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Abstract Metric graphs are special types of metric spaces used to model and rep-
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1 Introduction

Graphs are ubiquitous in data analysis, often used to model social, biological and
technological systems. Often, data with a notion of distance can be modeled by a
metric graph. A graph is a metric graph if each edge is assigned a positive length
and if the graph is equipped with a natural metric where the distance between any
two points of the graph (not necessarily vertices) is defined to be the minimum path
length between them [13]. A metric graph is therefore a special type of metric space
that captures simple forms of geometric relations in data that arise in both abstract
and practical settings, such as biological networks, social networks and road net-
works. For example, the movement patterns that GPS systems trace for vehicles
can be modeled as a metric graph for location-aware applications. Brain functional
networks as metric graphs capture the blood-oxygen-level dependent signal corre-
lations among different areas of the brain [4]. Social networks as metric graphs can
encode strengths of influence between social entities (e.g., persons or corporations).
Extracting the topological structures of such networks can provide powerful insights
for navigating and understanding their underlying data.

Our work aims to describe topological structures of metric graphs by using per-
sistent homology, a fundamental tool in topological data analysis that has been used
in many applications to measure topological features of shapes and functions [10].
In this work, we give a qualitative description of information that can be captured
from metric graphs using topological, persistence-based summaries. Theorem 1.1,
the main theorem in this paper, provides a complete characterization of the persis-
tence diagrams in dimension 1 for metric graphs in a particular intrinsic setting.

Theorem 1.1 Let G be a metric graph of genus g with shortest cycle basis {γ1, . . . ,γg},
and for each i = 1, . . . ,g, let |γi| = `i be the length of the ith cycle, with `i ≤ ` j for
all i≤ j. Then the 1-dimensional intrinsic Čech persistence diagram of G, denoted
Dg1ICG, consists of the following collection of points on the y-axis:

Dg1ICG =

{(
0,

`i

4

)
: 1≤ i≤ g

}
.

Related Work. The work of Adamaszek et. al [3] is most relevant to ours, as it helps
to characterize persistence diagrams in all dimensions for a metric graph with a sin-
gle cycle. In [3], the authors show that the intrinsic Vietoris-Rips or Čech complex
of n points in the circle S1, at any scale r, is homotopy equivalent to either a point,
an odd-dimensional sphere, or a wedge sum of spheres of the same even dimension.
The results in [3] further imply that the 1-dimensional homology group of a metric
graph with a single cycle is either rank 1 (in the case where the associated intrinsic
complex is homotopy equivalent to S1) or rank 0 (in all other cases). One can then

show that the 1-dimensional persistence diagram consists of the single point
(

0,
`

4

)
or
(

0,
`

6

)
in the case of the Čech or Vietoris-Rips filtration, respectively, where `

is the length of the cycle [2].
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In this paper, we generalize the above result from [3] from a metric graph with a
single cycle to a metric graph containing an arbitrary set of cycles in homological
dimension 1. This characterization of persistence diagrams in dimension 1 of an
arbitrary metric graph complements the work in [3] and constitutes an important step
toward the characterization of the intrinsic Čech persistence diagrams of arbitrary
metric graphs across all dimensions.

In addition to the Čech and Vietoris-Rips complexes, there are a number of other
types of complexes or combinatorial structures related to graphs. In [16], the author
studies the relationship between properties of a graph G and the homology of an
associated neighborhood complex. The paper [18] contains a study of so-called de-
void complexes of graphs where simplices correspond to vertex sets whose induced
subgraphs do not contain certain forbidden subgraphs. However, the neighborhood
and devoid complexes are more related to structural, rather than metric, properties
of graphs, so we turn our attention in the remainder of this paper to the more metric-
derived Čech complex.

Outline. The outline of the paper is as follows. In Section 2, we recall the necessary
background on persistent homology, in particular for the case that the underlying
topological space is a metric graph. We prove Theorem 1.1 in Section 3. Finally, we
discuss our results and plans for future work in Section 4.

