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Abstract The current generation of radio and millimeter telescopes, particularly the
Atacama Large Millimeter Array (ALMA), offers enormous advances in observing
capabilities.While these advances represent an unprecedented opportunity to facilitate
scientific understanding, the increased complexity in the spatial and spectral structure
of these ALMA data cubes lead to challenges in their interpretation. In this paper, we
perform a feasibility study for applying topological data analysis and visualization
techniques never before tested by the ALMA community. Using techniques based on
contour trees, we seek to improve upon existing analysis and visualization workflows
of ALMA data cubes, in terms of accuracy and speed in feature extraction. We review
our development process in building effective analysis and visualization capabilities
for the astrophysicists. We also summarize effective design practices by identifying
domain-specific needs of simplicity, integrability, and reproducibility, in order to best
target and service the large astrophysics community.
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1 Introduction

Radio astronomy is currently undergoing a revolution driven by new high spatial
and spectral resolution observing capabilities. The current generation of radio and
millimeter telescopes, particularly the Atacama Large Millimeter Array (ALMA),
offers enormous advances in capabilities, including significantly increased sensitivity,
resolution, and spectral bandwidth. While these advances represent an unprecedented
opportunity to facilitate scientific understanding, they also pose a significant challenge.
In some cases, the higher sensitivity and resolution they provide yield new detections
of sources with well-ordered structure that is easy to interpret using current tools
(e.g., [1]). However, these advances often lead to the detection of structure with
increased spatial and spectral complexity, e.g., new molecules in the chemically-
rich massive star forming region Sgr B2, outflows in the nuclear region of the
nearby galaxy NGC 253, and rich kinematic structure in the giant molecular cloud
“The Brick” [6, 8, 49]. Visualization is a natural tool to study such data, which are
typically modeled as 3D cubes, commonly refereed to as ALMA data cubes, with
two spatial dimensions and one spectral dimension (see Fig. 1). While visualizing
volumes is not new to scientific visualization, ALMA data cubes present unique
challenges. First of all, an ALMA data cube represents the complex interactions of
radio signals produced by the bulk mixing and motion of various molecules deep
in space. These data tend to have high spectral resolution but low spatial resolution.

Spectral line

Fig. 1 An illustration of the ALMAdata
cube and a spectral line.

Yet these complex behaviors need precise exam-
ination. Second, the data have an extraordinarily
low signal to noise ratio. This makes direct vi-
sualization impractical as the signal is difficult
to extract. Third, the noise is spectrally varying
and incoherent, therefore difficult to model and
remove using conventional approaches. Due to
these unique challenges, visualization alone is
insufficient for analysis and exploration.

In this paper, we review our application development process in building ef-
fective analysis and visualization capabilities for ALMA data cubes. Our publicly
available tool is called ALMA-TDA (https://github.com/SCIInstitute/ALMA-TDA).
ALMA-TDA uses contour trees to extract and simplify the complex signals from noisy
radio astronomy data. An example of our tool is shown in Fig. 2. We additionally
summarize effective design practices targeting and servicing the large astrophysics
community, in particular, we need to design tools with simplicity (i.e., light-weight),
integrability (i.e., integrable within existing tool chains) and reproducibility (i.e.,
fully recorded analysis history via command-lines). We hope such learned design
practices will provide guidelines toward future development of tools and techniques
that would benefit astrophysicists’ scientific goals.
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Fig. 2 An example of ALMA-TDA . The results of varying the simplification level on slice #18 of the
Ghost of Mirach data set using a 2D contour tree. On the top left, a visualization of the original
data is shown. On the bottom left, the contour tree computed on the region is shown with circles at
critical point locations. Finally, on the right, the results of simplifying the data with simplification
levels at 0.0005, 0.001, 0.0015, 0.002, from left to right, top to bottom, respectively.

2 Science Case

The new complexity involving ALMA data cubes brought about by increased
sensitivity, spatial and spectral resolution, and spectral bandwidth has become a
significant bottleneck in science, as it not only challenges astrophysics analysis tools
but also the users’ ability to understand their data. For example, increased complexity
in the spatial and velocity structure of spectral line emission makes even a single
spectral line hard to interpret. When a cube contains the superposition of multiple
spatial and kinematic structures, such as outflows and rotation and infall, each with
their own relationship between the observed velocity and their actual position along
the line of sight, traditional analysis and exploration tools do not perform well. Users
(the astrophysicists) struggle to follow kinematic trends across multiple structures
by examining movies or channel maps of the data. However, moment map analysis
(e.g., integrated fluxes, mean velocities and mean line-widths), the most commonly
used analysis tool for compressing this 3D information into a more easily parsed
2D form, no longer has a straightforward interpretation in the presence of such
complex structure, in which mean velocities may be velocities at which no emission
is actually present, and mean line widths may represent the distance between two
velocity components, rather than the width of a single component.

