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Abstract

We use persistent homology along with the eigenfunctions of the
Laplacian to study similarity amongst triangulated 2-manifolds.
Our method relies on studying the lower-star filtration induced
by the eigenfunctions of the Laplacian. This gives us a shape
descriptor that inherits the rich information encoded in the
eigenfunctions of the Laplacian. Moreover, the similarity be-
tween these descriptors can be easily computed using tools that
are readily available in Topological Data Analysis. We pro-
vide experiments to illustrate the effectiveness of the proposed
method.

1 Introduction

Shape similarly is a critical problem is computer vision, geo-
metric data processing and computer graphics. Multiple at-
tempts have been made to quantify the similarity among 3D
shapes [1, 30, 27]. Several challenges rise up when trying to
construct an effective and efficient similarity measure includ-
ing the complexity of the data, the potential noise in the data
and the variation in the structure.

While the Laplacian eigenfunctions have been utilized in the
literature of geometric processing to extract shape descriptors
[29, 33], most of the eigenfunction-based descriptors require
extensive processing to obtain an effective descriptor. Further-
more, the comparison between such descriptors requires de-
signing a specialized similarity measure that adds to overhead
computational time [32].

The eigenfunctions of the Laplacian store important infor-
mation about the geometry of the underlying manifold [23, 24].
Moreover, spaces that have similar structures also tend to have
similar sets of eigenfunctions [17]. From this perspective it is
natural to utilize the eigenfunctions to measure the similarity
between a collection of 3D shapes. The difficulty usually lies in
finding the correspondence between two given manifolds [32].
More specifically, when manifold is discretized this correspon-
dence might not even exist due to the difference between the
cardinalities of the two vertex sets. Instead sub part correspon-
dence might be considered, which is also a difficult problem [2].

In recent years the interplay between machine learning and
Topological Data Analysis (TDA) has witnessed many devel-
opments with the better understanding of two tools in TDA:
Persistent Homology (PH) [8] and the construction of Map-
per [26]. These TDA tools have been shown to be a powerful
tool for shape classification and recognition [15, 21], data sum-
mary [12, 5], topological signatures of data [3], graph under-
standing [13], among others.

In this paper we utilize persistent homology to extract the in-
formation encoded in the eigenfunctions of the Laplacian to ob-
tain a topological mesh signature that can be used to measure
the similarity among triangulated manifolds. Our proposed
method has multiple advantages. On one hand, the method

proposed here avoids the correspondence problem all together.
Our approach relies on extracting the topological information
encoded into the lower-star filtration (see Section 2 for the def-
inition) of the eigenfunctions of the Laplacian and storing the
resulting finger print in a structure called the persistence di-
agram [8]. This ultimately allows for an effective comparison
between two manifolds by comparing between the persistence
diagrams that are induced by the eigenfunctions of the Lapla-
cian.

Using the persistence diagram to compare between metric
spaces has been previously applied to meshes [4]. However, the
metric-based method in [4] has two major limitations. Firstly,
finding the distance function on large meshes is computation-
ally expensive and usually requires utilizing a sampling tech-
nique, which might affect the quality of the final persistence
diagram. Secondly, in order to obtain a strong descriptor from
the persistence diagram induced by the distance matrix, one
usually needs the information encoded in higher order persis-
tence diagrams, which are expensive to compute.

Our method avoids these two limitations. On one hand, our
method computes the persistence diagram using the lower-star
filtration of one or a few eigenfunctions of the Laplacian. In
fact we show that utilizing a single eigenfunction yields a per-
sistence diagram that has more classification power than the
metric-based approach in [4]. On the other hand, our method
only requires the 0-order persistence diagram, which is very
efficient to compute. We demonstrate our results by showing
the effectiveness of our descriptor on standard datasets. See
Section 3 for more details.

2 Persistence Homology on Triangulated
Meshes

The mesh topological signature that we propose here utilizes a
particular filtration that is induced by a scalar function defined
on a mesh M . Our work is mainly aimed at studying triangu-
lated meshes. However, we will state our definitions in terms
of simplicial complexes. The reason for this is that most tech-
niques introduced in this article are applicable beyond meshes,
and we will provide more details in this regard towards the
conclusion.

