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DSPCP: A Data Scalable Approach for
Identifying Relationships in Parallel Coordinates

Hoa Nguyen and Paul Rosen

Abstract—Parallel coordinates plots (PCPs) are a well-studied technique for exploring multi-attribute datasets. In many situations,
users find them a flexible method to analyze and interact with data. Unfortunately, using PCPs becomes challenging as the number of
data items grows large or multiple trends within the data mix in the visualization. The resulting overdraw can obscure important
features. A number of modifications to PCPs have been proposed, including using color, opacity, smooth curves, frequency, density,
and animation to mitigate this problem. However, these modified PCPs tend to have their own limitations in the kinds of relationships
they emphasize. We propose a new data scalable design for representing and exploring data relationships in PCPs. The approach
exploits the point/line duality property of PCPs and a local linear assumption of data to extract and represent relationship
summarizations. This approach simultaneously shows relationships in the data and the consistency of those relationships. Our
approach supports various visualization tasks, including mixed linear and nonlinear pattern identification, noise detection, and outlier
detection, all in large data. We demonstrate these tasks on multiple synthetic and real-world datasets.

Index Terms—correlation, parallel coordinates plot, large data visualization.
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1 INTRODUCTION

P ARALLEL coordinates plots (PCPs) have been widely studied
in visualization, yet their adoption outside the community has

been slow. The number of publications with the term ”parallel
coordinates” in the title has been rising steadily, from 14 in 1991
to 543 in 2011, with 5620 total publications as of December
2012 [1]. Some find PCPs to be an invaluable way to analyze and
interact with their multi-attribute data, but the challenges faced
in widespread adoption are two-fold. First, like many visualiza-
tions, PCPs can be difficult to interpret for inexperienced users,
ultimately requiring training. Secondly, technical issues, including
overdraw, order of axes, line-tracing, nominal and ordinal data,
time series, pattern recognition, and uncertainty [2]–[4], make
them impractical for many scenarios.

Arguably the greatest technical challenge for PCPs, particu-
larly when considering large data, is that of overdraw. Overdraw
occurs when the overlapping lines obscure the patterns in the data.
Unfortunately, overdraw makes standard PCPs difficult to use for
large, noisy, or complex data (see Fig. 2 (top)).

A lesser, but still important challenge for PCPs is that of
nonlinear feature detection. Much like the overdraw case, the
overlapping lines of the PCP make finding a nonlinear trend
difficult. Once noise is added, the task is nearly impossible.

Three important visual features used when analyzing data with
PCPs. They are: (1) the angles of line segments, giving clues
as to positive or negative relationships; (2) the co-location of
line segment crossings, giving clues as to the strength of the
relationships; and (3) the distribution or density of line segments,
which can differentiate between trends and outliers.

For example, examine the basic PCP plots in Fig. 1. (1) The
angle of the lines relative to one another in Fig. 1a indicate a
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perfectly negative relationship, while lines that do not intersect,
such as the parallel lines of Fig. 1b, indicate a positive relationship.
(2) Notice that the position of line crossing in the Fig. 1c are not
co-located. This spreading indicates a weak negative relationship.
(3) Finally, the distribution, or density, of line segments can
differentiate trends and outliers. In Fig. 1d, the main trend appears
to be the 3 dense lines on the bottom with a separate outlier on the
top.

The majority of approaches to correct overdraw in parallel
coordinates have unfortunately not maintained one or more of
these properties.

We propose a new design for representing relationships in
PCPs that overcomes the overdraw problem, while simultaneously
maintaining all three properties, and as a bonus, it is able to clearly
represent nonlinear trends in data. Our approach, as seen in Fig. 2
(bottom), first segments the data into groups of homogeneous
behavior, representing each group as a layer in the visualization.

(a) A perfectly
negative
relationship

(b) Angle of line
segments

(c) Location of
crossings

(d) Density of
segments

Fig. 1: Examples of semantic features of PCPs with respect to (a),
a perfectly negative relationship with lines crossing at the same
point. (b) When the angle of lines are changed such that they no
longer intersect, the trend is now positive. (c) When the crossing
of lines is no longer co-located, a weaker trend is observed. (d)
The dense region at the bottom indicates a trend, while the single
data point at the top appears to be an outlier.
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(a) Conventional PCPs

(b) DSPCP using K-means clustering

Fig. 2: Whereas large data overwhelms conventional PCPs, our approach DSPCP, uses flexible relationship clustering and summarization
to identify large scale trends in the data, simultaneously highlighting adherence to the trend and showing outlier behavior. Here, trends
are tracked across multiple data attributes.

To address property (1), each layer then summarizes the overall
trend in the data via its shape. The comb shape represents
positive relationships, and the bow-tie represents negative ones. To
address property (2), the detail within the shapes highlights their
consistency. These consistency maps are found by modeling local
behaviors in the Cartesian coordinate system and transforming
those behaviors into the parallel coordinates domain. Maps with
a structured appearance better adhere to trends than those with
noise. Finally, to address property (3), a curve located along each
axis shows the density of data points at that location.

We demonstrate that this new visualization can clearly em-
phasize multiple patterns in data that include linear and nonlinear
relationships, and at the same time, it can differentiate major trends
from outlying trends. In addition, we show that this approach
scales well with respect to the size of the data. We compare our
approach with a few PCP variants through multiple tasks to show
that our approach outperforms the existing methods.

2 RELATED WORK

Parallel coordinates plots [5]–[7] work by displaying a single axis
for each attribute. Every data item is mapped to a vertex on each
parallel axis and connected by line segments. PCPs provide a
continuous comparative view across attributes. However, PCPs
suffer from numerous challenges. We focus on overdraw.

2.1 Overdraw in Parallel Coordinates

One of the most significant technical challenges with PCPs is
overdraw. As the number of data items grows large or the data
become noisy, overlapping lines obscure patterns. Various mod-
ifications have been proposed by using color, opacity, smooth
curves, frequency, density, or animation [8]–[13] to resolve this
problem. The majority of these approaches can be placed into
one of three categories: geometry-based approach that represents
the actual data points in PCPs, or frequency-based and density-
based approaches [1] that present abstractions of the data [14].
Unfortunately, most of these techniques have some form of
scalability limitation. Novotny and Hauser provided a method for
an outlier preserving PCP that solves some scalability issues by
producing several levels of abstraction that consider the outliers
individually [15].

2.1.1 Geometry-based Approaches
Geometry-based approaches use geometric objects such as points,
lines, curves, or polygons to represent individual data items or
groups of data items. Data items are most often represented as
linear splines intersecting each of the axes at their respective coor-
dinates. As lines overlap, they may prevent understanding the data.
Smooth and continuous curves can replace the lines for visualizing
multiple correlations, facilitating line tracing, reducing overdraw,
and visualizing clusters of data [11], [16]. Some techniques have
also used clustering algorithms to identify similar items based
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on proximity of lines or line density [17]–[19]. However, these
approaches still suffer from overdraw when data is large.

2.1.2 Frequency-based Approaches
Frequency-based approaches visualize histograms of data fre-
quency [20]–[22]. Frequency-based approaches aggregate and
filter data in a binning process [23]–[26]. Frequency-based PCPs
avoid overdraw but still suffer from limitations in identifying the
principal trend of data or interpreting mixed trends in data.

In the angular histogram PCPs [25], each polyline axis inter-
section is considered a vector, with the magnitude and direction
of these vectors visualized. This method helps users explore
clustering, linear relationship identification and find outliers in
data, while avoiding the overdraw problem of classic PCPs. How-
ever, angular histogram PCPs still have limitations in identifying
nonlinear relationships and finding the crossing locations of data.
Furthermore, angular histograms aggregate the frequency of the
lines between pairs of axes. The result is that only the principal
trend of data can be identified, and any mixed trends within the
data will be hidden.