2 Background

2.1 Homology

Homology is an invariant that characterizes properties of a topological space X . In
particular, the k-dimensional holes (connected components, loops, trapped volumes,
etc.) of a space generate a homology group, Hk(X). The rank of this group is referred
to as the k-th Betti number βk and counts the number of k-dimensional holes of X .
We provide a brief overview of simplicial homology below. For a comprehensive
study, see [12, 15]. For a more categorical viewpoint, see [17], and for a discussion
of cubical complexes, see [14].

A simplicial complex S is a set consisting of a finite collection of k-simplices
where a 0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a filled-in tri-
angle, a 3-simplex is a solid tetrahedron, and so on. The k-simplices must satisfy the
following: (1) if σ is a simplex in S, then all lower-dimensional subsets of σ , called
subsimplices, are also in S, and (2) two simplices are either disjoint or intersect in a
lower-dimensional simplex.

An algebraic structure of a vector space or an R-module over some ring R is im-
posed on the simplicial complex S to uncover the homology of the underlying topo-
logical space as follows. The k-simplices form a basis for a vector space, S(k), over
some ground field (or ring) F. We call the vector space S(k) the k-dimensional chain



4 Gasparovic, Gommel, Purvine, Sazdanovic, Wang, Wang, and Ziegelmeier

group over simplicial complex S. The finite field Zp (where p is a small prime), Z
or Q are common choices for the ground field or ring. Furthermore, for each pair
of consecutive vector spaces there is a linear map, δk : S(k) → S(k−1), turning the
sequence of chain groups into a chain complex:

· · · → S(k+1) δk+1−−→ S(k)
δk−→ S(k−1) · · · .

These maps are known as boundary operators, taking each k-simplex to an alternat-
ing sum of its (k− 1)-subsimplices, its boundary. More precisely, if [v0,v1, . . . ,vk]
is a k-simplex, the boundary map δk : S(k)→ S(k−1) is defined by

δk([v0,v1, . . . ,vk]) =
k

∑
i=0

(−1)i[v0, . . . , v̂i, . . . ,vk]

where [v0, . . . , v̂i, . . . ,vk] is the (k−1)-simplex obtained from [v0, . . . ,vk] by remov-
ing vertex vi.

The simplicial homology, Hk(S), of a simplicial complex S is defined based
on two subspaces of the vector space S(k): Zk = ker(δk) known as k-cycles, and
Bk = im(δk+1) = δk+1(S(k+1)) known as k-boundaries. Since the boundary operator
satisfies the property δk ◦δk+1 = 0 for every 0≤ k≤ dim(S), the set of k-boundaries
is contained in the set of k-cycles. Then, Hk(S) = Zk/Bk consists of the equivalence
classes of k−cycles that are not k+1-boundaries (up to homotopy). The elements of
Hk(S) are called homology classes and can thus be thought of as equivalence classes
represented by cycles enclosing kth order holes that differ by elements of a bound-
ary. The rank of the associated homology group Hk(S) is the number of distinct k
dimensional holes, and is referred to as the kth Betti number, denoted βk.

2.2 Persistent homology and metric graphs

In persistent homology, rather than studying the topological structure of a single
space, X , one considers how the homology changes over an increasing sequence of
subspaces. Given a topological space X and a filtration of this space,

X1 ⊆ X2 ⊆ X3 ⊆ . . .⊆ Xm = X ,

applying the homology functor gives a sequence of homology groups induced by
inclusion of the filtration

Hk(X1)→ Hk(X2)→ . . .→ Hk(Xm).

A filtration of a topological space may be defined in a number of ways. By con-
sidering a continuous function (such as a height function) on the topological space
f : X → R, one may define the sublevel set filtration
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f−1(−∞,a0)→ f−1(−∞,a1)→ . . .→ f−1(−∞,∞).

Another approach is to build a sequence of simplicial complexes on a set of points
using, for instance, the Vietoris-Rips filtration [11] or the intrinsic Čech filtration [6]
discussed below. Persistent homology [5, 10] then tracks elements of each homology
group through the filtration. This information may be displayed in a persistence
diagram for each homological dimension k. A persistence diagram is a set of points
in the plane together with an infinite number of points along the diagonal where
each point (x,y) corresponds to a homological element that appears (is ‘born’) at
Hk(Xx) and which no longer remains (‘dies’) at Hk(Xy). See Figure 1 for an example
persistence diagram. Notice that distinct topological features may have the same
birth and death coordinates; therefore, a persistence diagram is actually a multiset
of points. Since all topological features die after they are born, this is an embedding
into the upper half plane above the diagonal y = x. Points near the diagonal are
often considered noise while those further from the diagonal represent more robust
topological features. For a more detailed description of applications of persistent
homology to various problems in the experimental sciences, see [5, 8, 11].

