨ Čech(Y ; r).

It is hard to generalize Theorem 3 for the Čech case with the existing
type of simplicial collapses. We give an example to illustrate this point. See
Figure 4, where the distance metric is induced by the lengths marked on the
arcs of the graph. In the notation of Theorem 3, let GX be the loop on the
left and GY be the two loops on the right, where GA is the path from a1
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to a3. Let X = {x, a1, a2, a3} and Y = {y1, y2, a1, a2, a3, w1, w2, w3, w4, w5},
so A = {a1, a2, a3}. We assume the following distances, as labeled in the
figure: d(x, a1) = 0.25, d(a1, a2) = 0.75, d(a2, a3) = d(w1, w2) = d(w2, w3) =
d(w1, w4) = 1, d(w1, y1) = d(w3, y2) = 8, d(w3, w5) = 2, d(a1, w4) = 7.75, and
d(a3, w5) = 7. The distances between all other pairs of nodes are induced by
these lengths. The scale parameter r for the Čech complex is r = 10.

To prove an analogous version of Theorem 3, a key step would be to show
that when the size of A is small enough, then the following condition in The-
orem 4 can be satisfied:

(Condition-R): For any SX ⊆ X \A and SY ⊆ Y \A such that⋂
z∈SX∪SY

B(z; r) 6= ∅, there is a unique maximal nonempty subset
σ ⊆ A such that

⋂
z∈SX∪SY ∪σ B(z; r) 6= ∅.

However, in the example from Figure 4, consider SX = {x} and SY = {y1, y2}.
It turns out that there are at least two maximal subsets, σ1 = {a1, a3} and
σ2 = {a1, a2}, that form a simplex with SX ∪ SY in Čech(X ∪A Y ; r). (Note
that in the finite case,

⋂
z∈SX∪SY ∪σ B(z; r) 6= ∅ means that SX ∪SY ∪σ forms

a simplex in Čech(X ∪A Y ; r).) Indeed,
⋂
z∈SX∪SY ∪σ1

B(z; r) = {w2} and⋂
z∈SX∪SY ∪σ2

B(z; r) = {w1}; however,
⋂
z∈SX∪SY ∪σ1∪σ2

B(z; r) = ∅. This
example can be modified to include all points from the underlying space of
this metric graph, but for simplicity we consider the discrete case here.

While this example does not rule out a generalization of Theorem 3 to the
Čech case, it suggests that such a generalization (if it holds) will require a
different proof technique, perhaps using Theorem 2.

4 Applicability to certain families of graphs

The results in Section 3 provide a mechanism to compute the homotopy types
and persistent homology of Vietoris–Rips complexes of metric spaces built from
gluing together simpler ones. For the sake of brevity, if the results of Section 3
can be used to completely describe the homotopy types and persistence module
of the Vietoris–Rips complexes of metric space X, then we will simply say that
space X can be characterized. In Figure 5, the three metric graphs (a)-(c) can
be characterized, whereas (d) cannot. We first describe some families of metric
spaces that can be characterized, and discuss obstructions to characterization,
such as in the case of example (d).

We consider finite metric spaces and metric graphs that can be understood
using the results in this paper. Examples of finite metric spaces whose Vietoris–
Rips complexes are well-understood include the vertex sets of what are known
as dismantlable graphs (defined below), and vertex sets of single cycles (whose
Vietoris–Rips complexes are homotopy equivalent to a wedge of spheres [2]).
Examples of metric graphs whose Vietoris–Rips complexes are well-understood
include trees, and single cycles (whose Vietoris–Rips complexes are typically
homotopy equivalent to a single odd-dimensional sphere [3]).
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Fig. 5: Graphs (a), (b), and (c) can be characterized while (d) cannot.