Let K be a simplicial complex. Let S be an ordered sequence
σ1, · · · , σn of all simplices in the complex K, such that for
simplex σ ∈ K every face of σ appears before σ in S. Then S
induces a nested sequence of subcomplexes called a filtration:

φ = K0 ⊂ K1 ⊂ ... ⊂ Kn = K (2.1)

such that Ki = ∪j≤iσj is the subcomplex obtained from first
i simplicies σ1, · · · , σi of S. Given a filtration as in 2.1, one
may apply the homology functor on it to obtain a sequence of
homology groups connected by homomorphism maps induced
by the inclusions:

F(K) : Hd(K0) −→ Hd(K1) −→ ... −→ Hd(Kn) (2.2)
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A d-homology class α ∈ Hd(Ki) is said to be born at time i
if it appears for the first time as a homology class in Hd(Ki).
A d-class α dies at time j if it is trivial in Hd(Kj) but not
trivial in Hd(Kj−1). The persistence of the class α that is
born at Hd(Ki) and dies at Hd(Kj) is defined to be j − i.
Persistent homology captures the birth and death events in a
given filtration and summarizes them in a multi-set structure
called the persistence diagram P d(K) [8]. Specifically, the d-
persistence diagram of a filtration F(K) is a collection of pairs
(i, j) in the plane, where each (i, j) indicates a d-homology class
that is created at time i in the filtration F(K) and dies entering
time j. A persistence diagram can be represented equivalently
by persistence barcodes [11]. Specifically every point (i, j) in the
persistence diagram can be represented by a bar that starts at
time u and ends at time v.

Persistence homology tracks the evolution of homology
classes as this element moves though the homomorphism from
left to right. More specifically, Persistent homology can be de-
fined given any filtration, such as equation 2.1. For our purpose
we are given a piece-wise linear function f : |K| −→ R defined
on the vertices of K. We assume that the function f has dif-
ferent values on different vertices of K. Any such a function
induces a filtration called the lower-star filtration. We define
this filtration next.

Let v ∈ V (K) be a vertex of K. The star of v, denoted as
St(v), is the set of all simplices in K that contain v as a vertex.
When we are given a piece-wise linear function f defined on K,
we can also define the lower star of v. Namely, the lower star of
a vertex v ∈ V (K) as LowSt(v) = {w ∈ St(v)|f(w) ≤ f(v)}.

Let V = {v1, · · · , vn} be the set of vertices of K sorted
in non-decreasing order of their f -values. Let Ki :=
∪j≤iLowSt(vj). The lower-star filtration is the filtration is
defined to be

Ff (K) : φ = K0 ⊂ K1 ⊂ ... ⊂ Kn = K (2.3)

The lower-star filtration reflects the topology of the function
f in the sense that the persistence homology induced by the
filtration, equation 2.3, is identical to the persistent homology
of the sublevel sets of the function f . We denote P df (K) to be
the d-persistence diagram induced by the lower-star filtration
Ff (K). In our work, the lower-star filtration is the main tool
to extract the signature from a given space.

Here we focus on triangulated meshes, and we only compute
the 0-persistence diagram on those meshes using the filtration
induced by the lower-star filtration of the eigenfunctions of the
Laplacian of these meshes. Such persistence diagrams can be
efficiently computed using the union-find data structure.

2.1 The Lower-Star Filtration Induced by the
Eigenfunctions of the Laplacian.

Let M be an triangulated manifold. The matrix L is self-
adjoint and positive semi-definite. It has an orthonormal eigen-
system (λn, φn)+∞n=0, Lφn = λnφn, with 0 = λ0 ≤ λn ≤ λn+1,
in C(G). The eigenvectors of the Laplacian L form a rich
family of scalar functions defined on G that have been uti-
lized extensively in shape understanding and shape comparison
[16, 23, 18]. The eigenfunctions of the Laplacian has also been
used in graph understand [25], segmentation [22], and spectral
clustering [20].

The reasons for extracting the information of the eigenfunc-
tions of the Laplacian using the lower-star filtration can be
summarized in the following points:

• The eigenfunctions of the Laplacian provide canonical
scalar functions that depend only on the intrinsic geomet-

ric properties of the mesh. In other words, they have all
desirable properties of eigenfunctions of the Laplacian—
being invariant under certain deformation and robustness
to noise and structure variation—will be inherited by the
persistence diagram induced by the lower-star filtration of
these functions.

• The eigenfunctions of the Laplacian store rich information
about the geometry of the underlying manifold and the
lower-star filtration provide the means to extract this in-
formation and stores it in the structure of the persistence
diagram. This structure provides a ranking for features
extracted from the eigenfunctions via the notion of persis-
tence.