1 2 3 · · ·

Fig. 1 An example persistence diagram with four points: (1, 8), (2, 4), (3, 7), and (4, 5) corre-
sponding to the birth and death values for distinct topological features.

In this paper, we focus on understanding the topological structure of a metric
graph in homology dimension k = 1. Given a simple graph G = (V,E) we de-
fine a metric graph to be a metric space (|G|,dG) that is homeomorphic to a 1-
dimensional finite stratified space consisting of 0-dimensional pieces (i.e. vertices)
and 1-dimensional pieces (i.e. edges or loops) glued together, as described in [1, 9].
More formally, any graph G with vertex set V and edge set E, together with a length
function, Len : E → R≥0, on E that assigns lengths to edges in E, gives rise to a
metric graph (|G|,dG) where |G| is a geometric realization of G and dG is defined
in the following manner. Using the notation of [9], let e denote an edge in E with |e|
its image in |G|, let e : [0,Len(e)]→ |e| be the arclength parametrization, and define
dG(x,y) = |e−1(y)− e−1(x)| for any x,y ∈ |e|. This enables one to define the length
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of any given path between two points in |G| by first restricting the path to edges in G
and then summing the lengths. Then one may define the distance dG(u,v) between
any pair of points u,v ∈ |G| to be the minimum length of any path in |G| between u
and v.

We consider a simplicial complex built on a metric graph as follows. Let (G,dG)
be a metric graph with geometric realization |G|. For any point x ∈ |G|, we define
the set B(x,ε) := {y ∈ |G| : dG(x,y)≤ ε}, and we let Uε := {B(x,ε) : x ∈ |G|} be an
open cover. The nerve of a family of sets (Yi)i∈I is the abstract simplicial complex
defined on the vertex set I by the rule that a finite set σ ⊆ I is in the nerve if and
only if

⋂
i∈σ Yi 6= /0. We let Cε denote the nerve of Uε . The associated intrinsic Čech

filtration is defined as the set of inclusion maps

{Cε ↪→Cε ′}∀0≤ε≤ε ′ .

The intrinsic Čech filtration on the metric graph G induces the persistence module

{H∗(Cε)→ H∗(Cε ′)}∀0≤ε≤ε ′

in any dimension, from which we obtain the intrinsic Čech persistence diagrams,
denoted by Dg∗ICG. In this paper, we shall only be interested in Dg1ICG.

3 Proof of Main Theorem

In this section, we prove Theorem 1.1 by working with certain mappings on the level
of chain groups and their induced mappings on the level of homology groups. These
mappings possess important properties from which the statement of the theorem
follows.

Proof (Theorem 1.1). Let G be a metric graph of genus g with shortest cycle basis
given by {γ1, . . . ,γg}, where for each i = 1, . . . ,g, |γi| = `i is the length of the ith

cycle, and `i ≤ ` j for all i ≤ j. Let Cδ , for a sufficiently small positive value of δ ,
be the Čech complex which is equivalent to the graph G. For ε > δ , we consider
the chain map µε : Cδ → Cε given by inclusion, and the associated inclusion map
µc

ε : C(1)
δ
→ C(1)

ε of one dimensional chain groups. The latter induces the map on

one dimensional homology µh
ε : H(1)

δ
→ H(1)

ε , where H(1)
δ

= H1(C
(1)
δ

) and H(1)
ε =

H1(C
(1)
ε ).

First, note that each of the g cycles in G must have been born at δ (≈ 0) since
the overlap of δ -balls in Uδ will create a cycle in the associated nerve complex.

