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Abstract

We develop a topological approach to stratification
learning. Given point cloud data drawn from a strati-
fied space, our objective is to infer which points belong
to the same strata. First we define a multi-scale no-
tion of a stratified space, giving a stratification for each
radius level. We then use methods derived from ker-
nel and cokernel persistent homology to cluster the data
points into different strata, and we prove a result which
guarantees the correctness of our clustering, given cer-
tain topological conditions. We later give bounds on
the minimum number of sample points required to infer,
with probability, which points belong to the same strata.
Finally, we give an explicit algorithm for the clustering
and apply it to some simulated data.

1 Introduction
Manifold learning is a basic problem in geometry, topology,
and statistical inference that has received a great deal of at-
tention. The basic idea is as follows: given a point cloud
of data sampled from a manifold in an ambient space RN ,
infer the underlying manifold. A limitation of the problem
statement is that it does not apply to sets that are not mani-
folds. For example, we may consider the more general class
of stratified spaces that can be decomposed into strata, which
are manifolds of varying dimension, each of which fit to-
gether in some uniform way inside the higher dimensional
space.

In this paper, we study the following problem in stratifi-
cation learning: given a point cloud sampled from a strat-
ified space, how do we cluster the points so that points in
the same cluster are in the same stratum, while points in dif-
ferent clusters are not? Intuitively, the strategy should be
clear: two points belong in the same stratum if they “look
the same locally,” meaning that they have identical neigh-
borhoods, within the larger space, at some very small scale.
However, the notion of “local” becomes unclear in the con-
text of sampling uncertainty, since everything becomes quite
noisy at vanishingly small scale. In response, we introduce
a radius parameter r and define a notion of local equivalence
at each such r.
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Our tools are derived from algebraic topology. In partic-
ular, we define local equivalence between points via maps
between relative homology groups, and we then attempt to
infer this relation by using ideas coming from persistent ho-
mology (Edelsbrunner and Harer 2010).

Prior Work The field of topological data analysis is ex-
panding. Topological persistence has been used to analyze
scaler fields over point cloud data (Chazal et al. 2009b) and
methods have been developed that reduce high dimensional
data sets into simplicial complexes that capture the topolog-
ical and geometric information (Singh, Mémoli, and Carls-
son 2007).

Consistency in manifold learning has often been recast as
a homology inference statement: as the number of points in
a point cloud goes to infinity, the inferred homology con-
verges to the true homology of the underlying space. Re-
sults of this nature have been given for manifolds (Niyogi,
Smale, and Weinberger 2008a; 2008b) and a large class of
compact subsets of Euclidean space (Chazal, Cohen-Steiner,
and Lieutier 2009). Stronger results in homology inference
for closed subsets of a metric space are given in (Cohen-
Steiner, Edelsbrunner, and Harer 2007).

Geometric approaches to stratification inference have
been developed including inference of a mixture of linear
subspaces (Lerman and Zhang 2010), mixture models for
general stratified spaces (Haro, Randall, and Sapiro 2007),
and generalized Principal Component Analysis (GPCA) (Vi-
dal, Ma, and Sastry 2005) developed for dimension reduc-
tion for mixtures of manifolds.

The study of stratified spaces has long been a focus of
pure mathematics (Goresky and MacPherson 1988; Wein-
berger 1994). A deterministic analysis of inference of lo-
cal homology groups of a stratified space was addressed in
(Bendich et al. 2007). An extended version of this paper can
be found in (Bendich, Mukherjee, and Wang 2010).

2 Background
We review necessary background on persistent homology
and stratified spaces.

Persistence Modules
Let A be some subset of R. A persistence module FA is a
collection {Fα}α∈A of Z/2Z-vector spaces, together with
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Figure 1: The vector v is born at level i and then it dies at level j.

a family {fβ
α : Fα → Fβ}α≤β∈A of linear maps such that

α ≤ β ≤ γ implies fγ
α = fγ

β ◦ fβ
α (Chazal et al. 2009a). We

will assume that the index set A is either R or R≥0 and not
explicitly state indices unless necessary.