Let G be a graph with vertex set V and with all edges of length one.7 The
vertex set V is a metric space equipped with the shortest path metric. We
say that a vertex v ∈ V is dominated by u ∈ V if v is connected to u, and if
each neighbor of v is also a neighbor of u. We say that a graph is dismantlable
if we can iteratively remove dominated vertices from G in order to obtain
the graph with a single vertex. Note that if v is dominated by u, then v is
dominated by u in the 1-skeleton of VR(V ; r) for all r ≥ 1. It follows from
the theory of folds, elementary simplicial collapses, or LC reductions [7,11,30]
that if G is dismantlable, then VR(V ; r) is contractible for all r ≥ 1. Examples
of dismantlable graphs include trees, chordal graphs, and unit disk graphs of
sufficiently dense samplings of convex sets in the plane [28, Lemma 2.1]. We
will also need the notion of a k-cycle graph, a simple cycle with k vertices and
k edges.

The following proposition specifies a family of finite metric spaces that can
be characterized using the results in this paper.

Proposition 3 Let G be a finite graph, with each edge of length one, that
can be obtained from a vertex by iteratively attaching (i) a dismantlable graph
or (ii) a k-cycle graph along a vertex or along a single edge. Let V be the
vertex set of the graph G. Then we have VR(V ; r) '

∨n
i=1 VR(V (Cki); r) for

r ≥ 1, where n is the number of times operation (ii) is performed, ki are the
corresponding cycle lengths, and V (Cki) is the vertex set of a ki-cycle.

Proof It suffices to show that an operation of type (i) does not change the
homotopy type of the Vietoris–Rips complex of the vertex set, and that an
operation of type (ii) has the effect up to homotopy of taking a wedge sum with
VR(V (Ck); r). The former follows from applying Theorem 3, as the Vietoris–
Rips complex of the vertex set of a dismantlable graph is contractible for all
r ≥ 1, and the latter also follows from Theorem 3.

The iterative procedure outlined in Proposition 3 can be used to obtain
some recognizable families of graphs. Examples include trees and wedge sums
of cycles (Figure 5(a)). More complicated are polygon trees [21] in which cy-
cles are iteratively attached along a single edge. Graph (b) in Figure 5 is an
example that is built by using both (i) and (ii). Note that we can characterize

7 We make this assumption for simplicity’s sake, even though it can be relaxed.
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graphs beyond what is stated in Proposition 3. Graph (c) in Figure 5 can be
characterized by iteratively gluing, for instance, the top two 7-cycle graphs
along the common path of length 1, and then gluing the bottom 7-cycle graph
along the path of length 2 (instead of length 1 as required in Proposition 3).
Indeed, recall Theorem 3 can characterize graphs as long as all non-endpoint
vertices have degree 2 with respect to one side of the gluing path, and that
the gluing path is of length less than `

3 .
A similar procedure is possible for metric graphs, except that we must

replace arbitrary dismantlable graphs with the specific case of trees.8 Note that
any tree, T , is obtained by starting with a single vertex and iteratively taking
the wedge sum with a single edge. This implies that VR(T ; r) is contractible;
thus, the persistent homology filtration of any tree is trivial, a result that is
also established in [16,31].

Proposition 4 Let G be a metric graph, with each edge of length one, that can
be obtained from a vertex by iteratively attaching (i) an edge along a vertex or
(ii) a k-cycle graph along a vertex or a single edge. Then we have VR(G; r) '∨n
i=1 VR(Cki ; r) for r ≥ 1, where n is the number of times operation (ii) is

performed, ki are the corresponding cycle lengths, and Cki is a loop of length
ki.

Proof The proof is analogous to that of Proposition 3.