Furthermore, γi will be fully triangulated in Cε for ε =
`i

4
. This is due to the fact that,

for any triple of points x,y,z∈ γi, B
(

x,
`i

4

)⋂
B
(

y,
`i

4

)⋂
B
(

z,
`i

4

)
6= /0. Therefore

γi must die at
`i

4
or earlier. The rest of the proof consists of showing that:
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A) For i = 1, . . . ,g, the ith cycle does not die before ε =
`i

4
; and

B) No other cycles are created due to interference between cycles.

Notice that A) and B) can be reformulated to the language of bases, where con-
dition A) is equivalent to a linear independence condition, and B) is equivalent to
a spanning condition. Therefore, the proof of Theorem 1.1 follows from Proposi-
tion 3.1.

Proposition 3.1 For any i = 1, . . . ,g, the set

{[µc
ε (γi)], [µ

c
ε (γi+1)], . . . , [µ

c
ε (γg)]}

is a basis for H(1)
ε where

`i−1

4
≤ ε <

`i

4
and `0 = 0.

Proof (Proposition 3.1). We will prove the two conditions A) and B).

For A), we show that
g

∑
j=i

c j[µ
c
ε (γ j)] = [0] implies c j = 0 for all j. Let γ =

g

∑
j=i

c jµ
c
ε (γ j) be a cycle representing the trivial class [0] = [γ] ∈ H(1)

ε . Assume, by

way of contradiction, that there exists j with i ≤ j ≤ g such that c j 6= 0. Since
[γ] = [0], there exists a 2-dimensional chain α ∈ Cε having γ as its boundary, i.e.,
∂α = γ . Let α = ∑

k∈J
∆k where, for some index set J, {∆k}k∈J is the set of 2-

simplices in the triangulation of α , and where for each k, tk := ∂∆k ∈ C(1)
ε . Then

γ = ∂α = ∂ ∑
k

∆k = ∑
k

∂∆k = ∑
k

tk, i.e.

γ =
g

∑
j=i

c jµ
c
ε (γ j) = ∑

k
tk. (1)

We aim to contradict the fact that some c j 6= 0 in the above sum. To this end,
we define a map ρ : C(1)

ε → C(1)
δ

by specifying its effect on a basis for C(1)
ε , the

edges in the Čech complex Cε , and extending the map linearly to the rest of C(1)
ε .

Recall that the existence of the edge [u,v]∈C(1)
ε implies, by definition, that B(u,ε)∩

B(v,ε) 6= /0. Thus, we define ρ([u,v]) to be a shortest path in C(1)
δ

contained within
B(u,ε)∪B(v,ε) which passes through this nontrivial intersection.

Notice that the restriction ρ|
C(1)

δ

: C(1)
δ
→ C(1)

δ
is the identity mapping. Clearly

ρ|
C(1)

δ

is the identity on the basis elements, the edges in the Čech complex C(1)
δ

, since

there is no shorter path within C(1)
δ

than the edge itself. Then, by linearity, ρ|
C(1)

δ

is

the identity on all of C(1)
δ

. Additionally, ρ(µc
ε (γ j)) = ρ(γ j) = γ j since µc

ε (γ j) = γ j ∈
C(1)

ε . Applying ρ to equation (1) we obtain the following:
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ρ(γ) =
g

∑
j=i

c jγ j = ∑
k

ρ(tk). (2)

Next, we show that for each k, ρ(tk) is the sum of short cycles. Notice that tk =
[wk

0,w
k
1,w

k
2] = ∂∆k represents a trivial cycle in C(1)

ε , so there must exist some point

wk ∈
2⋂

n=0

B(wk
n,ε). See Figure 2.

wk
0

wk
2 wk

1

wk
0

wk
2 wk

1

wk
πk0

πk2
πk1

ρ P k
2 P k

0

P k
1

Fig. 2 Action of ρ on the triangle tk = [wk
0,w

k
1,w

k
2]. Notice the three cycles contained in ρ(tk).

Consequently, for n = 0,1,2, there exist the following paths πk
n and Pk

n in the
Cech complex C(1)

δ
:

• πk
n = [wk,wk

n] which has length less than or equal to ε , and
• Pk

n = ρ([wk
n,w

k
(n+1 mod 3)]), of length at most 2ε , since each Pk

n must be contained
within the intersection of two ε-balls.