A real number α is said to be a regular value of the per-
sistence module F if there exists some ε > 0 such that the
map fα+δ

α−δ is an isomorphisms for each δ < ε. Otherwise
we say that α is a critical value of the persistence module;
if A = R≥0, then α = 0 will always be considered to be a
critical value. We say that F is tame if it has a finite number
of critical values and if all the vector spaces Fα are of finite
rank. Any tame R≥0-module F must have a smallest non-
zero critical value ρ(F); we call this number the feature size
of the persistence module.

Assume F is tame and so we have a finite ordered list of
critical values 0 = c0 < c1 < . . . < cm. We choose regular
values {ai}m

i=0 such that ci−1 < ai−1 < ci < ai for all
1 ≤ i ≤ m, and we adopt the shorthand notation Fi ≡ Fai

and f j
i : Fi → Fj , for 0 ≤ i ≤ j ≤ m. A vector v ∈ Fi is

said to be born at level i if v 6∈ im f i
i−1, and such a vector

dies at level j if f j
i (v) ∈ im f j

i−1 but f j−1
i (v) 6∈ im f j−1

i−1 .
This is illustrated in Figure 1. We then define P i,j to be
the vector space of vectors that are born at level i and then
subsequently die at level j, and βi,j denotes its rank.

Persistence Diagrams The information contained within
a tame module F is often compactly represented by a per-
sistence diagram, Dgm(F). This diagram is a multi-set of
points in the extended plane. It contains βi,j copies of the
points (ci, cj), as well as infinitely many copies of each point
along the major diagonal y = x. In Figure 2 the persistence
diagrams for a curve and a point cloud sampled from it are
displayed; see Section 2 for a full explanation of this figure.

For any two points u = (x, y) and u′ = (x′, y′) in the
extended plane, we define ||u−u′||∞ = max{|x−x′|, |y−
y′|}. We define the bottleneck distance between any two
persistence diagrams D and D′ to be:

dB(D,D′) = inf
Γ:D→D′

sup
u∈D

||u− Γ(u)||∞,

where Γ ranges over all bijections from D to D′. Under
certain conditions, persistence diagrams will be stable under
the bottleneck distance.

(Co)Kernel Modules Suppose now that we have two per-
sistence modules F and G along with a family of maps
{φα : Fα → Gα} which commute with the module maps
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Figure 2: Illustration of a point cloud and its persistence diagram.
Top: X is the curve embedded as shown in the plane and U is
the point cloud. Bottom left: the persistence diagram Dgm1(dX);
Bottom right: the persistence diagram Dgm1(dU ).

– for every pair α ≤ β, we have gβ
α ◦ φα = φβ ◦ fβ

α .
Then, for each pair of real numbers α ≤ β, the restriction
of fβ

α to ker φα maps into ker φβ , giving rise to a new ker-
nel persistence module, with persistence diagram denoted
by Dgm(ker φ). Similarly, we obtain a cokernel persistence
module, with diagram Dgm(cok φ).

Homology
Our main examples of persistence modules all come from
homology groups, either absolute or relative, and the various
maps between them. Homology persistence modules can
arise from families of topological spaces {Xα}, along with
inclusions Xα ↪→ Xβ for all α ≤ β. Whenever we have such
a family, the inclusions induce maps Hj(Xα) → Hj(Xβ),
for each homological dimension j ≥ 0, and hence we
have persistence modules for each j. Defining H(Xα) =⊕

j Hj(Xα) and taking direct sums of maps in the obvious
way, will also give one large direct-sum persistence module
{H(Xα)}.

Distance Functions Here, the families of topological
spaces will be produced by the sublevel sets of distance
functions. Given a topological space X embedded in some
Euclidean space RN , we define dX as the distance func-
tion which maps each point in the ambient space to the
distance from its closest point in X. More formally, for
each y ∈ RN , dX(y) = infx∈X dist (x, y). We let Xα de-
note the sublevel set d−1

X [0, α]; each sublevel set should be
thought of as a thickening of X within the ambient space. In-
creasing the thickening parameter produces a growing fam-
ily of sublevel sets, giving rise to the persistence module
{H(Xα)}α∈R≥0; we denote the persistence diagram of this
module by Dgm(dX) and use Dgmj(dX) for the diagrams of
the individual modules for each homological dimension j.