2.1.3 Density-based Approaches
Density-based approaches visualize a continuous density function
of underlying data instead of discrete samples [27]–[31]. For
example, distance-based weighting constructs a multi-attribute
density function [32], [33]. Anisotropic diffusion of noise tex-
tures [34] has been employed to visualize line orientations. These
approaches avoid overdraw; however, they lack a good mechanism
to map patterns found using the approaches back to the original
data items, since they remove individual lines, such as those as in
the geometry-based PCPs.

The techniques most related to our own have addressed the
overdraw problem by replacing opaque lines with a density rep-
resentation. Heinrich and Weiskopf did this as an extension of
their continuous scatterplots work [35] called continuous parallel
coordinates (CPC) [28], [32]. CPCs work well with large data
represented on a grid with appropriate interpolation or approxima-
tion schemes, defined on a continuous domain. CPCs are largely
resolution-independent plots—low-resolution plots are similar to
full-resolution versions—removing distracting patterns seen in
classic PCPs. With this advantage, CPCs can be readily used to
reveal many patterns in large data.

CPCs do have some disadvantages. First, the accuracy of
CPC plots depends on the interpolation function used in the
reconstruction. Second, CPCs remove the concept of a single
data item from the representation, so a mechanism is lacking to
map the features on the CPC back to the original data items—
some visualization tasks, such as locating items and brushing,
cannot be performed with CPCs. Finally, the CPC visualizes data
as uninterrupted, but discontinuities represent critical structures
that might be meaningful for the interpretation of some data [36].
Palmas proposed a CPC modification that deformed the space with
results similar to edge bundling [37].

2.2 Interactions in Parallel Coordinates
Interaction is important to explore data efficiently in PCPs. The or-
der of axes defines which attributes are compared. Drag-and-drop
axis swapping is commonly used to allow multiple comparisons.
Brushing allows users to select a subset of data for highlighting,
labeling, replacing, etc. This technique was originally used in

scatterplots, but it has been applied to PCPs, for example in
angular brushing [38]. Extending brushing to multiple axes can
construct multi-attribute brushes [39]–[42]. Brushing a line is
equivalent to the selection of a region in the Cartesian domain.
Line-based and polygon-based brushes can be employed in the
spaces between axes. Brushing can be used to select data items in
PCPs based on the slopes of lines between axes. For large data,
brushing techniques have used wavelets [43] and clustering [44].

3 TECHNICAL BACKGROUND

We now discuss properties of PCPs and data transformation, which
will play a role in our approach.

3.1 Correlation Coefficient
Correlation is a statistical measure of the relationship among data.
A correlation coefficient measures the strength and direction of
this relationship, where a positive correlation implies 2 attributes
increase together, and negative (or anti-) correlation implies one
attribute increases and the other decreases. There are several
correlation coefficients, the most common of which is the Pearson
Correlation Coefficient [45], [46]. The Pearson Correlation Coeffi-
cient, ρ(x,y), measures the linear relationship between 2 attributes
x and y with standard deviations σx and σy and is defined as:

ρ(x,y) =
cov(x,y)

σxσy
(1)

3.2 Point/Line Duality
A well known but not fully exploited quality of PCPs is point/line
duality—namely, the property that a point in Cartesian coordinates
maps to a line in parallel coordinates. However, lesser often
considered is that a line in Cartesian coordinates maps to a single
point in parallel coordinates.

Given a line in Cartesian coordinates specified by a point
(x0,y0) and a direction specified by < ũ, ṽ >, a point (x1,y1) can
be found as (x0 + ũ,y0 + ṽ). The points (x0,y0) and (x1,y1) can
then be transformed into lines in parallel coordinates as seen in
Fig. 3.

The intersection point (q,r) can be found by representing the
lines parametrically, where r = x0+(y0−x0) ·q and r = x1+(y1−
x1) ·q, and solving.

q(ũ, ṽ) =
ũ

ũ− ṽ
(2)

r(ũ, ṽ) = x0 +(y0− x0)
ũ

ũ− ṽ
(3)

(x0,y0)

<ũ,ṽ>

(x1,y1)

(x2,y2)

x0

y0

x1
or
x0+ũ

y1 
or 
y0+ṽ

(q,r)

Fig. 3: Demonstration of the point/line duality property of Carte-
sian coordinates (left) and parallel coordinates (right). Quadtree
used for fast neighborhood search is also shown (left).
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If the orientation of the line is towards the upper right (ũ = ṽ),
the result is degenerate as the denominator in both equations is 0.
This is the equivalent of parallel lines in the PCP. This degeneracy
presents a problem that will be address through our work.

4 VISUAL DESIGN

To improve local and global relationship presentation in PCPs, we
propose a new visual design. This new representation shows both
trends in data, large and small, as well as their consistency.

4.1 Visual Encodings

Instead of using conventional visual encodings of PCPs, such as
lines, density-based, or frequency-based visual encodings, we use
the shape, a consistency map, and data distribution curves in our
visual encoding to bring new insight for PCPs.

Two important shapes come to mind when trying to understand
the relationships of PCPs. Positive and negative relationships can
be identified by seeing a comb and bowtie shape, respectively. We
encode this important information by representing the extremities
of the data as the overall shape by capturing the outline of the
concave hull containing all PCP lines. This implied relationship is
represented by the shapes in Fig. 4 (right column). This supports
PCP semantic (1), Fig. 1b.

Scatterplot Angular Hist./Opacity PCP Our approach
(a) Positive linear relationship with (bottom) and without (top) noise.

Scatterplot Angular Hist./Opacity PCP Our approach
(b) Negative linear relationship with (bottom) and without (top) noise.

Fig. 4: Positive and negative linear relationships.

We color plots red for positive relationships or blue for
negative relationships as a secondary encoding to the shape. Since
this is a support encoding, should color be needed for another
purpose, the redundant encoding can be dropped.

The shape implies only a positive or negative relationship. De-
tails of the trend are important as well. We use colored histogram
contours to represent the underlying features of the data. As we
will discuss in Section 5, these locations are calculated from the
individual data and are akin to line segment crossings of geometry-
based PCPs. Organized clusters of these points indicate strong
trends, whereas scattered versions indicate noise. Similarly, the
shape of the points gives clues as to the linearity or nonlinearity
of the data, supporting PCP semantic (2), Fig. 1c.

The distribution of data items is represented as a distribution
curve along the axes of the PCP. Without this information, outliers
may cause users to misinterpret certain patterns [47]. The data
distribution curve is created by calculating a histogram of the data
items and applying a Gaussian distribution to draw a smooth curve
along the domain, which can be seen in Fig. 4 (right column) as the
purple curve near the axes. The maximum height and thickness of
these curves are adjustable values, in case more or less emphasis
is desired. This helps to support determining the density of points,
supporting PCP semantic (3), Fig. 1d.

Beyond the static visualization, the approach provides interac-

Scatterplot Angular Hist./Opacity PCP Our approach
(a) Positive quadratic relationship with (bottom), without (top) noise.

Scatterplot Angular Hist./Opacity PCP Our approach
(b) Negative quadratic relationship with (bottom), without (top) noise.

Fig. 5: Positive and negative quadratic relationships.
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tions such as locating and tracing individual and groups of data
items through brushing. In addition, users can reorder axes in a
drag-and-drop manner similar to classic PCPs.