Whether scientists can navigate and correctly interpret this new complexity will
determine their success in addressing a number of important scientific questions.
Among the topics driven by the detection of more complex structures are ISM
turbulence [19, 48], the star formation process [32], filaments [46], molecular cloud
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structure and kinematics [49], and the kinematics of nearby galaxies [28, 31, 36] and
high redshift galaxies [2, 58].

An even greater challenge arises from our ability to detect an increased number
of spectral lines in more and more sources. There simply are no tools capable of
simultaneously visualizing, comparing, and analyzing the dozens to hundreds of
data cubes for all of the detected spectral lines in a given source. Standard methods
that visualize the data as moment and channel maps, animate cubes as a videos or
3D models, cannot scale up to the case involving large numbers of lines, even in
non-complex, well-ordered cases, such as rotating disks, or expanding stellar shells.
Users become overwhelmed by, for example, comparing these typical diagnostics
for two lines, side by side or one at a time. In the richest sources with thousands of
lines, such comparisons will simply be impossible—it becomes necessary to resort
to methods that entirely throw away either the spectral information of moment maps
or the spatial information that requires model fitting of complex spectra (such as
Principle Component Analysis). As a result, both exploration and analysis of the
astronomy data becomes not only time consuming, but potentially incomplete.

As we move into the future and the telescopes reach their full potential, complex
spatial and velocity structures will no longer be a problem that typically occurs
in a separate subset of sources than those exhibiting rich spectra behaviors—the
two problems will coexist, compounding the highlighted issues. The visualization
and analysis challenges currently facing radio astronomy will then only grow more
pressing as the data volumes increase and the instruments grow more sensitive.

Existing Tools. A critical aspect to the study of ALMA data cubes is the detection,
extraction and characterization of objects such as stars, galaxies, and blackholes.
Source finding in radio astronomy is the process of detecting and characterizing
objects in radio images (in the forms of data cubes), and returning a survey catalogue
of the extracted objects and their properties [26, 59]. A common practice is to use a
computer program (i.e., a source finder) to search the data cubes, followed by manual
inspection to confirm the sources of electromagnetic radiation [59]. An ideal source
finder aims to determine the location and properties of these astronomical objects in a
complete and reliable fashion [26]; while manual inspection is often time-consuming
and expensive.

Several existing tools have been used in the ALMA community in terms of source
finding [27], including the popular ones such as clumpfind [60], dendrograms [54],
cprops [53], and more recent ones such as FellWalker [7], SCIMES [18] and
NeuroScope [37]. Clumpfind is designed for analyzing radio observations ofmolecular
clouds obtained as 3D data cubes; it works by contouring the data, searching for
local peaks of emission and following them down to lower intensity levels [60].
The dendrograms of a data cube is an abstraction of the changing topology of the
isosurfaces as a function of contour level, which captures the essential features of
the hierarchical structure of the isosurfaces [54]. The FellWalker algorithm is a
gradient-tracing watershed algorithm that segment images into regions surrounding
local maxima [7]. FellWalker provides some ability to merging clumps, therefore
simplify the underlying structures, and the merging criteria shares some similarities
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with persistence-based simplification. However these criteria are less mathematically
rigorous compared to our approach. SCIMES (Spectral Clustering for Interstellar
Molecular Emission Segmentation) considers the dendrogram of emission under
graph theory and utilizes spectral clustering to find discrete regions with similar
emission properties [18]. Finally, the most recent NeuroScope [37] (specifically
targeted for ALMA data cubes) employs a set of neural machine learning tools for
the identification and visualization of spatial regions with distinct patterns of motion.

However, the study of source finding for ALMA data cubes raises the following
question: How can we help the astrophysicists to understand the de-noising process?
That is, how to best separate signals from noise, and to understand the effects of
de-noising on the original data? In other words, it is important for us to quantify both
signals and noise as well as to perform simplifications of the underline data. This
kind of study is underdeveloped with current approaches in the ALMA community.