In Figure 2, we see an example of such an X embedded
in the plane, along with the persistence diagram Dgm1(dX).
We also have the persistence diagram Dgm1(dU ), where U
is a dense point sample of X. Note that the two diagrams
are quite close in bottleneck distance. Indeed, the difference
between the two diagrams will always be upper-bounded by
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Figure 3: Left: The space X is in solid line and the closed ball B
has dotted boundary. Right: the persistence diagram for the module
{H1(Xα ∩B, Xα ∩ ∂B)}.

= + + +

Figure 4: The coarsest stratification of a pinched torus with a span-
ning disc stretched across the hole.

the Hausdorff distance between the space and its sample.
Persistence modules of relative homology groups also

arise from families of pairs of spaces, as the next exam-
ple shows. Referring to the left part of Figure 3, we let
X be the space drawn in solid lines and B the closed ball
whose boundary is drawn as a dotted circle. By restrict-
ing dX to B and also to ∂B, we produce pairs of sub-
level sets (Xα ∩ B, Xα ∩ ∂B). Using the maps induced
by the inclusions of pairs, we obtain the persistence module
{H(Xα∩B, Xα∩∂B)}α∈R≥0 of relative homology groups.
The persistence diagram, for homological dimension 1, ap-
pears on the right half of Figure 3.

Stratified Spaces
We assume that we have a topological space X embedded in
some Euclidean space RN . A (purely) d-dimensional strati-
fication of X is a decreasing sequence of closed subspaces

X = Xd ⊇ Xd−1 ⊇ . . . X0 ⊇ X−1 = ∅,
such that for each i, the i-dimensional stratum Si = Xi −
Xi−1 is a (possibly empty) i-manifold. The connected com-
ponents of Si are called i-dimensional pieces. This is illus-
trated in Figure 4, where the space X is a pinched torus with
a spanning disc stretched across the hole. One usually also
imposes a requirement to ensure that the various pieces fit
together uniformly. We refer to (Hughes and Weinberger
2000) for precise definitions. Loosely speaking, a strati-
fication is a decomposition of X into strata such that any
two points belonging to the same stratum have similar local
structure.

Local Homology and Homology Stratifications Recall
((Munkres 1984)) that the local homology groups of a space
X at a point x ∈ X are the groups Hi(X, X− x) in each ho-
mological dimension i. If X happens to be a d-manifold, or

if x is simply a point in the top-dimensional stratum of a d-
dimensional stratification, then these groups are rank one in
dimension d and trivial in all other dimensions. On the other
hand, the local homology groups for lower-stratum points
can be more interesting; for example if x is the crossing
point in Figure 5, then H1(X, X− x) has rank three.

If x and y are close enough points in a particular piece
of the same stratum, then there is a natural isomorphism be-
tween their local homology groups H(X, X−x) ∼= H(X, X−
y), which can be understood in the following manner. Tak-
ing a small enough radius r and using excision, we see
that the two local homology groups in question are in fact
just H(X ∩ Br(x), X ∩ ∂Br(x)) and H(X ∩ Br(y), X ∩
∂Br(y)). Both of these groups will then map, via intersec-
tion of chains, isomorphically into the group H(X∩Br(x)∩
Br(y), ∂(Br(x) ∩ Br(y)), and the isomorphism above is
then derived from these two maps. See the points in Fig-
ure 5 for an illustration of this idea.

In (Rourke and Sanderson 1999), the authors define the
concept of a homology stratification of a space X. Briefly,
they require a decomposition of X into pieces such that the
locally homology groups are locally constant across each
piece; more precisely, that the maps discussed above be
isomorphisms for each pair of close enough points in each
piece. This is interesting because in computations we will
not be able to distinguish anything finer.