Ordering the eigenvectors of L by the increasing value of their
corresponding eigenvalues, we use the first k-eigenvectors that
correspond to the smallest nonzero k eigenvalues of L. These
vectors contain low frequency information about the underlying
manifold, and they usually retain the shape of complex meshes.
In particular, we found that the first non-trivial eigenfunction
of the Laplacian to be very effective for our purpose. This
eigenfunction, called the Fiedler vector [9, 10], has many appli-
cations in graph theory as well as in computer graphics [14, 19].
Moreover, this vector has multiple interesting features. For in-
stance, the maximum and the minimum of the Fielder vector
tend to occur at points in the dataset with maximum geodesic
distance [6] allowing its values to spread from one end of the
graph following its “shape” to the other end.

2.2 Comparing Between Two Persistence Dia-
grams

We can quantify the structural differences persistence diagrams
by using the bottleneck distance.

Let η be a bijection between two persistence diagrams X and
Y . The bottleneck distance between X and Y [7] is defined as

W∞(X,Y ) = inf
η:X→Y

sup
x∈X
‖x− η(x)‖∞ . (2.4)

The bottleneck distance requires the persistence diagrams to
have the same cardinalities. For this reason we allow infinitely
replication of points along the diagonal y = x to a given per-
sistence diagram.

Other distances can also be defined on the space of persis-
tence diagrams, such as the Wasserstein distance. For the pur-
pose of this article we only restrict ourselves with the bottleneck
distance.

(a) (b) (c)

Figure 1: An illustration of the pipeline. (a) We compute one
of the eigenfunctions of the Laplacian on the meshes that we
want to compare. (b) The lower-star filtrations of the meshes
with respect to these scalar functions are computed and their
persistence diagrams are extracted. (c) A pairwise compari-
son between the persistence diagrams is performed using the
bottleneck or Wasserstein distances.
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Figure 2: On the left we show the data set that we used in our experiments. The data set consists of 60 triangulated meshes
that are divided into 6 categories, which are shown in the figure on the right. We compute the Fielder’s vector for each mesh in
this data set and then compute the 0-persistence diagram associated with the lower-star filtration of this vector. The bottleneck
distance between these diagrams is calculated, and the figure on the right shows the 2d t-SNE projection obtained using the final
distance matrix. Notice how our method provides distinct clusters on this data.

3 Method and Results

Given the above setup, our method can be summarized as fol-
lows. First we compute a certain eigenfunction of the Laplacian
on a given mesh dataset. In our case we used the Fielder’s vec-
tor. We then compute the 0-persistence diagrams of the lower-
star filtration induced by the chosen eigenfunction. Once we
have the persistence diagrams of the meshes, the distances be-
tween these diagrams can be computed using the bottleneck
distance we defined in Section 2.2. See Figure 1 for a summary
of the method.

To validate the effectiveness of the topological descriptor pro-
posed here, we test it using a publicly available data from [28].
The data set consists of 60 meshes that are divided into 6 cate-
gories: cat, elephant, face, head, horse and lion. Each category
contains exactly ten triangulated meshes.

On this dataset, we computing the distance matrix between
the persistence diagram of the lower-star filtration of the in-
duced Fielder’s vectors using bottleneck distance. To assess
the final results, we compute the 2d t-SNE projection [31] of
final distance matrix. The result is reported in Figure 2.

Note how this topological descriptor provides a distinct clus-
ters for the underlying data set. Furthermore, the results shown
here shows that the proposed descriptor has a better classifica-
tion power than the one proposed in [4].

One observation worth mentioning here is that the t-SNE
projection in Figure 2 shows that heads and faces clusters ap-
pear to be closer to the lions cluster than cats cluster. The
reason for this is mostly an artifact of the t-SNE projection.
In fact the MDS projection shows that the lions and the cats
cluster are indeed closer to each other than heads and faces.
We presented the t-SNE projection here over MDS since the
latter showed the some clusters too close to each other.

4 Further Directions and Conclusion

The experimentation results are only shown with respect to
Fielder’s vector. In theory any eigenfunction of the Laplacian
can be used in a similar manner, as illustrated above. Combin-
ing the signatures obtained from multiple eigenfunction poten-

tially provides even a stronger descriptor. We plan to pursue
this direction in the extension of this work.

The construction that we introduced here on triangulated
meshes can be easily extended to study similarity between other
types of objects. Namely any domain where the definition of
the Laplacian is applicable, such as points clouds and graphs.
We plan to investigate these directions in the future.
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