3 Technical Background

From a technical perspective, we focus on performing data analysis and designing
effective visualization of ALMA data cubes by employing the contour tree [11]. The
contour tree is a mathematical object describing the evolution of the level sets of a
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Fig. 3 (a) A grayscale image of a 2D scalar function
before simplification. (b) height map of the contours
corresponding to the scalar function shown in (a). (c) The
contour tree structures that capture the evolution of terrain
features (i.e., relations among local minima, local maxima,
and saddles). (d)-(f): The grayscale image, height map,
and the contour tree after simplifying the features.

scalar function defined on a sim-
ple, connected domain, such as
the grayscale intensity defined on
the 2D domain associated with a
slice of a data cube (at a fixed fre-
quency). There are two key prop-
erties associated with a contour
tree, making it a feasible tool in
the study of ALMA data cubes.
First, a contour tree has a graph-
based representation that captures
the changes within the topology
of a scalar function and provides a
meaningful summarization of the
associated data. Second, a contour
tree can be easily simplified, in a
quantifiable way, to remove noise
while retaining important features
in data.

Contour Trees. Scalar functions are ubiquitous in modeling scientific information.
Topological structures, such as contour trees, are commonly utilized to provide
compact and abstract representations for these functions. The contour tree of a scalar
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Fig. 4 Local structures of critical points.
From left to right: a local minimum, a
saddle point, and a local maximum.

function f : X→ R describes the connectivity
of its level sets (isosurfaces) f−1

(
a
)
(for some

a ∈ R), whose connected components are re-
ferred to as contours. Given a scalar function
defined within some Euclidean domain X, the
contour tree is constructed by collapsing the
connected components of each level set to a
point. The contour tree stores information regarding the number of components at
any function value (isovalue) as well as how these components split and merge as the
function value changes. Such an abstraction offers a global summary of the topology
of the level sets and enables the development of compact and effective methods for
modeling and visualizing scientific data. See Fig. 3(a)-(c) for an illustrative example.
Vertices in the contour tree correspond to critical points of the 2D scalar function,
namely, local minima, saddle points, and local maxima, whose local structures are
illustrated in Fig. 4.
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Fig. 5 Example of persistence pairing of critical
points for (b) a 2D height function. The persistence
pairing of (a) critical points from the contour tree
gives rise to (c) a (scaled) persistence diagram.

Persistence. To simplify a contour tree,
we assign an importance measure to
each edge of the tree and collapse (elim-
inate) edges of lower importance mea-
sures [10, 12]. Various geometric prop-
erties, such as persistence, volume, and
surface area, can be used to compute the
importance measure.

We apply ideas from topological per-
sistence [21] in our feasibility study. We
describe the idea of persistence using
Fig. 5 as an illustrative example [20,
Page 163]. Given a height function f :X→ R defined on a 2D domain, let Xa denote
the sublevel set of f , that is, Xa = f−1

(
−∞,a

]
. Suppose we sweep a horizontal

plane in the direction of increasing height values, and keep track of the (connected)
components of Xa while increasing a. A component of Xa starts at a local minimum,
and ends at a (negative) saddle point when it merges with an older component (i.e.,
a component that starts earlier). This defines a minimum-saddle persistence pair
between critical vertices, and the persistence of such a pair is the height difference
between them. Similarly, a hole/tunnel of Xa starts at a (positive) saddle point and
ends at a local maxima (where it is capped off). This defines a saddle-maximum pair
with its persistence being the height difference between its vertices. In a nutshell,
minima stars components, saddles merge components or create tunnels (complete
loops), and maxima fill holes [20, Page 162].

Referring to Fig. 5: points u and v are local minima; y and z are local maxima; w is
a negative saddle point; and x is a positive saddle point. Their corresponding height
values are sorted as a1 < a2 < · · ·< a6. We sweep a horizontal plane in the direction
of increasing height value and keep track of the components in the sublevel set. The
pair v,w forms a minimum-saddle persistence pair, as a component in the sublevel set
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starts at point v and it merges with an older component that starts at point u. The pair
x,y form a saddle-maximum pair. The pair v,w has a persistence of |a2−a3|; while
the pair x,y has a persistence |a5−a4|. The contour tree is shown in Fig. 5 (a).

Persistence Diagram. The pairing of critical points also give rise to a persistence
diagram [16] that summarizes and visualizes topological features of a given function.
A persistence diagram contains a multi-set of points in the plane; its x- and y-
coordinates captures the start (birth) time and the end (death) time of a particular
topological feature. The distance of the point to the diagonal captures the persistence
of that feature. Points away from the diagonal have high persistence, and correspond
to signals of the data; while points that are close to the diagonal have low persistence,
which are typically treated as noise1.

In the example of Fig. 5, the critical point pairs x,y and v,w give rise to points
a4,a5 and a2,a3 in the persistence diagram, respectively. This persistence diagram
also contains an additional off-diagonal point a1,a6, which corresponds to the pairing
of global minimum u with the global maximum z that captures the entire shape of
data. This is a global feature that can not be simplified (see [17] for technical details).
In our context, we only care about minimum-saddle and saddle-maximum pairs.