Therefore, ρ(tk) =
2

∑
n=0

π
k
n +Pk

n − π
k
(n+1 mod 3) is the sum of three cycles, each of

length at most ε + ε +2ε = 4ε . Since the length of ρ(tk) is less than 4ε < `i, ρ(tk)
can be expressed in terms of the shortest cycle basis {γ j}i−1

j=1 for C(1)
δ

:

ρ(γ) = ∑
k

ρ(tk) = ∑
k

i−1

∑
j=1

ck
jγ j =

i−1

∑
j=1

c′jγ j. (3)

=⇒
g

∑
j=i

c jγ j
(2)
=

i−1

∑
j=1

c′jγ j (4)

=⇒
i−1

∑
j=1

c jγ j +
g

∑
j=i

(−c′j)γ j = 0. (5)

As the set {γi}g
i=1 is a basis for C(1)

δ
, the coefficients in the above sums must all be

zero, that is c j = 0 for all j, which contradicts our initial assumption. Therefore, the
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set {[µc
ε (γi)], [µ

c
ε (γi+1)], . . . , [µ

c
ε (γg)]} is linearly independent in H(1)

ε . In particular,

γi does not become trivial before
`i

4
.

Next, to prove B), we show that the map µh
ε : H(1)

δ
→ H(1)

ε is surjective by show-
ing that it has a right inverse up to homotopy. In other words, we will show that for
every [η ] ∈ H(1)

ε ,

µ
h
ε ([ρ(η)]) = [(µc

ε ◦ρ)(η)] = [η ] ∈ H(1)
ε (6)

where the chain η ∈C(1)
ε is a geometric realization of the class [η ].

Consider a cycle η = {u0,u1, . . . ,uk,u0} ∈C(1)
ε representing [η ]∈H(1)

ε . Let p j =

ρ([u j,u j+1]) = {u j,v
j
1, . . . ,v

j
m j ,u j+1} be a shortest path between u j and u j+1 passing

through B(u j,ε)∩B(u j+1,ε), for j = 0,1, . . . ,k and uk+1 = u0. Then the image ρ(η)

is just a concatenation of these paths ρ(η) = p0 + p1 + · · ·+ pk ∈C(1)
δ

.
To show equation (6) holds, we need to prove that [ρ(η)] = [η ] by showing that

p j is path homotopic to the path determined by {u j,u j+1} for all j = 0,1, . . . ,k and
uk+1 = u0.

Since B(u j,ε)∩B(u j+1,ε) 6= /0, there exists some point v j
l ∈ p j such that v j

l ∈
B(u j,ε)∩B(u j+1,ε). Let p(1)j be the path from u j to v j

l and p(2)j be the path from

v j
l to u j+1 (see Figure 3). Because these are shortest paths and v j

l is in the intersec-

tion of B(u j,ε) and B(u j+1,ε), it follows that p(1)j ⊆ B(u j,ε) and p(2)j ⊆ B(u j+1,ε).

Therefore, each of the following is a 2-dimensional cell: ∆(u j,v
j
n,v

j
n+1) ∈Cε for all

0≤ n< l and ∆(u j+1,v
j
n,v

j
n+1)∈Cε for all l ≤ n<mn. This shows homotopy equiv-

alence of η and ρ(η) and therefore [ρ(η)] = [η ] which establishes equation (6).

uj uj+1

p
(1)
j p

(2)
jvjl

Fig. 3 A part of Cδ used to illustrate that [ρ(η)] = [η ]. In particular, each edge [u j,u j+1] will be

mapped by ρ to a chain of edges. p(1)j is colored in blue, and the path p(2)j is colored in red. The
homotopy is realized in two 2-dimensional cells (represented by the blue/red shading) that exist in
Cδ based on the Čech construction.

Notice that [ρ(η)] =
g

∑
j=i

c j[γ j] ∈ H(1)
δ

since
`i−1

4
≤ ε <

`i

4
. By equation (6) we

have
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[η ] = µ
h
ε ([ρ(η)]) = µ

h
ε (

g

∑
j=i

c j[γ j])

=
g

∑
j=i

c j[µ
c
ε (γ j)] ∈ Span({[µc

ε (γ j)]} j≥i),

which completes the proof of the surjectivity of µh
ε . This establishes the spanning

condition B). In other words, if [η ] is a homology class in H(1)
ε then it must be

formed only from homology classes [µc
ε (γ j)] for j≥ i, and thus no additional cycles

are created.