The edge lengths can be generalized to allow any real-valued length, as
long as the conditions of Theorem 3 are satisfied. The iterative procedures in
Propositions 3–4 produce families of metric graphs which can be characterized,
but there are other ways to build up graphs in an admissible manner. For
example, instead of requiring that we glue along a single edge we may allow
gluing along longer paths that meet the length criteria of Theorem 3. This more
general definition allows for gluing along subpaths of previous gluing paths.
When using this procedure, we caution the reader that the order in which
one glues graphs together matters. In particular, one must glue first along the
longest path before gluing along any shorter paths contained within. A simple
example is shown in Figure 6. Notice that we cannot characterize the vertex
set of this graph iteratively using our results if we first glue C9 to C3 along a
single edge. Doing so would require that C10 be glued along the path of length
3 next. However, since C3 is included, this path is no longer an admissible
gluing path since α ≮ `

3 . This observation that gluing order matters does not
come into play in Propositions 3–4 because gluing was restricted along a single
edge.

In future work, we hope to extend the results in this paper to gluing metric
graphs along admissible isometric trees (a generalization of isometric simple
paths). The final graph (d) in Figure 5, the cube graph, is an example of a case

8 The case of C3, a cyclic graph with three unit-length edges, is instructive. Since C3 is
dismantlable we have that VR(V (C3); r) is contractible for any r ≥ 1. But since the metric
graph C3 is isometric to a circle of circumference 3, it follows from [3] that VR(C3; r) is not
contractible for 0 < r < 3

2
.
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C9 C10

C3

Cx
Cy

Cz

A1A2

Fig. 6: A finite vertex subset (left) and a metric graph (right) built by first
gluing Cx to Cy along A1, and then gluing Cz to the result along A2.

for which Theorem 3 is not applicable. We cannot compute the homology of
the vertex set of the cube as the direct sum of the homology groups of smaller
component pieces. Indeed, if V is the vertex set of the cube with each edge
of length one, then dim(H3(VR(V ; 2))) = 1 since VR(V ; 2) is homeomorphic
to the 3-sphere, as it is the boundary of the 4-dimensional cross-polytope on
eight vertices. However, this graph is the union of five cycles of length four,
and the Vietoris–Rips complex of the vertex set of a cycle of length four never
has any 3-dimensional homology.

5 Gluings with the supremum metric

Like the cube example in Section 4, we now describe other graphs that the
techniques presented so far in this paper do not apply to. Another such ex-
ample is a “circular ladder”, i.e., the union of two circles with a finite number
of edges or “rungs” connecting corresponding angles on the two circles; see
Figure 7(right). Forming this ladder by gluing together smaller squares would
require, in the final stages, gluing along paths that are too long for the results
in our paper to apply. In this section, we present a different set of techniques,
based on Quillen’s Fiber Theorem A [8,32], which one can use to describe the
Vietoris–Rips complexes of a circular ladder (for example), albeit equipped with
a distance that is not the metric graph distance.

Specifically, in this section we consider the L∞ or supremum metric on the
product of two metric spaces.

Definition 1 Given two metric spaces (X, dX) and (Y, dY ), the L∞ or supre-
mum metric on X × Y is defined by

d((x, y), (x′, y′)) = max{dX(x, x′), dY (y, y′)}.

The main result in this section is Theorem 5, which establishes a relation
between the Vietoris–Rips complexes of a space and a special type of gluing
or product under this supremum metric.

Theorem 5 Let X and Y be metric spaces, with subsets X0 ⊆ X and Y0 ⊆ Y
such that Y0 6= ∅. Furthermore, assume that VR(Y0; r) ' ∗ and VR(Y ; r) ' ∗.
Let X × Y0 ∪X0 × Y be equipped with the L∞ metric (as a subset of X × Y ).
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Then the simplicial projection map φ : VR(X × Y0 ∪X0 × Y ; r) → VR(X; r),
defined by the map on vertices (x, y) 7→ x, is a homotopy equivalence.