Contour Tree Simplification. In the contour tree example of Fig. 3 (c), the pair
b,c is a minimum-saddle pair while the pairs e, f and d,g are saddle-maximum
pairs. During a hierarchical simplification, the pair e, f has the smallest persistence,
therefore the edge connecting them is collapsed (simplified), as shown in Fig. 3(f);
this can be achieved by a smooth deformation of the surface in Fig. 3(d). In
this paper, we focus on the persistence-based simplification, other simplification

(b)

z

u

(a) z

y

x

w

u

v

Fig. 6 Simplifying a saddle-maximum pair
x,y in (a) and minimum-saddle pair v,w in
(b) for a 2D scalar field. (a): We reduce the
height of the local maximum y to the level
of saddle x, effectively flattening the region
surrounding y. (b): We increase the height
of local minimum v to the level of the saddle
w, again flattening the region surrounding v.

schemes may be employed based on local geo-
metric measures for individual contours [12],
for instance, surface area and contained vol-
ume; we intend to use these geometric mea-
sures in the future to perform contour tree
simplification that suppressing minor topo-
logical features of the astronomy data.

Scalar Field Simplification.Given a contour
tree simplification, we would like to compute
its corresponding scalar field simplification.
Simplifying a scalar function directly in a way
that removes topological noise as determined
by its persistence diagram has been investi-
gated extensively (e.g. [22]). As pointed by
Carr at al. [13], contour tree simplification
have well-defined effects on the underlying
scalar field: collapsing a leaf corresponds to

1 Based upon sublevel set filtration, topological features typically appear as points in the upper
left corner of the persistence diagram; points in the lower right corner correspond to features in
superlevel set filtration and/or extended persistence [17], which are not the focus of this paper.
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leveling off (or flattening) regions surrounding a maximum or a minimum. This is a
desirable simplification for the domain scientists, as they are interested in reducing
noise to zero flux during the de-noising process. Fig. 3(b) and (c) demonstrate the
result of edge collapsing: collapsing the edge e, f from the tree results in flattening
the yellow region surrounding the local maximum f ; this is equivalent to introducing
a small perturbation to the neighborhoods of saddle-maximum pair e, f so that both
critical points e and f are removed. Such a flattening process is further highlighted in
Fig. 6.

Related Work. The contour tree was first introduced by van Kreveld et al. [30]
to study contours on topographic terrain maps (i.e., curves containing sampled
points with the same elevation values). It has then be widely used for both scientific
and medical visualizations [3, 44, 55, 56]. Efficient algorithms for computing the
contour tree [11,15,47] (and its variants, merge tree [41], and Reeb graph [45]) in
arbitrary dimensions have been developed. Calculation of contour trees is theoretically
O
(
n logn

)
. However, the actual running time is approximately O

(
n
)
. The latest state-

of-the-art regarding contour trees have been parallel or distributed implementations [9,
14,25,33,38,39]. We use an approach described in [52], which is implemented under
the piecewise linear setting.

A related concept called dendrograms has been used in astronomical applications
to segment data and to quantify hierarchical structure such as the amount of emission
or turbulence at a given size scale, for example, to study the role of self-gravity in star
formation [24]. A dendrogram is a tree-diagram typically used to characterize the
arrangement of clusters produced by hierarchical clustering. It tracks how components
(clusters) of the level sets merge as the function value changes, while a contour tree
captures more complete topological changes (i.e., merge and split) of the level sets.
The state-of-the-art Astronomical Dendrogram method [50] has limited capabilities
in automatic data denoising, feature extraction and interactive visualization.

4 Application Development Process

We revisit our application development process in building effective analysis and
visualization capabilities of ALMA data cubes by reviewing the timeline of our
project. We reflect on key activities with the goal of learning from experience and
summarizing effective design targeting and serving the astrophysics community, and
how different members of our team interact with one another, including computer
scientists (both visualization and TDA experts) and radio astronomers. To give an
overview of our design process, we describe the critical activities as identified in [34]:
understand, ideate, make, and deploy.

The discussion of the project started in November 2014, when National Radio
Astronomy Observatory (NRAO) scientist Dr. Jeff Kern, a coauthor of this paper,
visited the Scientific Computing and Imaging (SCI) Institute and saw a talk on the
topic of topological data analysis. Over the following months, follow-up conversations
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generated some initial excitement regarding the potentially applying topological
techniques in understanding ALMA data cubes, which has never been done before.

To understand the problem domain and target users, we identified key opportunities,
that is, applying emerging techniques from topological data analysis to the study of
ALMA data cubes. The main motivation stemmed from Jeff’s comments that “there
simply are no tools capable of simultaneously visualizing, comparing, and analyzing
the dozens to hundreds of data cubes for all of the detected spectral lines in a given
source.” We believed that introducing topological data analysis techniques to the
ALMA community would potentially offer new insights regarding feature detection,
as well as improve their workflow efficiency.