4.2 Plot Interpretation
We examine the capabilities of our new visualization by using
four synthetically generated datasets, each containing 50,000 data
items. The first two datasets are linear relationships (y = ax+b+
ε), one positive (Fig. 4a) and one negative (Fig. 4b). The second
two are quadratics (y= a(x+ε)2+b(x+ε)+c), again one positive
(Fig. 5a) and one negative (Fig. 5b); ε is a noise factor.

4.2.1 Detecting Positive and Negative Relationships
To understand the direction of the relationship, two key visual
encodings can be used, color and shape. The red rectangle shape
represents a positive relationship. The blue bowtie shape repre-
sents a negative relationship. For the positive case, the strength
of the relationship is indicated by the distribution of points in the
consistency map. Spread in the horizontal direction, such as that of
Fig. 5a (bottom) indicates noise in the relationship. In the negative
case, both the spread in the consistency map and the loosening of
the bowtie shape indicate weaker relationships. Fig. 5b (bottom)
shows the effects of adding noise to the data, spreading both the
contour and shape.

4.2.2 Detecting Linear Relationships
Quantifying linear relationships in PCPs is generally less accurate
and slower than scatterplots, and large numbers of items can cause
serious problems for both [25], [48]. In traditional PCPs, detecting
positive and negative relationships is done by looking for the
crossing location of lines. When lines cross between the axes, the
relationship is negative. When they do not cross, the relationship is
positive. Fig. 4a (top) and 4b (top) show that it is easy to identify
linear relationships for large numbers of data items using our
method. For positive relationships, the standard PCP shows the
lines are not crossing, while our approach shows the consistency
map as a vertical bar between the axes. This happens to be the
most extreme case of positiveness, when data form parallel lines
indicating a 45◦ angle. When negative, the PCP lines cross at a
single point. Our method shows only the boundary of these lines
and consistency map that focuses around the intersection point.

When noise is presented, our approach can still detect global
linear patterns in data. Fig. 4a (bottom) and 4b (bottom) both show
noise spreading the consistency maps. However, we are still able
to identify the overall trend, as well as the noise. For the Angular
Histogram/Opacity PCPs, the overall trend is still visible, but the
extent of the noise is rather difficult to ascertain.

4.2.3 Detecting Nonlinear Relationships
Identifying nonlinear patterns is something that most incarnations
of PCPs do not support well. Fig. 5a (top) and 5b (top) show
a quadratic relationship. Using our approach, the curved features
of the relationship between data attributes are easy to identify.
In the positive case, this can be seen in the consistency map. In
the negative case, this can again be seen in both the shape of the
relationship and the consistency map.

When noise is added to the data (Fig. 5a (bottom) and 5b
(bottom)), it can be difficult to identify the relationship in Angular
Histogram/Opacity PCPs. However, in our approach, the global
trend as well as the volume of the noise are still visible.

This illustrates that our approach supports identification of the
relationship strength through co-located crossings (Fig. 1c).

5 BUILDING CONSISTENCY MAPS

A large and complex dataset requires a new data transformation
method from the Cartesian domain to the PCP domain that retains
the important features and supports a variety of visualization tasks.
The mapping of multi-dimensional data projections can support
exploring the main features of large data [49]–[51]. We propose
a consistency map as a data transformation methodology that
represents the important relationship patterns and overcomes the
overdraw problem.

5.1 Global Trends Using Locally Linear Relationships
Given two attributes, we assume that the relationship between
them is locally linear [52]. Observing this relationship with many
local linear trends, we can model complex global relationships.

Given a small number of data items, principal component
analysis (PCA) [53] can be used to extract the orientation (ũ, ṽ) of
the data (i.e., the eigenvector of the co-variance matrix) as well as
a magnitude m1 (i.e. the square root of the eigenvalue) that can be
considered a measure of the relationship strength [54].

PCA can also extract an orthogonal direction and magnitude,
m2, of the second principal component. The ratio of two magni-
tudes, g = m2

m1
, can be used as a measure of the ”linear-ness” of

a local region. It is always true that m2 ≤ m1. However, m2 = m1
implies that there is no clear orientation of the data points. On
the other hand, when m2 � m1, this implies the data items are
configured with a strong linear trend.

5.2 Identifying Local Groups
We first identify local groups of data items in the Cartesian
domain. For each item in the dataset, we use the k-nearest
neighbors (knn) algorithm [55] to find those groupings as shown in
Fig. 6a. Our implementation is optimized by placing all items into
a quadtree (see Fig. 3 (left)) and searching neighboring leaves. For
a dataset of n items, n groups are extracted, each containing k+1
items (the center point plus k neighbors).

For each group, the direction < ũ, ṽ > and magnitudes m1
and m2 are extracted using PCA. The mean location of the
group (xm,ym) and vector < ũ, ṽ > are then mapped to location
(q,r) using point/line duality principal of PCP’s, based upon
Equations 2 and 3.

(a) Finding the subsets of k-nearest
neighbors (knn)

(b) PCA in PCP domain

Fig. 6: Diagram of the transformation from Cartesian domain to
PCP domain by: (a) finding the subsets (using knn algorithm) and
using PCA to find vectors of subsets; and then (b) mapping those
subsets to points in the PCP domain.



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2661309, IEEE
Transactions on Visualization and Computer Graphics

6

(a) Examples of positive relationships with Cartesian coordinates (top) and
Parallel Coordinates (bottom)

(b) Examples of negative relationships with Cartesian coordinates (top)
and Parallel Coordinates (bottom)

(c) Mapping of lines into PCPs (d) Transformation

Fig. 7: Transformation from Cartesian domain to PCP domain. (a) Mapping positive relations (red) from Cartesian coordinates to PCP
does not result in a valid intersection (i.e. the intersection is outside of the PCP domain). (b) Mapping negative relationships (blue)
from Cartesian coordinates to PCP results in valid intersection locations. (c) By rotating positive relationships 90◦, the lines will now
cross at valid locations, resulting in q′ (orthogonal version of q) for those relationships around the unit circle. (d) The solid vertical
lines represent the axes of the PCP, while the dotted lines show the horizontal projection location (q on top and q′ on bottom) for a
variety of angles.

Fig. 6 shows a schematic of the process. In this case, the many
groups of similar direction map to the same general area in the
PCP domain. This is a clear indication of directional similarity.
Now, this approach works perfectly in the case of negatively
related points. However, a problem arises as we look at positively
related points. Namely, the intersection points are outside of PCP
domain as seen in Fig. 7a.

5.3 Mappability of Positive Relationships
Mappability refers to the ability to calculate a valid output location
(i.e. valid q and r values) within the drawing space for a data item.
As q is currently defined, only values between 0 and 1 appear
between the PCP axes. This set of q values consist exclusively
of negative relationships. Fig. 7c demonstrates this mapping by
showing the value of q plotted against the angular direction of
(ũ, ṽ). Negative relationships all exist in the range of q ∈ [0,1], but
positive relationships reveal two challenges.

Point/line duality essentially boils down to an intersection of
two lines mapped into parallel coordinates. First, by our definition,
no positive relationships will be mappable because their values
are q 6∈ [0,1]. Secondarily, with line-line intersections, numeric
instabilities occur when the lines are near parallel. For us, this

occurs when ũ = ṽ, or in other words, it occurs when the direction
represents 45◦ slope.

Since values for positive relationships cannot be mapped, we
can make a simple choice, use the orthogonal vector, (−ṽ, ũ), when
the relationship is positive.

q′(ũ, ṽ) =

{
q(ũ, ṽ) if 0≤ q(ũ, ṽ)≤ 1
q(−ṽ, ũ) otherwise

(4)

r′(ũ, ṽ) =

{
r(ũ, ṽ) if 0≤ q(ũ, ṽ)≤ 1
r(−ṽ, ũ) otherwise

(5)

Using the orthogonal vector now guarantees that all relation-
ships will map to a valid location in the output PCP. However, it
is important to understand how that change impacts the location
of points.