Proof We first prove the case where X and Y are finite. Consider the map
φ : L→ K, where L = VR(X×Y0∪X0×Y ; r), whereK = VR(X; r), and where
φ is defined as the simplicial map sending a vertex (x, y) ∈ X×Y0∪X0×Y ⊆
X×Y to the vertex x ∈ X. By [8, Theorem 4.29] (Quillen’s Fiber Theorem A),
in order to show that φ is a homotopy equivalence, it suffices to show that for
any closed simplex σ ∈ K, we have that its preimage φ−1(σ) is contractible.
Note that φ−1(σ) is the simplicial complex

φ−1(σ) = {τ ⊆ σ × Y0 ∪ (σ ∩X0)× Y | diam(πY (τ)) ≤ r},

where πY is the projection onto Y , and where the diameter is taken in Y .
We consider two cases. If σ∩X0 = ∅, then the definition of φ−1(σ) simplifies

down to the simplicial complex φ−1(σ) = σ×VR(Y0; r), which is contractible
as desired.

For the second case, suppose σ∩X0 6= ∅. The maximal simplices of φ−1(σ)
are of the form

κρ := σ × (ρ ∩ Y0) ∪ (σ ∩X0)× ρ,

where ρ varies over the maximal simplices of VR(Y ; r). For a simplicial com-
plex Q, let N (Q) denote the nerve of the cover of Q by its maximal simplices.
Since this is a good cover, we have N (Q) ' Q by the nerve lemma [26, Re-
mark 15.22]. In particular, we haveN (VR(Y ; r)) ' VR(Y ; r) andN (φ−1(σ)) '
φ−1(σ). It then suffices to show that maximal simplices ρ, ρ′ of VR(Y ; r) in-
tersect if and only if the corresponding maximal simplices κρ, κρ′ of φ−1(σ)
intersect. Indeed, that would give a simplicial isomorphism N (VR(Y ; r)) ∼=
N (φ−1(σ)), in which case we would have

φ−1(σ) ' N (φ−1(σ)) ∼= N (VR(Y ; r)) ' VR(Y ; r) ' ∗,

as desired. If κρ and κρ′ intersect, then they do so at a point in both σ × ρ
and σ × ρ′, which means that ρ and ρ′ intersect. For the reverse direction,
suppose ρ and ρ′ intersect. Since σ ∩ X0 6= ∅, then clearly κρ and κρ′ also
intersect, as needed. Hence we have shown that φ−1(σ) is contractible, and
so Quillen’s Fiber Theorem A [8, Theorem 4.2] implies that φ : L → K is a
homotopy equivalence.

We now use the finite case to prove the arbitrary case (where X and Y are
possibly infinite). Our proof relies on Lemma 4. Consider φ : L → K defined
as above, where again L = VR(X × Y0 ∪X0 × Y ; r) and K = VR(X; r).

In order to apply Lemma 4, we have to show that for every finite V0 ⊆
X × Y0 ∪ X0 × Y and W0 ⊆ X, there exists a finite subset V1 with V0 ⊆
V1 ⊆ X × Y0 ∪ X0 × Y and W0 ⊆ φ(V1) ⊆ X such that the induced map
L[V1]→ K[φ(V1)], i.e. VR(V1; r)→ VR(φ(V1); r), is a homotopy equivalence.
Let V X0 and V Y0 be the images of the projections of V0 onto X and onto Y ,

9 We have switched the roles of L and K for notational convenience.
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respectively. If V Y0 ∩ Y0 = ∅ then, for the remainder of this proof add to V Y0
a single arbitrary point of Y0, enforcing V Y0 ∩ Y0 6= ∅. We let

V1 =
(
(V X0 ∪W0)× (V Y0 ∩ Y0)

)
∪
((

(V X0 ∪W0) ∩X0

)
× V Y0

)
.

To see that V0 ⊆ V1, note that any point (x, y) ∈ V0 has either x ∈ X0 or y ∈ Y0

(or both). Clearly V1 is finite. Note that φ(V1) = V X0 ∪W0 since V Y0 ∩Y0 6= ∅,
and hence W0 ⊆ φ(V1). We then apply Theorem 5 in the finite case, with X0 ⊆
X in the statement of Theorem 5 here equal to (V X0 ∪W0) ∩X0 ⊆ V X0 ∪W0,
and with Y0 ⊆ Y in the statement of Theorem 5 here equal to V Y0 ∩Y0 ⊆ V Y0 .
This means that X × Y0 ∪ X0 × Y in the statement of Theorem 5 is here
equal to V1. Applying Theorem 5 in the finite case then gives that the induced
map VR(V1; r)→ VR(φ(V1); r) is a homotopy equivalence, as desired. Hence,
Lemma 4 implies that φ is a homotopy equivalence.