The ideate activity of the project started in May 2015, as the domain problems
became better characterized and possible solutions via contour tree-based approaches
appeared to have the greatest potential among the solution space. We externalized
our ideas and expected technical challenges, while at the same time, formulating a
potential analysis pipeline, visual encodings, and selecting interactive capabilities
within a proposed system for ALMA data cubes.

By January 2016, we have already met with astrophysicists at NRAO facility
to learn their needs and conducted an on-campus interview with astrophysicist,
Dr. Anil Seth, another collaborator of this project, who works with ALMA data
cubes. We learned the typical pipeline in the analysis and visualization of ALMA
data cubes, specifically, in Anil’s case, via image editing tools or file viewers such as
QFitsView [43] and SAOImage DS9 [29]. We also gave short tutorials regarding our
proposed techniques to obtain comments and feedback from all our interactions.

We started our make activity by constructing a tangible prototype, specifically
encompassing visualization decisions and interaction techniques. The process coupled
the ideate and make activities in the design and refinement of our system. We
identified that quantification (of signals and noise) and simplification are two of
the most important aspects for our proposed framework. We went through multiple
rounds of interface mock-ups and functionality discussions. We showcased our first
prototype between June and August 2016, including one-on-one discussions with
Anil and Dr. Julia Kamenetzky on our team, and through a number of talks given to
the astrophysics community, with general positive feedback.

Over the course of the next half an year, we rolled out multiple phases of deploy
activities, in order to put the prototype in real-world setting to understand how to
improve its effectiveness and performance. Our goal was to have a usable system that
helps with the users’ data-specific tasks. In January 2017, we organized a one-day
workshop where we engaged in panel discussions on the current version of the
prototype, gathered comments and suggestions, and discussed potential research and
developmental directions moving forward. This workshop in particular helped to
cement the lessons learned.
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4.1 Designing to Serve the ALMA Community

Throughout the development process, we learned a few best practices for serving the
ALMA community: simplicity, integrability, and reproducibility.

In terms of simplicity, the tool should contain sufficient but not overwhelming
amount of visualization; and minimize GUI interactions. This philosophy is in sharp
contract with some of the common practices of many visualization tools, where
we aim to create novel, exciting and sometimes flashy visualizations. Our initial
prototypes were full of many unnecessary functionalities and complex GUIs. We
learned via feedbacks and user practices that a complex interface will distract or
confuse the users to the point that they would not even try using the software. The
tool should also be light-weight. That is, it should be easily installed on a desktop
computer and not require extensive external dependencies or packages be installed.
For this reason, we chose Java as a platform from the beginning. Though not the
most efficient, Java software is highly portable. This is well-aligned with properties
of commonly used processing tools in the ALMA community.

In terms of integrability, the tool should be integrable with existing workflows
and toolchains. This means that the core functionality of the software need to be
automatable. In addition to providing a GUI, we also provide a command-line
interface for generating results, such that it can one day be integrated with other tools
such as CASA (Common Astronomy Software Applications) [35], astropy [51], or
SAMP (Simple Application Messaging Protocol) [57].

In terms of reproducibility, the analysis history using our tool should be recorded
so that the results can be reproduced. This is supported in two ways. First, by enabling
processing via the command-line, we can save parameters and automatically rerun the
results later. Second, we minimize the amount of GUI interactions, as most of such
interactions are exploratory and do not necessarily contribute to the final analysis.
When the user is satisfied with their results using our visualization, the exact command
required to reproduce the visualization results is output to the command-line for
future reference.

5 Software Design

Our software is a visualization tool with both command-line only and interactive
visualization operating modes.

The command-line mode provides a small set of options for complete reproducibil-
ity of any computation. Those options are:

• Input file – Path to the file for processing.
• X, Y, & Z range – The dimensions of the region to be processed.
• Simplification type – Either 2D, for a single slice; 2D Stack, for a series of 2D

slices; or 3D, for volume processing.
• Simplification level – Persistence level for feature simplification.
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Fig. 7 Upon loading the software in the interactive mode, the user is presented with a view of the
data. Top: Initial view of the software. Bottom: Visualizations shown as the user selects a region of
interest and the contour tree is calculated (on the back end).

• Output file – Path to save results.

We also provide an interactive visualization mode to explore the capabilities of
our approach and select these parameters. When starting the software, users need
only add the “interactive” tag to the command-line, and the visualization launches.