Fig. 7 shows the projection location for various angles of
orientation, relative to the unit circle. The red lines represent
angles of 22.5◦, 45◦, and 67.5◦, respectively as in Fig. 7a. When
the red lines are transformed from Cartesian coordinates (top)
to parallel coordinates (bottom), their intersection points extend
beyond the extremes of the axes. However, the orthogonal versions
in blue, as shown in Fig. 7b, all generate valid intersections.
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The resulting q and q′ values for a set of angles in Cartesian
coordinates can be seen in Fig. 7c. The horizontal location of those
angles in parallel coordinates can be seen in Fig. 7d.

Note, these relationships have orientation but no direction.
Thereby, they create a consistent mapping wrapped around the
unit circle.

5.4 Histogram Contours

The final step of the data transformation is placing the point (q′,r′)
into a histogram. We use triangular histograms, such as those seen
in Fig. 8a. The location (q′,r′) influences bins within a radius of
influence found using 1− g (reminder, g = m2

m1
). This means that

more linear groups of data have a larger influence area.
To express the information contained within a single relation-

ship histogram, we have chosen to use a variation of the triangular
isobanding algorithm [56] to show the adherence to the local linear
trend. Our approach defines bands along the range [β ,∞).

5.5 Selecting k

Our approach requires selecting a constant k used in knn. Instead
of specifying a single value, we generate multiple histograms
based on powers-of-two values for k. This in effect enables finding
patterns at many different scales. Small k values will grab small
scale linear relationships, while larger k values will tend to identify
larger global linear relationships. In effect, we are scanning a range
of possible frequencies for the Nyquist rate of features.

(a) Histogram for positive (left) and negative (right) relationships.

(b) k = 4,16,64,256 from left to right.

(c) Multiple k for positive (left) and negative (right) relationships.

Fig. 8: Histogram contours calculated for Consistency Map.

To demonstrate the behavior of multiple scales, (i.e. multiple
values of k), we composite isobanding results. Each value of k
receives a different lightness value under the same hue. Fig. 8b
shows individual values of k, and while Fig. 8c (left) shows the
composite.

6 REPRESENTING MULTIPLE RELATIONSHIPS

Whereas many data are representable through a single trend, only
supporting such data, is incomplete. Support for representing and
differentiating multiple relationships is important in real applica-
tions.

To accomplish this, we classify data into subgroups repre-
senting various relationships. Each subset is treated independently
with the process described in Section 4 and 5 (i.e. each group has
its own shape and consistency map calculated). Each is rendered
separately and layered in the visualization, with the ordering of
the layers controlled through clicking or scrolling. The DSPCP is
agnostic of the method for classifying the subgroups. We present
three approaches that we have found useful, two automatic and
one user manipulated.

6.1 Global Clustering
We allow defining clusters globally [57]. The approach normal-
izes all attributes and then uses the `2-norm for distance (i.e. the
Euclidean distance). We use the k-means clustering algorithm [58]
for dividing data into subgroups. k-means clustering is an iterative
approach to clustering that works by identifying k̂ cluster centers
(this k̂ is a different from that of k-nearest neighbors), adding data
items to the closest center, and repeating.

Our method iteratively searches for an appropriate number of
clusters by first starting with one cluster. It calculates the Pearson
Correlation Coefficient, ρ(x,y) as denoted in Equation 1, on all
clusters and attributes, and if any | ρ(x,y) |< α , the number of
clusters is increased. When | ρ(x,y) |< α , two attributes have
very low correlation or no correlation. By this method, we find
k̂ valuable clusters. Fig. 2 is an example of this clustering. For all
figures, we use α = 0.15.

We demonstate two clustering algorithms, including k-means
as in Fig. 2 and DBSCAN [59] as in Fig. 9. The results shows
that when different clustering algorithm are used, different struc-
tures are visible. More generally, the most appropriate clustering
algorithm to use will depend on the data and structures of interest.

6.2 Pairwise Clustering
Our second clustering technique is a pairwise approach that works
in a manner somewhat similar to that of the previous one, using
k-means and the `2-norm for distance. However, it also aims at

Fig. 9: Global clustering for physics dataset using DBSCAN.
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clustering items that have similar trends, not just those with similar
values.

To accomplish this, we compute a specialized vector for
each data item. The first component of the vector is the nor-
malized values of the attributes (x,y). The next component is
the (q,r) value for each k used to model the multiscale rela-
tionships. The final vector used to segment is constructed as
[ (x,y), (q,r)1, ..., (q,r)k ]. The result of using this vector is that
data items with both similar attribute values, as well as similar
local trends, get clustered together.

Again, we iteratively search for an appropriate number of
clusters by starting with 1 and using the Pearson Correlation
Coefficient (| ρ(x,y) |< α with α = 0.15) to determine if addi-
tional clusters are needed. Fig. 11d is an example of this type of
clustering.

6.3 Brushing
We enable 2 forms of brushing. First, as with conventional PCPs,
we provide users the ability to brush a region and have all crossing
data items drawn individually. With this approach, the behavior
of all items across all attributes can be observed (see Fig. 10a).
Second, we enable brushing to select a cluster of data. Once
selected a new relationship subgroup is created with the data items
that have been brushed, and that group is visualized using our
visual encoding approach. Fig. 10b shows in green the result of
a brushing over four data attributes. As the display is brushed,
all data items crossed by the brushing action are added to a new
subgroup. When the mouse is released, the subset is recalculated
and the resulting trend is displayed.

(a) Locating data items

(b) Brushing new clusters

Fig. 10: Brushing interactions for the particle dataset.

7 EVALUATION

To demonstrate the capabilities of the DSPCP, we use five datasets.
The first dataset was the synthetic data used in Section 4.2.

Next, we use a particle physics dataset (Fig. 2, 10, and 11)
containing 41 output attributes and 4000 data items. The data
represents a parameter space search of 25 input attributes produced
by tools that model subatomic particles under the supersymmetric
extension of the Standard Model. This dataset has clear linear and
nonlinear relationship patterns without much noise.

Third, we use the IEEE Visualization 2004 contest dataset1

(Fig. 12), Hurricane Isabel, consisting of 48 time steps, each
containing measurements of 11 attributes with a spatial resolution
of 500×500×100. Of the original 25 million data items, we only
use 10 million because approximately 15 million items contain at
least 1 invalid NaN field. This dataset is large and contains mostly
low level noise.

Fourth, we use the HIGGS dataset2 (Fig. 13), containing 28
attributes and 11 million data items. The data has been produced
using Monte Carlo simulations. The first 21 features are kinematic
properties measured by the detectors in a particle accelerator. The
HIGGS dataset is both large and noisy.

Finally, we use the Planet dataset3 (Fig. 14). This dataset
includes the data from ground and space-based observations. The
data containing 1827 items and 16 attributes such as planet mass,
planet radius, planet density, distance, optical magnitude, etc.

In the following sections, we evaluate the DSPCP in compar-
ison to basic implementations of classic PCP’s, Opacity PCP’s,
and Angular Histogram PCP’s [25]. For most datasets, we only
show subsets of the more “interesting” attributes. This is done in
consideration for clarity on the printed page.