3 Topological Inference Theorem
From the discussion above, it is easy to see that any stratifi-
cation of a topological space will also be a homology strat-
ification. The converse is unfortunately false. However, we
can build a useful analytical tool based on the contraposi-
tive: given two points in a point cloud, we can hope to state,
based on their local homology groups and the maps between
them, that the two points should not be placed in the same
piece of any stratification. To do this, we first adapt the defi-
nition of these local homology maps into a more multi-scale
and robust framework. More specifically, we introduce a
radius parameter r and a notion of local equivalence, ∼r,
which allows us to group the points of X, as well as of the
ambient space, into strata at this radius scale. We then give
the main result of this section: topological conditions under
which the point cloud U can be used to infer the strata at
different radius scales.

Local Equivalence
We assume that we are given some topological space X em-
bedded in some Euclidean space in RN . For each radius
r ≥ 0, and for each pair of points p, q ∈ RN , we define the
following homology map φX(p, q, r):

H(X ∩Br(p), X ∩ ∂Br(p))
→H(X ∩Br(p) ∩Br(q), X ∩ ∂(Br(p) ∩Br(q))). (1)

Intuitively, this map can be understood as taking a chain,
throwing away the parts that lie outside the smaller range,
and then modding out the new boundary. Alternatively, one
may think of it as being induced by a combination of inclu-
sion and excision.
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Figure 5: Left: x ∼r y, y �r z. Right: the 1-dim persistence
diagram, for the kernel of the map going from the z ball into its
intersection with the y ball. A number, i.e., #2, labeling a point in
the persistence diagram indicates its multiplicity.

Using these maps, we impose an equivalence relation on
RN .

Definition 3.1 (Local equivalence) Two points x and y are
said to have equivalent local structure at radius r, de-
noted x ∼r y, iff there exists a chain of points x =
x0, x1, . . . , xm = y from X such that, for each 1 ≤ i ≤ m,
the maps φX(xi−1, xi, r) and φX(xi, xi−1, r) are both iso-
morphisms.

In other words, x and y have the same local structure at
this radius iff they can be connected by a chain of points
which are pairwise close enough and whose local homol-
ogy groups at radius r map into each other via intersection.
Different choices of r will of course lead to different equiv-
alence classes. For example, consider the space X drawn in
the plane as shown in the left half of Figure 5. At the ra-
dius drawn, point z is equivalent to the cross point and is not
equivalent to either the point x or y. Note that some points
from the ambient space will now be considered equivalent
to x and y, and some others will be equivalent to z.

On the other hand, a smaller choice of radius would result
in all three of x, y, and z belonging to the same equivalence
class.

(Co)Kernel Persistence In order to relate the point cloud
U to the equivalence relation ∼r, we must first define a
multi-scale version of the maps φX(p, q, r); we do so by
gradually thickening the space X. Let dX : RN → R
denote the function which maps each point in the ambient
space to the distance from its closest point on X. For each
α ≥ 0, we define Xα = d−1

X [0, α]. For each p, q, and r,
we will consider the intersection map φX

α(p, q, r), which is
defined by substituting Xα for X in (1). Note of course that
φX(p, q, r) = φX

0 (p, q, r).
For the moment, we fix a choice of p, q, and r, and we use

the following shorthand: BX
p (α) = Xα ∩Br(p), ∂BX

p (α) =
Xα ∩ ∂Br(p), BX

pq(α) = Xα ∩Br(p) ∩Br(q), ∂BX
pq(α) =

Xα ∩ ∂(Br(p) ∩ Br(q)), and we also often write BX
p =

BX
p (0) and BX

pq = BX
pq(0). By replacing X with U in this

shorthand, we also write BU
p (α) = Uα∩Br(p), and so forth.