Remark 3 We remark that Theorem 5 is not a consequence of [3, Proposi-
tion 10.2], which considers only the Vietoris–Rips complexes of X × Y , but
not the Vietoris–Rips complexes of any subsets thereof.

We give an example that relies on Theorem 5.

Example 1 Let Y = [0, `] be an interval, and let ∅ 6= Y0 ⊆ Y consist of m
points 0 ≤ y1 < y2 < . . . < ym ≤ `. Let κY = maxi∈{1,...,m−1}(yi+1 − yi).
Then for X an arbitrary metric space and X0 an arbitrary subset thereof,
and for r ≥ κY (which implies that VR(Y0; r) ' ∗), Theorem 5 implies that
VR(X×Y0 ∪X0×Y ; r) ' VR(X; r), where X×Y0 ∪X0×Y is equipped with
the L∞ metric. For example, by taking X to be a circle, by taking X0 to be an
arbitrary subset of “rung locations”, and by taking Y0 = {0 = y1, y2, y3, y4 =
`} ⊆ Y , then X × Y0 ∪X0 × Y is the circular ladder on the left in Figure 7.
So the Vietoris–Rips complex of this circular ladder is homotopy equivalent to
the Vietoris–Rips complex of the circle X (see [3]) for r ≥ κY . We can increase
the “width” of this circular ladder, and have the same result apply, simply by
increasing the number of points in Y0.

Question 1 What are the homotopy types of the Vietoris–Rips complexes of a
circular ladder, when the circular ladder is instead equipped with the metric
graph distance?

When the circular ladder is of “width one” and as symmetric as possible,
the below example shows that our Theorem 3 can help give a partial answer
to the above question.

Example 2 Let Y = [0, 1] be the unit interval, and let Y0 = {0, 1} ⊆ Y be the
two endpoints thereof. Let X = S1 be a circle of integral circumference n ≥ 3.
Let X0 ⊆ X consist of n evenly spaced points along the circle, i.e., we will
have n “rungs” in our circular ladder. See Figure 7 on the right. We equip the
circular ladder X × Y0 ∪X0 × Y with the metric graph distance.
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Fig. 7: Circular ladders with unequally (left) and equally (right) spaced rings,
as in Examples 1 and 2, respectively.

For r < n
3 , we can describe the homotopy type of VR(X × Y0 ∪X0 × Y ; r)

as follows. Let Z = R×Y0∪Z×Y be the “infinite” ladder. Let G be the group
of integers under addition. Let G act on Z by having integer 1 send (x, y) to
(x+n, y), and hence, integer j sends (x, y) to (x+jn, y). It turns out thatG also
acts on VR(Z; r) in a similar way. Note that the quotient space Z/G under the
group action is the circular ladder, namely Z/G = X×Y0∪X0×Y . For r < n

3 ,
it follows from [6] that VR(Z/G; r), the Vietoris–Rips complex of the circular
ladder, and VR(Z; r)/G, the quotient of the Vietoris–Rips complex of the infi-
nite ladder under the action of G, are isomorphic as simplicial complexes. Note
that the infinite ladder Z is formed by gluing together countably many circles
of circumference 4 along sufficiently short gluing paths. By [3], the Vietoris–
Rips complex of a circle of circumference 4 is homotopy equivalent to the

(2k + 1)-dimensional sphere for 4k
2k+1 < r < 4(k+1)

2k+3 with k an integer. Since Z
is formed by gluing these circles together along sufficiently short gluing paths,
by Theorem 3 we know that VR(Z; r) '