7.1 Performance

We built our software using C++, OpenGL, and Qt. All experi-
ments were conducted on a PC with Intel Core i7 CPU 2.66GHz,
NVIDIA GK104 graphic card. We use histogram bins of 29 and
isoband threshold β = 26 in all of our experiments. The perfor-
mance comparison of the DSPCP and opacity PCPs is provided
in Table 1 for all datasets. Although our precomputational cost
was always greater, the rendering performance per frame for our
approach was 2.9 to 3.6 times faster than our Angular Histogram
and Opacity PCP implementation. Our precomputational cost con-
sists primarily of consistency map calculations including k-nearest
neighbors and clustering, while per frame rendering requires only
a few primitives. On the other hand, the many lines drawn in the
opacity PCPs make its rendering time burdensome and not scalable
with additional data items.

7.2 Particle: Mixed & Nonlinear Trends

As the number of data items becomes large or data becomes more
complicated, cluster analysis is challenging for a classic PCP,
ultimately relying on user interaction techniques such as brushing.
Opacity PCPs somewhat alleviate this by highlighting major trends
in the data. However, smaller trends may washout. In the Angular
Histogram, the direction and length of bars can help users identify
curtain types of pairwise clusters, but do not make it easy to

1. http://vis.computer.org/vis2004contest/
2. http://archive.ics.uci.edu/ml/datasets/HIGGS
3. http://exoplanetarchive.ipac.caltech.edu/cgi-bin/

TblView/nph-tblView?app=ExoTbls&config=planets
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TABLE 1: Precomputation (Precomp) and rendering time per frame (Render) in milliseconds (ms) for our method and Angular
Histogram and Opacity PCPs.

Synthetic Particle Hurricane HIGGS Planet
(5K items) (4K items) (10M items) (11M items) (1.8K items)

Precomp Render Precomp Render Precomp Render Precomp Render Precomp Render

Opacity PCP 3 ms 11 ms 2.5 ms 9.5 ms 30 ms 84 ms 38 ms 95 ms 1.1 ms 3.8 ms
Our Approach 8 ms 3 ms 6.2 ms 2.7 ms 104 ms 29 ms 129 ms 32 ms 2.6 ms 1.2 ms

Speedup/(Slowdown) (2.6x) 3.6x (2.5x) 3.5x (3.5x) 2.9x (3.4x) 2.96x (2.4x) 3.2x
Brushing (Our Approach) 3.2 ms 1.2 ms 1.9 ms 1.1 ms 30.3 ms 11.4 ms 33.6 ms 10.7 ms 1.04 ms 0.47 ms

understand overlapping clusters or any kind of global clustering.
The DSPCP naturally supports cluster differentiation tasks for
both global clusters and pairwise clusters. Fig. 2 highlights the
usage for global clusters, while Fig. 11d highlights the usage for
pairs of attributes.

In Fig. 11, we can see the difference between the classic
PCP, Opacity PCP, Angular Histogram, and the DSPCP with
the Particle dataset. For example, we consider the attributes
ncmass4 and ncmass5. Within the PCP, the values appear well
distributed across the range of ncmass4 but focus at a single value
on ncmass5. The remaining points appear to be outliers. Both
the Opacity PCP and Angular Histogram emphasize this same
conclusion. However, using the DSPCP, the attributes have three
clusters appear between them, one strong negative cluster and
two weak positive clusters. Observing the scatterplot for these
attributes reveals that this is a better representation of nonlinear
structure. The points can be disassembled into three parts (see
Fig. 11f): the positively associated portion on the top left; the
positively associated portion on the lower right; and the negatively
associated portion connecting them. This connection is completely
missing from the other three PCP visualizations. Further, the
nonlinear structure is difficult to identify in the classic PCP and
Angular Histogram, while it is easily identified in the DSPCP
through the curved boundary and curve in the histogram contours
between ncmass4 and ncmass5.

Another example of this problem can be seen in the d8 and
d31 attributes. With the classic PCP, much of the complexity of the
relationship is lost. Though there are some clues to complexity. In
the worst case, one would be tempted to assume this to be a single
negative relationship. In the case of the Angular Histogram and
Opacity PCP, a bifurcated relationship is apparent, one negative,
terminating at the top of d31, and one positive, terminating at the
bottom of d31. Using the DSPCP, four clusters, two strongly neg-
ative and two weakly positive clusters, are identified. In Fig. 11d,
the primary negative cluster is visible in front and highlight by
thicker boundary lines. This cluster was also visible in the Opacity
PCP. The second negative cluster can be selected and brought to
the front as shown in Fig. 11e. The data points constructing this
cluster are clearly visible in the PCP, though difficult to visually
separate, and lost in the Opacity PCP, due to their low density.
Observing the scatterplot and schematic view (Fig. 11f), we can
spot the four clusters that make up these relationships.

7.3 Hurricane: Overdraw and Underdraw
An overarching challenge (and subject of numerous papers) for
classic PCPs is overdraw, particularly with data containing many
items. For datasets, such as the Hurricane dataset containing 10
million data items, patterns can be hidden by the many layers of
lines drawn. In Fig. 12b, the major relationships between most

attributes are difficult to visually identify, and those identified
should be treated with some skepticism. This problem also exists
for scatterplots (also the topic of numerous papers) as shown in
Fig. 12a. The Angular Histogram and Opacity PCP (Fig. 12c)
alleviates the problem to some extent by adapting to the density
of the data, but nevertheless, remains limited as the number
of data items and complexity of relationships increases, lesser
relationships may be lost.

Looking at the Temperature and Pressure attributes, we can
immediately see an example of overdraw in the classic PCP. With-
out further investigation, we would assume a single negatively
related trend. The Angular Histogram and Opacity PCP correct
this issue, making the true shape of the trend visible. Similarly,
the DSPCP reveals three trends, two negative trends (in blue)
and one positive trend (in red). The key piece missing from the
Angular Histogram and Opacity PCP is any indication of the noise
within the data. In the Angular Histogram and Opacity PCP, the
data appears uniform. Observing freckle pattern in the DSPCP
indicates that the relationship is noisy, which can be confirmed via
the scatterplot.

More generally speaking, simultaneous representation of
global trends and outliers is hard—most often visualization meth-
ods either only focus on global trends, at the cost of hiding outliers,
or focus on outliers, causing ambiguity among major trends [60].

The Pressure and Cloud attributes are a good example of this.
Fig. 12b shows a classic PCP where the major trend and some
outliers are visible. Unfortunately, the major trend is challenging
to interpret because of overdraw, but at least some of the outliers
are visible. The opposite problem occurs with the Angular His-
togram and Opacity PCP, as in Fig. 12c. Much of the detail of
the major trends is now visible, at the cost of losing almost all
of the outlier information. This is an example of underdraw. The
Angular Histogram can help identify outliers by tracing the small
purple bars. One strength of Johanson’s [18] and followup works
is the use of such mappings to highlight specific features such as
clusters and outliers.

Fig. 12d shows how the DSPCP enables finding both major
trends and detecting outliers between Pressure and Cloud. The
DSPCP reveals two trends, one negative trend (in blue) represent-
ing the major trend and one positive trend (in red) that captures
the outliers.

One concern at this point is to the ambiguity of which trend
is the major trend versus the outlier trend. The visual clue that
differentiates them are the purple curve representing data item
density. The density is high at the bottom of the Cloud attribute,
indicating that almost all data items fall into that particular cluster.
This is a similar procedure to Angular Histograms. Should one
wish to investigate further, item selection and brushing interactions
enable a deeper dive.
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(a) Scatterplot

d32d8ncmass4 higgsd33d31ncmass5

(b) PCP

d32d8ncmass4 higgsd33d31ncmass5

(c) Angular Histogram and Opacity PCP (α = 0.003)

d32d8ncmass4 higgsd33d31ncmass5

(d) DSPCP

d32d8ncmass4 higgsd33d31ncmass5

(e) DSPCP (select the 2nd negative cluster between d8 and d31)

(f) Schematic view of clusters for ncmass4/ncmass5 and d8/d31.

