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(a) Scatterplot

(b) Angular Histogram and Opacity PCP (a = 0.003)

(c) DSPCP

Fig. 13: SCP, Angular Histogram, Opacity PCP, and the DSPCP
for the HIGGS dataset containing 11 millions data items. The
DSPCP can improve relationship identifying within noise detec-
tion. For example, jet1eta and jet1phi with their −0.107 Pearson
Correlation Coefficient appear almost positive in the conventional
PCP, opacity PCP, and Angular Histogram. However, the weak,
noisy negative relationship can be easily spotted using the DSPCP.

(Fig. 13b) reinforces the positive relationship misconception.
The DSPCP, on the other hand, identifies three relationships,

as shown in Fig. 13c. Two are minor positive relationships, while
the third is a large negative relationships. Furthermore, the large
size of the bowtie and freckled pattern contained within it indicate
that the relationship is noisy and weak.

Another example of this can be found between jet1phi and
m wbb, where the Pearson Correlation Coefficient is −0.132.
The additional visual encodes provided by the DSPCP enable
identification of this weak noisy negative relationship.

7.5 User Feedback
We have conducted 4 interviews with users related to the DSPCP.
Each interview was 1-hour and used a different dataset. One
participant was an advanced visualization PhD student, while the
other three were non-visualization users.

7.5.1 Planet Data
Our first interview involved a demonstration and interview with an
advanced visualization PhD student. The student’s work involved
developing an analysis tool for the planet data.

To begin, we first showed him the DSPCP with the synthetic
data (presented in Section 4.2) to acclimate him how to use
the DSPCP to understand data relationships. After that process,

(a) Angular Histogram and Opacity PCP

(b) DSPCP

Fig. 14: Angular Histogram and Opacity PCP, and the DSPCP for
the planet dataset containing 1827 data items and 16 dimensions.

we loaded in the planet data. Fig. 14b shows the DSPCP for
four dimensions, vj, teff, mass, and rad. Fig. 14a shows Angular
Histogram and Opacity Parallel Coordinates plots for the same
dimensions.

With the DSPCP, the student identified some interesting in-
formation. Among his observations, in Fig. 14b, he found that
stteff and stmass have weak nonlinear and positive relationships,
previously unknown. This is not clearly visible in the opacity PCP
and Angular Histogram. He also found the complex relationship
between stteff and stmass interesting using the DSPCP.

In the end of the interview, he shared his opinions about the
DSPCP. First, he commented that the method required remem-
bering two mechanisms for reading the positive and negative
cases. He agreed that this is similar to the standard PCP. He
commented that once he learned how to use the DSPCP, it was
easy to understand the data relationships. Finally, he commented
on the clustering mechanism. He stated that he would prefer to see
some overview of relationships before looking through clusters
and choosing the interesting ones. The DSPCP partially supports
this by highlighting the main cluster first.

7.5.2 Particle Data
We interviewed a second individual with the particle physics
data set as shown in Fig. 11. He thought the relationship of
d32 and d33 was difficult to identify in the scatterplot, PCP, and
Angular Histogram PCP, but it was easily seen in the DSPCP. The
scatterplot shows the points are dense on the top left and spread
out towards the lower right. However, this does not indicate the
true relationship. The traditional PCP shows the bowtie shape but
with significant overdraw. The angular histogram PCP helped him
to see the distribution of the data and guess the relationship, but it
was difficult for him to identify the direction of the relationship.



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2661309, IEEE
Transactions on Visualization and Computer Graphics

12

By using the DSPCP, he easily found the main negative relation-
ship and could estimate its strength using the contours.

7.5.3 Hurricane Data
We conduct an interview with a third individual using the hurri-
cane data set as shown in the Fig. 12. After an explanation of the
approach, he was interested in the relationship between Pressure
and Velocity. Using scatterplot and PCP, he could not determine
if it was positive or negative. Then he used angular histogram
and recognized that most data point looks like a band, making
him think that the relationship between Pressure and Velocity
was positive. When he used the DSPCP, he noted that there is
one negative relationship group and two other positive groups.
The negative relationship group at the front means Pressure and
Velocity primarily have a negative relationship. He was surprised
that the methods lead him to two different answers. The Pearson
Correlation Coefficient of these two attributes is −0.13, so glob-
ally they have weakly negative relationship.

7.5.4 HIGGS Data
We interviewed a final individual over the HIGGS data as shown
in Fig. 13. When he saw all scatterplots and PCPs of the data,
his immediate reaction was that the data are very noisy and
would be difficult to understand. We asked his opinion about
the correlation between jet1eta and jet1phi. First, looking at the
scatterplot he thought the attributes carried no relationship. Then,
we showed him the PCP visualization, and he guess that the
attributes had a positive relationship because most of the lines
seemed parallel. Seeing the angular histogram further reinforced
that belief. However, when he saw the DSPCP, he was surprised to
see it was a negative relationship with noise. Finally, we told him
that these two dimensions had Pearson Correlation Coefficient of
-0.102, confirming the information presented using the DSPCP.

8 DISCUSSION

We now compare our approach to other PCP alternatives and
discuss some important qualities of our approach.

8.1 Comparison with PCP Alternatives

Generally speaking, geometry-based PCPs suffer from overdraw
problems. Geometry-based PCPs can help users identify individual
data items for pairwise or across all data attributes. However, there
are many limitations of geometry-based PCPs when data is large,
including difficulty in identifying trends, outliers, and interpreting
noise.