For any pair of non-negative real values α ≤ β the in-
clusion Xα ↪→ Xβ gives rise to the following commutative

diagram:

H(BX
p (α), ∂BX

p (α))
φX

α−−→ H(BX
pq(α), ∂BX

pq(α))

↓ ↓

H(BX
p (β), ∂BX

p (β))
φX

β−−→ H(BX
pq(β), ∂BX

pq(β)) (2)

Hence there are maps ker φX
α → ker φX

β and cok φX
α →

cok φX
β . Allowing α to increase from 0 to ∞ gives rise to

two persistence modules, {ker φX
α} and {cok φX

α}, with di-
agrams Dgm(ker φX) and Dgm(cok φX). Recall that a ho-
momorphism is an isomorphism iff its kernel and cokernel
are both zero. In our context then, the map φX is an isomor-
phism iff neither Dgm(ker φX) nor Dgm(cok φX) contain
any points on the y-axis above 0.

Examples As shown in the left part of Figure 5, x, y and z
are points sampled from a cross embedded in the plane. Tak-
ing r as drawn, we note that the right part of the figure dis-
plays Dgm1(ker φX), where φX = φX(z, y, r); we now ex-
plain this diagram in some detail. The group H1(BX

z , ∂BX
z )

has rank three; as a possible basis we might take the three
classes represented by the horizontal line across the ball,
the vertical line across the ball, and the two short segments
defining the northeast-facing right angle. Under the inter-
section map φX = φX

0 , the first of these classes maps to
the generator of H1(BX

zy, ∂BX
zy), while the other two map to

zero. Hence ker φX
0 has rank two. Both classes in this kernel

eventually die, one at the α value which fills in the northeast
corner of the larger ball, and the other at the α value which
fills in the entire right half; these two values are the same
here due to symmetry in the picture. At this value, the map
φX

α is an isomorphism and it remains so until the intersec-
tion of the two balls fills in completely. This gives birth to
a new kernel class which subsequently dies when the larger
ball finally fills in. The diagram Dgm1(ker φX) thus con-
tains three points; the leftmost two show that the map φX is
not an isomorphism.

Inference Theorem
Given a point cloud U sampled from X consider the follow-
ing question: for a radius r, how can we infer whether or not
any given pair of points in U has the same local structure at
this radius? In this subsection, we prove a theorem which
describes the circumstances under which we can make the
above inference. Naturally, any inference will require that
we use U to judge whether or not the maps φX(p, q, r) are
isomorphisms. The basic idea is that if U is a dense enough
sample of X, then the (co)kernel diagrams defined by U will
be good enough approximations of the diagrams defined by
X.

(Co)Kernel Stability Again we fix p, q, and r, and write
φX = φX(p, q, r). For each α ≥ 0, we let Uα = d−1

U [0, α].
We consider φU

α = φU
α (p, q, r), defined by replacing X with

Uα in (1). Running α from 0 to ∞, we obtain two more per-
sistence modules, {ker φU

α} and {cok φU
α}, with diagrams

Dgm(ker φU ) and Dgm(cok φU ).
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Figure 6: The point in the X-diagrams lie either along the solid
black line or in the darkly shaded region. Adding the lightly shaded
regions, we get the region of possible points in the U -diagrams.

If U is a dense enough sample of X, then the (co)kernel
diagrams defined by U will be good approximations of the
diagrams defined by X. More precisely, we have the follow-
ing consequence of the diagram stability result in (Chazal et
al. 2009a):

Theorem 3.1 ((Co)Kernel Diagram Stability) The bottle-
neck distances between the (co)kernel diagrams of φU and
φX are upper-bounded by the Hausdorff distance between U
and X:

dB(Dgm(ker φU ),Dgm(ker φX)) ≤ dH(U, X),

dB(Dgm(cok φU ),Dgm(cok φX)) ≤ dH(U, X).

Main Inference Result We now suppose that we have a
point sample U of a space X, where the Hausdorff distance
between the two is no more than some ε; in this case, we call
U an ε-approximation of X. Given two points p, q ∈ U and
a fixed radius r, we set φX = φX(p, q, r), and we wish to de-
termine whether or not φX is an isomorphism. Since we only
have access to the point sample U , we instead compute the
diagrams Dgm(ker φU ) and Dgm(cok φU ). The main The-
orem of this section, Theorem 3.2, gives conditions under
which these diagrams enable us to answer the isomorphism
question for φX. To state the theorem we first need some
more definitions.