Fig. 11: Classic PCP, Angular Histogram, Opacity PCP, and the
DSPCP for the particle dataset. When number of data items
becomes large or clusters become more complicated, it is difficult
to identify certain overlapping clusters in the Classic PCP, Angular
Histogram, and Opacity PCP. The DSPCP captures and enables
simple investigation of these clusters.

(a) Scatterplot

PressCloudTemperature wVelocityPrecipPressure

(b) PCP

PressCloudTemperature wVelocityPrecipPressure

(c) Angular Histogram and Opacity PCP (α = 0.003)

PressCloudTemperature wVelocityPrecipPressure

(d) DSPCP

Fig. 12: Classic PCP, Angular Histogram, Opacity PCP, and the
DSPCP for the Hurricane dataset containing 10 millions items.
Important data patterns can be hidden by the many layers of points
in scatterplots or lines in PCPs. On the other hand, details can be
lost in the summarizations provided by the Angular Histogram and
Opacity PCPs. The DSPCP balances the need for both overview
and details.

7.4 HIGGS: Noisy Relationships

Visual detection of data relationship can be difficult with noisy
data. With the 11 millions of items in the HIGGS dataset, under-
standing the relationships is difficult particularly considering the
noise.

Consider the relationship between jet1eta and jet1phi. Because
of overdraw in the SCP, the complexity of the relationship (con-
taining both local positive and negative relationships) [61], and
because of the noise, it is difficult to identify any relationship
through the SCP (Fig. 13a). The Pearson Correlation Coefficient
between jet1eta and jet1phi is −0.102, showing that they have a
weak negative relationship. However, this relationship is barely
visible in the SCP.

The Opacity PCP (Fig. 13b) helps to clarify the noisy nature
of the relationship, but it does nothing to disambiguate the issue
with the relationship direction. Similarly, the Angular Histogram
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(a) Scatterplot

(b) Angular Histogram and Opacity PCP (α = 0.003)

(c) DSPCP

Fig. 13: SCP, Angular Histogram, Opacity PCP, and the DSPCP
for the HIGGS dataset containing 11 millions data items. The
DSPCP can improve relationship identifying within noise detec-
tion. For example, jet1eta and jet1phi with their −0.107 Pearson
Correlation Coefficient appear almost positive in the conventional
PCP, opacity PCP, and Angular Histogram. However, the weak,
noisy negative relationship can be easily spotted using the DSPCP.

(Fig. 13b) reinforces the positive relationship misconception.
The DSPCP, on the other hand, identifies three relationships,

as shown in Fig. 13c. Two are minor positive relationships, while
the third is a large negative relationships. Furthermore, the large
size of the bowtie and freckled pattern contained within it indicate
that the relationship is noisy and weak.

Another example of this can be found between jet1phi and
m wbb, where the Pearson Correlation Coefficient is −0.132.
The additional visual encodes provided by the DSPCP enable
identification of this weak noisy negative relationship.

7.5 User Feedback
We have conducted 4 interviews with users related to the DSPCP.
Each interview was 1-hour and used a different dataset. One
participant was an advanced visualization PhD student, while the
other three were non-visualization users.

7.5.1 Planet Data
Our first interview involved a demonstration and interview with an
advanced visualization PhD student. The student’s work involved
developing an analysis tool for the planet data.

To begin, we first showed him the DSPCP with the synthetic
data (presented in Section 4.2) to acclimate him how to use
the DSPCP to understand data relationships. After that process,

(a) Angular Histogram and Opacity PCP

(b) DSPCP

Fig. 14: Angular Histogram and Opacity PCP, and the DSPCP for
the planet dataset containing 1827 data items and 16 dimensions.

we loaded in the planet data. Fig. 14b shows the DSPCP for
four dimensions, vj, teff, mass, and rad. Fig. 14a shows Angular
Histogram and Opacity Parallel Coordinates plots for the same
dimensions.

With the DSPCP, the student identified some interesting in-
formation. Among his observations, in Fig. 14b, he found that
stteff and stmass have weak nonlinear and positive relationships,
previously unknown. This is not clearly visible in the opacity PCP
and Angular Histogram. He also found the complex relationship
between stteff and stmass interesting using the DSPCP.

In the end of the interview, he shared his opinions about the
DSPCP. First, he commented that the method required remem-
bering two mechanisms for reading the positive and negative
cases. He agreed that this is similar to the standard PCP. He
commented that once he learned how to use the DSPCP, it was
easy to understand the data relationships. Finally, he commented
on the clustering mechanism. He stated that he would prefer to see
some overview of relationships before looking through clusters
and choosing the interesting ones. The DSPCP partially supports
this by highlighting the main cluster first.

7.5.2 Particle Data
We interviewed a second individual with the particle physics
data set as shown in Fig. 11. He thought the relationship of
d32 and d33 was difficult to identify in the scatterplot, PCP, and
Angular Histogram PCP, but it was easily seen in the DSPCP. The
scatterplot shows the points are dense on the top left and spread
out towards the lower right. However, this does not indicate the
true relationship. The traditional PCP shows the bowtie shape but
with significant overdraw. The angular histogram PCP helped him
to see the distribution of the data and guess the relationship, but it
was difficult for him to identify the direction of the relationship.
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By using the DSPCP, he easily found the main negative relation-
ship and could estimate its strength using the contours.

7.5.3 Hurricane Data
We conduct an interview with a third individual using the hurri-
cane data set as shown in the Fig. 12. After an explanation of the
approach, he was interested in the relationship between Pressure
and Velocity. Using scatterplot and PCP, he could not determine
if it was positive or negative. Then he used angular histogram
and recognized that most data point looks like a band, making
him think that the relationship between Pressure and Velocity
was positive. When he used the DSPCP, he noted that there is
one negative relationship group and two other positive groups.
The negative relationship group at the front means Pressure and
Velocity primarily have a negative relationship. He was surprised
that the methods lead him to two different answers. The Pearson
Correlation Coefficient of these two attributes is −0.13, so glob-
ally they have weakly negative relationship.

7.5.4 HIGGS Data
We interviewed a final individual over the HIGGS data as shown
in Fig. 13. When he saw all scatterplots and PCPs of the data,
his immediate reaction was that the data are very noisy and
would be difficult to understand. We asked his opinion about
the correlation between jet1eta and jet1phi. First, looking at the
scatterplot he thought the attributes carried no relationship. Then,
we showed him the PCP visualization, and he guess that the
attributes had a positive relationship because most of the lines
seemed parallel. Seeing the angular histogram further reinforced
that belief. However, when he saw the DSPCP, he was surprised to
see it was a negative relationship with noise. Finally, we told him
that these two dimensions had Pearson Correlation Coefficient of
-0.102, confirming the information presented using the DSPCP.

8 DISCUSSION

We now compare our approach to other PCP alternatives and
discuss some important qualities of our approach.

8.1 Comparison with PCP Alternatives

Generally speaking, geometry-based PCPs suffer from overdraw
problems. Geometry-based PCPs can help users identify individual
data items for pairwise or across all data attributes. However, there
are many limitations of geometry-based PCPs when data is large,
including difficulty in identifying trends, outliers, and interpreting
noise.