Frequency-based PCPs overcome many of the geometry-based
limitation to help users explore clusters, linear relationships, and
outliers in data, while avoiding overdraw. However, frequency-
based PCPs, such as Angular Histogram PCPs, are still limited
in their ability to identify nonlinear relationships. Furthermore,
Angular Histogram PCPs aggregate the frequency of the lines
between pairs of axes. This means users can identify only the
principal trend of data and will have a difficult time interpreting
mixed trends or outliers within the data.

Density-based PCPs have addressed overdraw by replacing
opaque lines with a density representation. Heinrich and Weiskopf
did this with continuous parallel coordinates (CPC) [28], [32].
They provide a mathematical model of point density for counting
discrete lines. CPC naturally avoids overdraw in the continuous

domain, but the continuous domain lacks an efficient mechanism
to map features back to the original data items. Finally, CPC
visualizes data as uninterrupted, but discontinuities can represent
structures that might be meaningful for the interpretation of some
data [33]. Adopting this idea, Lehmann and Theisel introduced the
curve-curve duality and circle-area duality to highlight curves that
are dominant structures [62].

Global clusters in multidimensional data can be identified in
conventional PCPs and multivariate scatterplots [47], [49]–[51],
[57]. These multivariate scatterplot methods improve correlation
identification accuracy, completeness, distortion and interactions
for less noisy data, but these methods become difficult to use
when data is noisy. On the other hand, our approach reveals noisy
global relationships well (assuming you select a global clustering
technique), even when data is noisy. Fig. 2 is just such an example,
where k-means was applied globally.

Our approach does not suffer from overdraw, as drawing is
independent of both resolution and data size, enabling performing
the visual analysis tasks we have enumerated very effectively.
These tasks include easily identifying both global and local trends,
expressing nonlinear relationships, identifying outliers, and detect-
ing noise. The main drawbacks include losing the original data
lines, a problem suffered by all aggregation approaches, and the
need for users learn how to interpret a new set of visual encodings.

8.2 Crossing Points vs. Extracting Relationships

In conventional PCPs, finding the crossing points between data
items is an important part of understanding the relationships
among attributes. For example, many lines crossing at a sin-
gle point indicates a strong negative relationship. However, this
methodology does not stand up as large numbers of data items
overlap. Our approach addresses this problem by removing draw-
ing of individual lines and instead focuses on representing the
local relationships. The advantage of our approach is that the local
relationships we extracted are, in fact, loosely correspondent to the
crossing point that we see in a conventional PCP. Our approach
naturally focuses similar behaviors into the same area of the output
plot, culls irrelevant crossing points, and removes the visual cluster
of drawing many overlapping lines.

8.3 Features through Variations of k

An important contribution of our work is the use of multiple
values of k for modeling locally linear relationships (k in k-nearest
neighbors algorithms). Variations in k enable extracting features
on multiple scales. If the value of k is too small relative to a
feature, then it may appear as noise, or when the value of k
is large, our method will measure only the global relationship
of data. However, the variation of k enables capturing all scales
of relationship from local to global giving us access to the true
underlying the structure of the data.

8.4 Selecting the Number of Clusters

Selecting the correct number of clusters is, in general, an important
problem. If incorrect, features may be mixed or split. Though
we used k-means clustering and DBSCAN, substituting another
method may be helpful in improving clustering results. However,
the best choices for clustering (both algorithm and k) remain
largely outside the scope of this particular work.



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2661309, IEEE
Transactions on Visualization and Computer Graphics

13

8.5 Distribution Curves
When compared with an Angular Histogram, the distribution
curve in our method is also a histogram of data items that does
not show the direction of those data. In our case, understanding
data directions can be accomplished by inspecting the shape and
consistency maps and using interaction. Nevertheless, an Angular
Histogram could easily be substituted for our distribution curves,
if desired.

8.6 Information Lost through Abstraction
Overall, our abstractions loses very little information relative to
overdrawn PCPs. The only significant downside we have identified
is that it lends itself to false equivalency bias between trends of
different importance. For example, take an imaginary dataset with
2 trends. Trend 1 contains 95% of the data points, while trend
2 contains 5%. These 2 trends may appear equivalent within our
abstraction scheme. The differentiation could be made through the
distribution curves on the axis and histogram visual encodings,
though they remain a subtle feature.

9 CONCLUSION

In conclusion, we have proposed a data scalable approach for
identifying relationships in the parallel coordinates. In this ap-
proach, a new model is used for mapping data from its attribute
domain into the parallel coordinates domain, which has two major
advantages. First, our approach scales well with increases in the
size of data and avoids the overdraw problem. Second, using
thoughtful encodings, data clustering, and interactions helps users
identify relationships previously difficult to find in other types of
PCP.

Our approach supports identification of mixed linear and
nonlinear patterns in noisy data, and enables finding outliers. Rec-
ognizing nonlinear relations in PCPs is of particular significance,
as the task is difficult in conventional and most enhanced PCPs.
The results of our experiments for simulated and real-world data
demonstrate that our method is practical for high-performance
analysis of large complex data.

In the future, we plan to apply our method to larger datasets
and improve the performance of the preprocessing. We expect that
extremely large datasets will be those that most benefit from using
our approach. There are also a number of possible works on user
analysis using the approaches of Rados et al. [63] or Harrison
et al. [64]. This would help to understand the qualities of our
approach in the context of other popular techniques.

We also plan to investigate how the differences of participating
portions of data can be visualized. For example, we may consider
mapping the participation through color saturation or via the data
distribution curves on the axes. This information may help in
judging the reliable of a particular trend.
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