The visualization initially opens to the interface seen in Fig. 7 (left). The interface
is designed to include only minimal required capabilities. The main window,A, shows
visualizations related to the loaded data cube. The GUI component, B, provides
controls to set options for processing the data. The controls are placed in groups,
numbered for steps 1-5. The GUI component is designed with both simplicity and
functionality in mind, to offer the users most intuitive, and yet fully-functional analysis
capabilities.

5.1 Visual Elements

The visualization is composed of five main visual elements.

Scalar Field View (Fig. 7 A). Being a sampling of radio waves, the 2D scalar field
(a slice of ALMA data cube along the frequency axis) has both positive and negative
amplitudes. It is therefore displayed using a divergent orange/purple colormap. By
default, the first slice is selected and viewed by centering on the middle of the domain.
The user can translate and zoom with the mouse. Different slices can be selected by
changing the values in the controls in Fig. 7 B.

Persistence Diagram (Fig. 7 C). Once the contour tree is calculated, the data are
displayed using a persistence diagram. Being that the distance from the diagonal is
an analog to persistence, we use this visualization for interactively selecting the level
of simplification by dragging the red simplification bar. Features below the bar are
grayed out indicating that those features will be simplified. Once released, a simplified
contour tree (on the back-end) and a simplified scalar field (for the front-end) are
calculated.
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Contour Tree (Fig. 7 D). Displaying the tree structure of the contour tree is not
particularly meaningful, as it is both large and an abstract view of the data. However,
seeing critical points and their persistence in the context of the data is valuable. The
critical points are placed over the scalar field view at their respective spatial location.
Their size is set based upon their persistence (higher persistence, larger point). Finally,
their color is set by their type: local extrema (leaf of the tree) – blue, negative saddle
points (merge) – yellow, and positive saddle points (split) – magenta. For 3D analysis,
contour tree nodes off layer are colored gray. This view of the contour tree can be
enabled or disabled on demand using the controls in Fig. 7 B.

Simplified Scalar Field (Fig. 7 D). Since users are in large part interested in
the feature extraction power of this approach, we show the result of scalar field
simplification in context. As the user adjusts the level of persistent simplification, the
scalar field is simplified and overlaid with the original visualization. This view can
be enabled or disabled on demand using the controls in Fig. 7 B.

Histogram (Fig. 7 E). A histogram is produced, indicating the distribution of
(intensity) values of data cubes within the current view. In addition to showing
histogram bins, this view shows the mean as a solid red line and ±3 standard
deviations as consecutively lighter red bars. This histogram is adapted as the user
navigates their view or when the simplification level of the scalar field is adjusted.
This view is important, as domain experts are interested in quantifying the total flux
gained or lost during simplification. This is most observable by shifts in the mean.

5.2 Interaction Process

Though the use of our software requires some explanation, we strive to make it as
simple to use as possible. Part of this effort is providing a simple and intuitive five
step approach to the users.

Step 1: Navigation. The users are first asked to navigate the view to the general
region of interest. This includes translation and zooming, but it also includes selecting
the slice or volume of interest.

Step 2: Tree Dimension. The dimension of the contour tree calculation must be
selected next. The options include 2D, for a single slice; 2D stack, for 2D computation
on a series of slices; and 3D for computation on a volume. These options will be
discussed further in the case studies.

Step 3: Region Selection. Next the specific region of interest is selected with the
mouse. As soon as the mouse is released, computation begins. If the region is large,
the user is prompted with the option to cancel, due to computation time. We are
actively investigating scalable contour tree computations to support larger data cubes
with on-the-fly visualization.
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Fig. 8 Four slices, #16, 18, 20, & 22 from the Ghost of Mirach data set. The bright red spots
(indicated by the arrows) in these images are the signal of interest.

Step 4: Exploration. Once the computation is completed, the user is invited to
explore the domain. This includes navigation (translation, zooming, and changing
slices) and adjustment of the simplification level. As simplification levels are adjusted,
the user can observe changes in the scalar field, compare those changes to the original
field, and look for changes in flux in the histogram.

Step 5: Compute and Exit. Steps 1-4 may be repeated as many times as necessary,
until the user is satisfied. Once done, the user clicks “Compute and Exit”. This
will trigger a processing of the data cube and saving of output. Finally, the precise
command required to reproduce the results will be printed on the command-line.

6 Case Studies

We show the capabilities of our prototype with two case studies involving specific
ALMA data cubes used by coauthors.