Frequency-based PCPs overcome many of the geometry-based
limitation to help users explore clusters, linear relationships, and
outliers in data, while avoiding overdraw. However, frequency-
based PCPs, such as Angular Histogram PCPs, are still limited
in their ability to identify nonlinear relationships. Furthermore,
Angular Histogram PCPs aggregate the frequency of the lines
between pairs of axes. This means users can identify only the
principal trend of data and will have a difficult time interpreting
mixed trends or outliers within the data.

Density-based PCPs have addressed overdraw by replacing
opaque lines with a density representation. Heinrich and Weiskopf
did this with continuous parallel coordinates (CPC) [28], [32].
They provide a mathematical model of point density for counting
discrete lines. CPC naturally avoids overdraw in the continuous

domain, but the continuous domain lacks an efficient mechanism
to map features back to the original data items. Finally, CPC
visualizes data as uninterrupted, but discontinuities can represent
structures that might be meaningful for the interpretation of some
data [33]. Adopting this idea, Lehmann and Theisel introduced the
curve-curve duality and circle-area duality to highlight curves that
are dominant structures [62].

Global clusters in multidimensional data can be identified in
conventional PCPs and multivariate scatterplots [47], [49]–[51],
[57]. These multivariate scatterplot methods improve correlation
identification accuracy, completeness, distortion and interactions
for less noisy data, but these methods become difficult to use
when data is noisy. On the other hand, our approach reveals noisy
global relationships well (assuming you select a global clustering
technique), even when data is noisy. Fig. 2 is just such an example,
where k-means was applied globally.

Our approach does not suffer from overdraw, as drawing is
independent of both resolution and data size, enabling performing
the visual analysis tasks we have enumerated very effectively.
These tasks include easily identifying both global and local trends,
expressing nonlinear relationships, identifying outliers, and detect-
ing noise. The main drawbacks include losing the original data
lines, a problem suffered by all aggregation approaches, and the
need for users learn how to interpret a new set of visual encodings.

8.2 Crossing Points vs. Extracting Relationships

In conventional PCPs, finding the crossing points between data
items is an important part of understanding the relationships
among attributes. For example, many lines crossing at a sin-
gle point indicates a strong negative relationship. However, this
methodology does not stand up as large numbers of data items
overlap. Our approach addresses this problem by removing draw-
ing of individual lines and instead focuses on representing the
local relationships. The advantage of our approach is that the local
relationships we extracted are, in fact, loosely correspondent to the
crossing point that we see in a conventional PCP. Our approach
naturally focuses similar behaviors into the same area of the output
plot, culls irrelevant crossing points, and removes the visual cluster
of drawing many overlapping lines.

8.3 Features through Variations of k

An important contribution of our work is the use of multiple
values of k for modeling locally linear relationships (k in k-nearest
neighbors algorithms). Variations in k enable extracting features
on multiple scales. If the value of k is too small relative to a
feature, then it may appear as noise, or when the value of k
is large, our method will measure only the global relationship
of data. However, the variation of k enables capturing all scales
of relationship from local to global giving us access to the true
underlying the structure of the data.

8.4 Selecting the Number of Clusters

Selecting the correct number of clusters is, in general, an important
problem. If incorrect, features may be mixed or split. Though
we used k-means clustering and DBSCAN, substituting another
method may be helpful in improving clustering results. However,
the best choices for clustering (both algorithm and k) remain
largely outside the scope of this particular work.
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8.5 Distribution Curves
When compared with an Angular Histogram, the distribution
curve in our method is also a histogram of data items that does
not show the direction of those data. In our case, understanding
data directions can be accomplished by inspecting the shape and
consistency maps and using interaction. Nevertheless, an Angular
Histogram could easily be substituted for our distribution curves,
if desired.

8.6 Information Lost through Abstraction
Overall, our abstractions loses very little information relative to
overdrawn PCPs. The only significant downside we have identified
is that it lends itself to false equivalency bias between trends of
different importance. For example, take an imaginary dataset with
2 trends. Trend 1 contains 95% of the data points, while trend
2 contains 5%. These 2 trends may appear equivalent within our
abstraction scheme. The differentiation could be made through the
distribution curves on the axis and histogram visual encodings,
though they remain a subtle feature.

9 CONCLUSION

In conclusion, we have proposed a data scalable approach for
identifying relationships in the parallel coordinates. In this ap-
proach, a new model is used for mapping data from its attribute
domain into the parallel coordinates domain, which has two major
advantages. First, our approach scales well with increases in the
size of data and avoids the overdraw problem. Second, using
thoughtful encodings, data clustering, and interactions helps users
identify relationships previously difficult to find in other types of
PCP.

Our approach supports identification of mixed linear and
nonlinear patterns in noisy data, and enables finding outliers. Rec-
ognizing nonlinear relations in PCPs is of particular significance,
as the task is difficult in conventional and most enhanced PCPs.
The results of our experiments for simulated and real-world data
demonstrate that our method is practical for high-performance
analysis of large complex data.

In the future, we plan to apply our method to larger datasets
and improve the performance of the preprocessing. We expect that
extremely large datasets will be those that most benefit from using
our approach. There are also a number of possible works on user
analysis using the approaches of Rados et al. [63] or Harrison
et al. [64]. This would help to understand the qualities of our
approach in the context of other popular techniques.

We also plan to investigate how the differences of participating
portions of data can be visualized. For example, we may consider
mapping the participation through color saturation or via the data
distribution curves on the axes. This information may help in
judging the reliable of a particular trend.
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[4] G. Albuquerque, T. Löwe, and M. Magnor, “Synthetic generation of high-
dimensional datasets,” IEEE InfoVis, 2011.

[5] A. Inselberg, “The plane with parallel coordinates,” Visual Computer,
vol. 1, no. 2, pp. 69–91, 1985.

[6] ——, Parallel coordinates. in a book of Springer, 2009.
[7] A. Inselberg and B. Dimsdale, “Parallel coordinates: a tool for visualizing

multi-dimensional geometry,” in IEEE Vis, 1990, pp. 361–378.
[8] E. Fanea and T. Isenberg, “An interactive 3d integration of parallel

coordinates and star glyphs,” in IEEE InfoVis, 2005.
[9] J. Heinrich, J. Stasko, and D. Weiskopf, “The parallel coordinates

matrix,” in EuroVis - Short Paper, 2012.
[10] J. Heinrich and D. Weiskopf, “Parallel-coordinates art,” in in Proceedings

of the IEEE VIS Arts Program (VISAP), 2013.
[11] D. Holten and J. J. van Wijk, “Evaluation of cluster identification

performance for different pcp variants,” Computer Graphics Forum,
vol. 29, no. 3, 2010.

[12] H. Qu and P. Guo, “Visual analysis of the air pollution problem in
hong kong,” IEEE Transaction on Visualization and Computer Graphics,
vol. 13, no. 6, 2007.

[13] C. Viau and I. Jurisica, “The flowvizmenu and parallel scatterplot matrix:
Hybrid multidimensional visualizations for network exploration,” IEEE
Transaction on Visualization and Computer Graphics, vol. 16, no. 6,
2010.

[14] C. M. Zeitz, “Some concrete advantages of abstraction: How experts’
representations facilitate reasoning,” in Expertise in context. MIT Press,
1997, pp. 43–65.

[15] M. Novotny and H. Hauser, “Outlier-preserving focus+context visual-
ization in parallel coordinates,” IEEE Transaction on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 893–900, 2006.

[16] X. Yuan and H. Qu, “Scattering points in parallel coordinates,” IEEE
Transaction on Visualization and Computer Graphics, vol. 15, no. 6,
2009.

[17] K. T. M. Donnell and K. Muellers, “Illustrative parallel coordinates,”
Computer Graphics Forum, vol. 27, no. 3, 2008.