∨∞
S2k+1, i.e., that the Vietoris–Rips

complex of the infinite ladder is homotopy equivalent to a countably infinite

wedge sum of (2k + 1)-dimensional spheres for 4k
2k+1 < r < 4(k+1)

2k+3 . Hence,
when r < n

3 , our understanding of G’s action on VR(Z; r) implies that if fur-

thermore 4k
2k+1 < r < 4(k+1)

2k+3 , then VR(X × Y0 ∪X0 × Y ; r) = VR(Z/G; r) '
S1 ∨ (

∨n
S2k+1), i.e., the Vietoris–Rips complex of the circular ladder is ho-

motopy equivalent to the wedge sum of a single circle S1 together with the
n-fold wedge sum of spheres of dimension 2k + 1.

6 Discussion

We have shown that the wedge sum of Vietoris–Rips complexes is homotopy
equivalent to the corresponding complex for the metric wedge sum, and gen-
eralized this result in the case of Vietoris–Rips complexes for certain metric
space gluings. Our ultimate goal is to understand to the greatest extent pos-
sible the topological structure of large classes of metric graphs via persistent
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homology. Building on previous work in [3] and [23], the results in this paper
constitute another important step toward this goal by providing a characteri-
zation of the persistence profiles of metric graphs obtainable via certain types
of metric gluing. Many interesting questions remain for future research.

Gluing beyond a single path. We are interested in studying metric graphs
obtainable via metric gluings other than along single paths, such as gluing
along a tree, or along subgraphs with non-trivial topology (e.g., multiple com-
ponents, or containing a cycle). Furthermore, the techniques of our paper do
not allow one to analyze self-gluings such as forming an n-cycle Cn from a path
of length n. Self-gluings also may change the metric structure significantly, and
it is likely that new and very different techniques need to be developed to han-
dle self-gluings.

Generative models for metric graphs. Our results can be considered as
providing a generative model for metric graphs, where we specify a particular
metric gluing rule for which we have a clear understanding of its effects on
persistent homology. Expanding the list of metric gluing rules would in turn
lead to a larger collection of generative models.

Approximations of persistent homology profiles. A particular metric
graph that arises from data in practice may not directly correspond to an
existing generative model. However, we may still be able to approximate its
persistent homology profile via stability results (e.g. [17,20,34]) by demon-
strating close proximity between its metric and a known one.
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ric gluings. In B. Speckmann and C. D. Tóth, editors, 34th International Symposium
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A Counterexample to [5, Corollary 9]

We thank Wojciech Chachólski, Alvin Jin, Martina Scolamiero, and Francesca Tombari for
the following counterexample to [5, Corollary 9] in the conference version of this paper.
We would also like to mention their forthcoming work on homotopical decompositions of
Vietoris–Rips complexes [15].

As shown in Figure 8, supposeX consists of 4 points in the shape of a quadrilateral of side
lengths 0.5, 0.6, 0.5, and 0.6, and with diagonals of length 1.1. Also, let Y consist of 3 points
in the shape of a triangle of side lengths 0.5, 0.5, and 0.6. Their intersection A = X ∩ Y
is two points at a distance of 0.6. For r = 1 the gluing of the corresponding Vietoris–
Rips complexes is homotopy equivalent to a circle since VR(X; r) ' S1 and VR(Y ; r) is
contractible. However, the Vietoris–Rips complex of the gluing is in fact contractible (a
cone with apex the single point in Y \A), and hence not homotopy equivalent to the gluing
of the Vietoris–Rips complexes.

X

Y

A = X ∩ Y0.5

0.5

0.6 0.6

0.5

0.5

1.1

1.1

Fig. 8: A counterexample to [5, Corollary 9], where metric spaces X, Y , and
A = X∩Y are denoted in blue, red, and purple, respectively. Distances between
each pair of points are indicated on the dashed lines.
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