6.1 Ghost of Mirach Galaxy Data Set

NGC 404 (also known as Mirach’s Ghost) is data of a molecular gas emission at
the center of the nearby, low mass galaxy. The data was taken using ALMA on
Oct. 31, 2015. A data cube is created using the default ALMA pipeline and involves
Fourier transformation of the interferometric data at each frequency. The data cube is
approximate 4.5GB with resolution of 5400x5400 in the spatial domain and 30 in the
spectral domain (i.e., 30 slices). However, the feature of interest is around 200x200
in size and covers around 10 slices. Scientists often sample cubes much larger than
their feature of interest to reduce some structured errors, vignetting for example.

Science Description. Excited molecular carbon monoxide gas emits light at 230
GHz. The doppler shifts of this line emission can provide information on the motion
of molecular gas in the galaxy. Visualization of the data of NGC404 shows a clear
rotating disk located within the central 20 light years of the galaxy (see Fig. 10).
Similar rotating molecular gas disks have been used to measure the masses of
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supermassive black holes at the centers of galaxies (e.g. [4, 42]). However, the data is
noisy, so coherent gas structures are hard to pick out. NGC 404 presents a special
challenge due to the low mass of its black hole [40]. Fortunately, the high angular
resolution of ALMA provides the highest sensitivity for measuring the black hole
mass.

We can see an example of 4 spectral slices of the data set in Fig. 8. In these 4
slices, the bright red spots represents the signal, while most of the remaining patterns
represent noise.

Varying Simplification Levels. Fig. 2 shows an example of performing simplification
on a single 2D spectra (i.e., a single slice along the frequency axis). The noisy structure
is captured by the 2D contour tree as many low persistence features (bottom left).
Increasing the level of simplification removes much of this noise (right). However,
selecting a simplification level that is too aggressive may result in loss of signal
(bottom right).

3D Contour Trees. Since the spectral data are treated as cubes, our collaborators are
interested in the structures that would be found using 3D contour trees. The result of
capturing the 3D contour tree, shown in Fig. 9, is both a surprise and a disappointment.
Although many critical points are found, the data suffer from topological pants—a
sphere with three disjoint closed discs removed [5]. Essentially, the 3D contours of
noisy features form a complex interconnect tubes through the volume that are not
physically meaningful. This interferes with the kind of features that a contour tree can
identify. The root cause of this is that each of the spectra are processed independently,
and thus, there is no correlation between noise patterns across consecutive slices.

Fig. 9 Result of simplifying using the 3D contour tree on the Ghost of Mirach data set is worse than
expect due to topological pants (tubes connecting through slices). Top left: Visualization of the 3D
contour tree on slice 22. Top right: Simplification of slice 16. Bottom: Simplification of slices 18,
20, & 22, respectively. The persistent simplification level is 0.00128.
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Simplifying these temporal noise patterns as a whole is not physically meaningful,
and they interfere with true features in the data.

2D Contour Tree Stacks. On the other hand, the processing of 2D contour trees is
highly successful. However, domain scientists still need the ability to process 3D
cubes. The obvious solution is to use a series of 2D contour trees to control the
simplification. Fig. 11 shows the result of simplifying a stack of spectra (slices). This
example uses a similar level of simplification to the 3D contour tree example in Fig. 9.
In our implementation, level of simplification is shared between all slices. This works
well for slices 16, 18, and 22 (top right, bottom left, and bottom right, respectively).
However, the level of simplification is not aggressive enough for slice 20 (bottom
middle). At this point the user could either select a more aggressive simplification,
or they could choose to simplify slice 20 separately from the others. Fig. 10 shows
the stack of slices 13-26 drawn using a custom-built conventional volume renderer.
Despite the natural denoising properties of volume rendering, the results without
persistent simplification (Fig. 10 top) are difficult to interpret when compared to
those with contour tree stack simplification (Fig. 10 bottom).

Moment 0 Analysis. Astrophysicists often use what is known as moment analysis to
reduce the 3D spectrum to 2D images. Moment 0, 1, and 2 measure the mass of gas,
the direction of gas movement, and the temperature of gas, respectively. They are all
integrals across the spectra. To demonstrate the noise reducing power of our approach,
we show the result of moment 0 analysis in Fig. 12 on the 2D stack simplification

Fig. 10 Result of volume rendering the Ghost of Mirach data set before (top) and after (bottom)
using a stack of images with 2D contour trees. The columns show 3 different viewing angles of
slices 13-26. The persistent simplification level is 0.00138. Side views (middle and right) of the
rendered volume are blurry due to lower resolution along the spectral dimension compared with the
two spatial dimensions.
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Fig. 11 Result of simplifying the Ghost of Mirach data set using a stack of images with 2D contour
trees. Top left: Visualization of the 2D contour tree on slice 22. Top right: Simplification of slice 16.
Bottom: Simplification of slices 18, 20, & 22, respectively. The persistent simplification level is
0.00138. The simplification level is good for all except slice 20 where a more aggressive level of
simplification is called for.