4 Future Work

The overarching theme of this work is to show how persistence may be used to ob-
tain qualitative-quantitative summaries of metric graphs that reflect the underlying
topology of the graphs. We obtained a complete characterization of all possible in-
trinsic Čech persistence diagrams in homological dimension one for metric graphs.
What is currently known regarding the characterization of intrinsic Čech persistence
diagrams for metric graphs is summarized in a diagram shown in Figure 4. The hor-
izontal axis represents the homological dimension and the vertical axis represents
the genus (number of shortest cycles) of a graph. In this setting, the previous results
of Adamaszek, et al. [3] who consider the intrinsic Čech persistence diagrams in all
dimensions for a graph that consists of a single cycle, lie on the horizontal line at
height one, while the results in this paper constitute the blue vertical line. The rest
of the upper-right quadrant is unknown and our hope is to make further progress
toward a complete characterization of the intrinsic Čech persistence diagrams asso-
ciated to arbitrary metric graphs. Moreover, we aim to generalize our results to the
Vietoris-Rips complex.

The choice of a particular complex may be inspired by particular graph fea-
tures that one is interested in. A graph motif is usually thought of as a graph on
a small number of vertices (in general, any graph pattern can be a motif). Counting
the number of small motifs in a graph is equivalent to the subgraph isomorphism
problem, which is NP-complete. Since persistence has a polynomial time computa-
tional complexity, the question we would like to answer is: can the intrinsic Čech or
other related persistence diagrams be used to determine or approximate graph motif
counts? Additionally, the local version of this question, the number of graph motifs
incident with a particular vertex, may be approached via the local homology at a
vertex (homology of the k-neighborhood of a vertex relative to its boundary). As a
start, persistence-based characterizations of a class of graph motifs should be ob-
tained. Depending on the type of characterization obtained, we would be interested
in determining to what extent our persistence-based summaries could be useful in
the classification of the motifs present in a query graph.
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homology dimension

genus
of

graph G

[Ref 3]

[Our work]

?
Remains Open

1

1

Fig. 4 Figure summarizing the results from this paper and from [3].

Ultimately, the complete or partial characterization of the topological informa-
tion about a graph that is captured by persistent homology associated to various
chain complex constructions is closely related to comparing their discriminative
powers. In particular, we are interested in comparing the Čech and persistence dis-
tortion distance summaries.

The intrinsic Čech filtration and associated persistence diagrams allow one to
define the intrinsic Čech distance, dIC, between two metric graphs (G1,dG1) and
(G2,dG2). This distance, introduced in [6], is defined as follows:

dIC(G1,G2) := dB(Dg1ICG1 ,Dg1ICG2),

where dB is the bottleneck distance between the two intrinsic Čech persistence dia-
grams in dimension 1.

The persistence distortion distance, dPD, that was first introduced in [9], is more
closely related to the metric properties of a graph. Given a base point s ∈ |G|, define
fs : |G| → R to be the geodesic distance to the base point s, i.e, fs(x) = dG(s,x) for
all x ∈ |G|. Then Dg1 fs is the 1st-extended persistence diagram [7] associated to the
sublevel set filtration induced by fs. One may do this for any given base point in the
metric graph, yielding a set of persistence diagrams for each graph. Let

φ : |G| → SpDg

s 7→ Dg fs

where SpDg denotes the space of all persistence diagrams. Then φ(|G|)⊂ SpDg is
called the persistence distortion of G. The persistence distortion distance between
two metric graphs is defined to be the Hausdorff distance between their persistence
distortion sets:
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dPD(G1,G2) := dH(φ(|G1|),φ(|G2|)).

A natural question to ask is whether or not dPD is more discriminative than dIC,
i.e., whether or not there exists a constant c > 0 such that

dIC(G1,G2)≤ c ·dPD(G1,G2).

We are currently working on extending preliminary results that establish the in-
equality for certain classes of metric graphs to arbitrary input graphs.
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