Given any persistence diagram D, which we recall is a
multi-set of points in the extended plane, and two positive
real numbers a < b, we let D(a, b) denote the intersection
ofD with the portion of the extended plane which lies above
y = b and to the left of x = a; note that these points corre-
spond to classes which are born no later than a and die no
earlier than b.

For a fixed choice of p, q, r, we consider the fol-
lowing two persistence modules: {H(BX

p (α), ∂BX
p )} and

{H(BX
pq(α), ∂BX

pq)}. We let σ(p, r) and σ(p, q, r) denote
their respective feature sizes and then set ρ(p, q, r) to their
minimum.

We now give the main theorem of this section, which
states that we can use U to decide whether or not φX(p, q, r)
is an isomorphism as long as ρ(p, q, r) is large enough rela-
tive to the sampling density.

Theorem 3.2 (Topological Inference Theorem) Suppose
that we have an ε-sample U from X. Then for each pair of

points p, q ∈ RN such that ρ = ρ(p, q, r) ≥ 3ε, the map
φX = φX(p, q, r) is an isomorphism iff

Dgm(ker φU )(ε, 2ε) ∪Dgm(cok φU )(ε, 2ε) = ∅.

This is illustrated in Figure 6. The proof follows, after
some work, from the persistence diagram stability results in
(Chazal et al. 2009a).

Examples Here we give two examples illustrating the
topological inference theorem. For the first example, as
shown in Figure 7, suppose we have X in the top left and
we take the points p and q and r as drawn; in this case, one
can show that ρ(p, q, r) = 8.5, which here is the distance be-
tween the line segment and the boundary of the intersection
of the two r-balls. First we compute the (co)kernel persis-
tence diagrams for φX, showing only the kernel diagram in
the top right. Since the y-axis of this diagram is free of any
points (and the same holds for the un-drawn cokernel dia-
gram), p and q have the same local structure at this radius
level. On the other hand, suppose that we have an ε-sample
U of X, with ε = 2.8 < ρ/3, as drawn in the bottom left.
We can compute the analogous U -diagrams, with the kernel
diagram drawn in the bottom right. Noting that the rectan-
gle defined by (ε, 2ε) in the diagram is indeed empty, and
that the same holds for the cokernel diagrams, we can ap-
ply Theorem 3.2 to infer that the points have the same local
structure at radius level r.

For the second example, as shown in Figure 8, suppose
X is the cross on the top left with p, q, r as drawn. Then p
and q are locally different at this radius level, as shown by
the presence of two points on the y-axis of the kernel per-
sistence diagram. In the bottom left, we show an ε-sample
U of X, with 3ε < ρ(p, q, r). Note that the kernel diagram
for φU does indeed have two points in the relevant rectangle,
therefore indicating different local structure.

4 Probabilistic Inference Theorem
The topological inference of Section 3 states conditions un-
der which the point sample U can be used to infer stratifi-
cation properties of the space X. The basic condition is that
the Hausdorff distance between the two must be small. In
this section we describe two probabilistic models for gen-
erating the point sample U , and we provide an estimate of
how large this point sample should be to infer stratification
properties of the space X with a quantified measure of confi-
dence. More specifically, we provide a local estimate, based
on ρ(p, q, r) and ρ(q, p, r), of how many sample points are
needed to infer the local relationship at radius level r be-
tween two fixed points p and q; this same theorem can be
used to give a global estimate of the number of points needed
for inference between any pair of points whose ρ-values are
above some fixed low threshold.

Sampling Strategies
We assume X to be compact. Since the stratified space X can
contain singularities and maximal strata of varying dimen-
sions, some care is required in the sampling design. Con-
sider for example a sheet of area one, punctured by a line of
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Figure 7: Kernel persistence diagram of two local equivalent
points, given X (top) and given U (bottom).

length one. In this case, sampling from a naively constructed
uniform measure on this space would result in no points be-
ing drawn from the line. This same issue arose and was dealt
with in (Niyogi, Smale, and Weinberger 2008b), although in
a slightly different approach than we will develop.