Fig. 12 Moment 0 analysis of Ghost of Mirach data set between slices 14 and 24 (the range of the
signal) using a stack of 2D contour trees. Left: Visualization of moment 0 for original data. Right:
Moment 0 results using data with simplification level of 0.0020.

from Fig. 11. Moment 0 is calculated as m0 = Iv, where I is the intensity for a given
spectra v. By removing the noise from each of the layers, the resulting moment map is
significantly less noisy making the signal itself very apparent. Our collaborator also
finds the dim feature pointed to by the arrow very interesting. He and his collaborators
have been actively debating whether this structure is signal or a data processing
artifact. Nevertheless, our approach retains it as a signal, and we are excited to see
how our results generate further conversations regarding the data.
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Fig. 13 Visualizations of selected slices from the range 100 to 200 of the CMZ data. Top: Slices
100, 120, 140, 160, and 180 before simplification, respectively. Bottom: Slices 100, 120, 140, 160,
and 180 after simplification, respectively. The simplification level used is 3.45.

6.2 CMZ Data Set

The CMZ data are a 13CO 2-1 image of the Central Molecular Zone (CMZ) of
the galaxy (data are published in [23]). The data cube is approximate 500MB with
resolution of 1150x200 in the spatial domain and 500 in the spectral domain (i.e.,
500 slices). We look at 100 slices of a region with resolution about 300x200.

Science Description. The cube shows the low-density molecular gas in the Galaxy’s
center, with higher intensities generally indicating that there is more gas moving at
a particular velocity along each line of sight. It contains highly turbulent gas with
properties that are very different than the rest of the Galaxy. Domain scientists use
these data to measure the structure of the interstellar medium, which is important for
determining how stars are formed and how galaxies evolve. Because the gas they are
seeing is in diffuse clouds that do not have well-defined edges, signal identification
is a critical component in improving their understanding of how the gas changes
states. Identifying structures in the gas is useful for determining how turbulent it is
on different scales, which plays a key role in may star formation theories.

Denoising Slices. Fig. 13 shows a number of slices denoised. The signal to noise
ratio in this data set is much better than the previous ones. Nevertheless, many low
persistent features have been removed using our approach.

Denoising for Moment Analysis. Deep cubes (those with many slices) such as
this one are often created in order to mitigate the impact of noise during moment
analysis – by more densely sampling the frequency domain, noise from any single
slice has a smaller impact in the output. However, creating deep cubes such as this
is computationally and manpower expensive. NRAO has significant human and
computational infrastructure dedicated to generating data cubes from the raw data
captured by radio telescopes. By providing strong denoising capabilities, data cubes
can be sampled at lower spectral frequencies and still produce similar moment maps.
See Fig. 14 for an example. Here, the top shows the moment map on the original data.
Then, moment maps are shown that are calculated using every slice (100 total), every
4th slices (25 total), and every 8th slice (12 total). The results using fewer slices are
virtually indistinguishable from the version using all 100 slices.
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7 Discussion

In this feasibility study, we focus on persistence-based simplification of ALMA data
cubes. Our application development process focuses on the usability objectives of
collaborators, simplicity, integrability, and reproducibility, and we recommend these
design objectives for anyone else wishing to collaborate with astrophysicists.

Despite our initial inclination to build a large scale visualization system, we find
that this is unnecessary given the existing array of visualization options. Instead,
what is needed is a simple and compact tool to understand the impact of parameter
selection on the data via visualization. Parameter selection is not intuitive to new
users. Without the visualization of the parameter selection, that intuition is relatively
difficult to build. Nevertheless, once the selection is complete, the visualization and
data processing can be easily reproduced using the information retained via the
command line interface.

Thus far, reception of our approach has been good. Virtually everyone who has
seen the results are impressed, for some, almost to the point of skepticism. Public
outreach with such a new tool using unfamiliar techniques remains challenging.
Among astrophysicists, there is a desire to understand both the tool and the underlying
technique, and given the complexities of topological data analysis, this can be a
challenging, but potentially transformative undertaking.

Acknowledgements This work was funded in part by a NRAO-NSF ALMA Development Grant
titled Feature Extraction & Visualization of ALMA Data Cubes through Topological Data Analysis.

Fig. 14 Visualizations of moment 0 for slices 100 to 200 of the CMZ data set computed using 2D
contour trees. Top left: Moment 0 on the original data. Top right: Moment 0 on all 100 simplified
slices. Bottom left: Moment 0 only using every 4th slice. Bottom right: Moment 0 only using every
8th slice. The simplification level used is 3.45.
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