The first sampling strategy is to remove the problems of
singularities and varying dimension by replacing X by a
slightly thickened version X ≡ Xδ . We assume that X is em-
bedded in RN for some N . This new space is a smooth man-
ifold with boundary and our point sample is a set of n points
drawn identically and independently from the uniform mea-
sure µ(X) on X, U = {x1, ..., .xn}

iid∼ µ(X). This model
can be thought of as placing an appropriate measure on the
highest dimensional strata to ensure that lower dimensional
strata will be sampled from. We call this model M1.

The second sampling strategy is to deal with the problem
of varying dimensions using a mixture model. In the ex-
ample of the sheet and line, a uniform measure would be
placed on the sheet, while another uniform measure would
be placed on the line, and a mixture probability is placed
on the two measures; for example, each measure could be
drawn with probability 1/2. We now formalize this ap-
proach. Consider each (non-empty) i-dimensional stratum
Si = Xi − Xi−1 of X. All strata that are included in the
closure of some higher-dimensional strata, in other words
all non-maximal strata, are not considered in the model. A
uniform measure is assigned to the closure of each maxi-
mal stratum, µi(Si), this is possible since each such clo-
sure is compact. We assume a finite number of maximal
strata K and assign to the closure of each such stratum a
probability pi = 1/K. This implies the following density,
f(x) = 1

K

∑K
j=1 νi(X = x), where νi is the density corre-

sponding to measure µi. The point sample is generated from
the following model: U = {x1, ..., .xn}

iid∼ f(x). We call
this model M2.

The first model replaces a stratified space with its thick-
ened version, which enables us to place a uniform measure
on the thickened space. Although this replacement makes
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Figure 8: Kernel persistence diagram of two points that are not
locally equivalent, given X (top) and given U (bottom). A number,
i.e., #2, labeling a point in the persistence diagram indicates its
multiplicity.

it convenient for sampling, it does not sample directly from
the actual space. The second model samples from the actual
space, however the sample is not uniform on X with respect
to Lebesgue measure.

Lower bounds on the sample size of the point cloud
Our main theorem is the probabilistic analogue of Theorem
3.2. An immediate consequence of this theorem is that, for
two points p, q ∈ U , we can infer with probability at least
1 − ξ whether p and q are locally equivalent, p ∼r q. The
confidence level 1 − ξ will be a monotonic function of the
size of the point sample.

The theorem involves a parameter v(ρ), for each positive
ρ, which is based on the volume of the intersection of ρ-balls
with X. First we note that each maximal stratum of X comes
with its own notion of volume: in the plane punctured by
a line example, we measure volume in the plane and in the
line as area and length, respectively. The volume vol (Y)
of any subspace Y of X is the sum of the volumes of the
intersections of Y with each maximal stratum. For ρ > 0,
we define

v(ρ) = inf
x∈X

vol (Bρ/24(x) ∩ X)
vol (X)

(3)

We can then state:

Theorem 4.1 (Local Probabilistic Sampling Theorem)
Let U = {x1, x2, ..., xn} be drawn from either model M1

or M2. Fix a pair of points p, q ∈ RN and a positive radius
r, and put ρ = min{ρ(p, q, r), ρ(q, p, r)}. If

n ≥ 1
v(ρ)

(
log

1
v(ρ)

+ log
1
ξ

)
,



then, with probability greater than 1 − ξ we can correctly
infer whether or not φX(p, q, r) and φX(q, p, r) are both iso-
morphisms.

To extend the above theorem to a more global re-
sult, one can pick a positive ρ and radius r, and con-
sider the set of all pairs of points (p, q) such that ρ ≤
min{ρ(p, q, r), ρ(q, p, r}. Applying Theorem 4.1 uniformly
to all pairs of points will give the minimum number of sam-
ple points needed to settle the isomorphism question for all
of the intersection maps between all pairs.

5 Algorithm
The theorems in the last sections give conditions under
which a point cloud U , sampled from a stratified space X,
can be used to infer the local equivalences between points
on X and its surrounding ambient space. We now describe
clustering U -points themselves into strata. We imagine that
we are given the following input: a point cloud U sampled
from some stratified space X, and a fixed radius r. We make
the assumption that dH(U, X) ≤ ε ≤ ρmin

3 , where ρmin is
the minimum of ρ(p, q, r) for all pairs (p, q) ∈ U×U . Later
we discuss the consequences when this assumption does not
hold and a possible solution.

We build a graph where each node in the graph corre-
sponds uniquely to a point from U . Two points p, q ∈ U
(where ||p − q|| ≤ 2r) are connected by an edge iff both
φX(p, q, r) and φX(q, p, r) are isomorphisms, equivalently
iff Dgm(ker φU )(ε, 2ε) and Dgm(cok φU )(ε, 2ε) are empty.
The connected components of the resulting graph are our
clusters. Note that the connectivity of the graph is encoded
by a weight matrix, and our clustering strategy is based on a
0/1-weight assignment.

A crucial subroutine in the clustering algorithm is
the computation of the diagrams Dgm(ker φU ) and
Dgm(cok φU ). Basically we use simplicial complexes con-
structed from Delaunay triangulation and the (co)kernel per-
sistence algorithm described in (Cohen-Steiner et al. 2009).
It is quite complicated, we defer all details to our technical
report (Bendich, Mukherjee, and Wang 2010).

Robustness of clustering Two types of errors in the clus-
tering can occur: false positives where the algorithm con-
nects points that should not be connected and false negatives
where points that should be connected are not. The current
algorithm we state is somewhat brittle with respect to both
false positives as well as false negatives. The false positives
are driven by the condition in Theorem 3.2 that ρmin < 3ε,
so if the point cloud is not sampled fine enough we can
get incorrect positive isomorphisms and therefore incorrect
edges in the graph. If we use transitive closure to define the
connected components this can be very damaging in practice
since a false edge can collapse disjoint components into one
large cluster. If we replace transitive closure with a spectral
clustering approach we will have a more robust clustering or
assignments. It is natural to think of the 0/1-weight assign-
ment on pairs of points p, q ∈ U as an association matrix W.
Given this association matrix we can use spectral clustering
to obtain a robust partition of the points (Meilǎ and Shi 2001;
Kannan, Vempala, and Veta 2000).
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Figure 9: Top: both points are from 1-strata. Bottom: one point
from 0-strata, one point from 1-strata. Left part shows the locations
of the points. Right part shows the ker/cok persistence diagram of
two points respectively, if the diagrams are the same, only one is
shown.

6 Simulations
We use a simulation on simple synthetic data with points
sampled from grids to illustrate how the algorithm performs.
In these simulations we assume we know ε, and we run
our algorithm for 0 ≤ α ≤ 2ε. The three data sets tested
are: points sampled from a cross; points sampled from a
plane intersecting a line; points sampled from two intersect-
ing planes. We use the following result to demonstrate that
the inference on local structure, at least for these very simple
examples, is correct. As shown in Figure 9 top, if two points
are locally equivalent, their corresponding ker/cok persis-
tence diagrams contain the empty quadrant prescribed by
our theorems, while in Figure 9 bottom, the diagrams associ-
ated to two non-equivalent points do not contain such empty
quadrants. Similar results are shown for the other data sets
in Figure 10 and 11, where a number labeling a point in the
persistence diagram indicates its multiplicity.

7 Discussion
We would like to make clear that we consider the algorithm
in this paper a first step and several issues both statistical
and computational can be improved upon. We state a few
extensions of interest here. The algorithm to compute the
(co)kernel diagrams from the thickened point cloud should
be quite slow when the dimensionality of the ambient space
is high due to the runtime complexity of Delaunay triangu-
lation. Is there a faster way, for example, using Rips or Wit-
ness complexes (de Silva and Carlsson 2004)? Currently we
use a graph with 0/1 weights based on the local equivalence
between two points. Extending this idea to assign fractional
weights between points is appealing as it suggests a more
continuous metric for local equivalence. This may also al-
low for greater robustness when using spectral methods to
assign points to strata.
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