[18] J. Johansson, P. Ljung, M. Jern, and M. Cooper, “Revealing structure in
visualizations of dense 2d and 3d parallel coordinates,” in IEEE InfoVis,
2006, pp. 125–136.

[19] H. Zhou, X. Yuan, H. Qu, W. Cui, and B. Chen, “Visual clustering in
parallel coordinates,” Computer Graphics Forum, 2008.

[20] D. B. Carr, “Computing and graphics in statistics,” 1991, pp. 7–39.
[21] E. J. Wegman, “Hyperdimensional data analysis using parallel coordi-

nates,” Journal of the American Statistical Association, vol. 85, no. 411,
pp. 664–675, 1990.

[22] E. J. Wegman and Q. Luo, “High dimensional clustering using parallel
coordinates and the grand tour,” Computing Science and Statistics,
vol. 28, pp. 361–368, 1996.

[23] J. Blaas, C. Botha, and F. Post, “Extensions of parallel coordinates
for interactive exploration of large multi-timepoint data sets,” IEEE
Transaction on Visualization and Computer Graphics, vol. 14, no. 6,
pp. 1436–1451, 2008.

[24] A. Dasgupta and R. Kosara, “Pargnostics: Screen-space metrics for
parallel coordinates,” IEEE Transaction on Visualization and Computer
Graphics, pp. 1017–1026, 2010.

[25] Z. Geng, Z. Peng, R. S.Laramee, J. C. Roberts, and R. Walker, “Angular
histograms: Frequency-based visualizations for large, high dimensional
data,” IEEE Transaction on Visualization and Computer Graphics,
no. 12, pp. 2572–2580, 2011.

[26] O. Rubel, Prabhat, K. Wu, H. Childs, J. S. Meredith, C. G. R. Geddes,
E. Cormier-Michel, S. Ahern, G. H. Weber, P. Messmer, H. Hagen,
B. Hamann, and E. W. Bethel, “High performance multivariate visual
data exploration for extremely large data,” in Supercomputing, 2008.

[27] G. Ellis and A. Dix, “Enabling automatic clutter reduction in parallel
coordinate plots,” IEEE Transaction on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 717–724, 2006.

[28] J. Heinrich and D. Weiskopf, “Continuous parallel coordinates,” IEEE
Transaction on Visualization and Computer Graphics, vol. 15, no. 6, pp.
1531–1538, 2009.

[29] J. Johansson, P. Ljung, M. Jern, and M. Cooper, “Revealing structure
within clustered parallel coordinates displays,” in IEEE InfoVis, 2005,
pp. 125–132.

[30] R. E. A. Moustafa, “Qgpcp: Quantized generalized parallel coordinate
plots for large multivariate data visualization,” J. Comp. and Graph. Stat.,
pp. 32–51, 2009.

[31] H. Xiao, H. Guo, and X. Yuan, “Scalable multivariate volume visual-
ization and analysis based on dimension projection and parallel coor-
dinates,” IEEE Transaction on Visualization and Computer Graphics,
vol. 18, no. 9, pp. 1397–1410, 2012.



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2661309, IEEE
Transactions on Visualization and Computer Graphics

14

[32] J. Heinrich, S. Bachthaler, and D. Weiskopf, “Progressive splatting of
continuous scatterplots and parallel coordinates,” in EuroVis, 2011, pp.
653–662.

[33] D. J. Lehmann and T. H., “Discontinuities in continuous scatter plots,”
IEEE Transaction on Visualization and Computer Graphics, vol. 16,
no. 6, pp. 1291–1300, 2010.

[34] P. Muigg, M. Hadwiger, H. Doleisch, and E. Groller, “Visual Coherence
for Large-Scale Line-Plot Visualizations,” Computer Graphics Forum,
pp. 643–652, 2011.

[35] S. Bachthaler and D. Weiskopf, “Continuous scatterplots,” IEEE Trans-
action on Visualization and Computer Graphics, vol. 14, no. 6, pp. 1428–
1435, 2008.

[36] D. J. Lehmann and H. Theisel, “Features in Continuous Parallel Co-
ordinates,” IEEE Transaction on Visualization and Computer Graphics,
vol. 17, no. 12, pp. 1912–1921, 2011.

[37] G. Palmas and T. Weinkauf, “Space bundling for continuous parallel
coordinates,” Computer Graphics Forum, 2016.

[38] H. Chen, “Compound brushing [dynamic data visualization],” in IEEE
InfoVis, 2003, pp. 181–188.

[39] T. Avidan and S. Avidan, “Parallax– a data mining tool based on parallel
coordinates,” Computational Statistics, pp. 79–89, 1999.

[40] M. O. Ward, “Xmdvtool: Integrating multiple methods for visualizing
multivariate data,” in IEEE Vis, 1994, pp. 326–333.

[41] ——, “Linking and brushing,” in Encyclopedia of Database Systems,
2009, pp. 1623–1626.

[42] M. O. Ward and A. R. Martin, “High dimensional brushing for interactive
exploration of multivariate data,” in IEEE Vis, 1995, p. 271.

[43] P. C. Wong and R. D. Bergeron, “Multiresolution multidimensional
wavelet brushing,” in IEEE Vis, 1996, pp. 141–148.

[44] Y.-H. Fua, M. O. Ward, and E. A. Rundensteiner, “Structure-based
brushes: A mechanism for navigating hierarchically organized data and
information spaces,” IEEE Transaction on Visualization and Computer
Graphics, vol. 6, no. 2, pp. 150–159, 2000.

[45] J. Benesty and Y. Huang, “On the importance of the pearson correlation
coefficient in noise reduction,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 16, no. 4, 2008.

[46] K. Pearson, “Notes on regression and inheritance in the case of two
parents,” in Proceedings of the Royal Society of London, vol. 58, 1895,
pp. 240—242.

[47] E. Kandogan, “Visualizing multi-dimensional clusters, trends, and out-
liers using star coordinates,” in ACM SIGKDD international conference
on Knowledge discovery and data mining, 2001, pp. 107–116.

[48] J. Li, J.-B. Martens, and J. J. van Wijk, “Judging correlation from
scatterplots and parallel coordinate plots,” IEEE InfoVis, vol. 9, no. 1,
pp. 13–30, Mar. 2010.

[49] D. J. Lehmann and H. Theisel, “General projective maps for multidi-
mensional data projection,” Computer Graphics Forum, vol. 35, no. 2,
2016.

[50] E. Kandogan, “Star coordinates: A multi-dimensional visualization tech-
nique with uniform treatment of dimensions,” in IEEE InfoVis, vol. 650,
2000, p. 22.

[51] P. Hoffman, G. Grinstein, K. Marx, I. Grosse, and E. Stanley, “Dna visual
and analytic data mining,” in IEEE Vis, 1997, pp. 437–ff.

[52] Y.-H. Chan, C. D. Correa, and K.-L. Ma, “Flow-based scatterplots for
sensitivity analysis,” in IEEE VAST. IEEE, 2010, pp. 43–50.

[53] I. Jolliffe, Principal Component Analysis. Springer-Verlag, 1986.
[54] H. Sanftmann and D. Weiskopf, “Illuminated 3D Scatterplots,” Computer

Graphics Forum, 2009.
[55] D. Matthew, R. L. S. Drysdale, and S. Jorg-Rudiger, “Simple algorithms

for enumerating interpoint distances and finding k nearest neighbors,”
International Journal of Computational Geometry and Applications, pp.
221–239, 1992.

[56] M. Fournier, “Surface reconstruction: An improved marching triangle
algorithm for scalar and vector implicit field representations,” in SIB-
GRAPI, 2009, pp. 72–79.

[57] L. Novakova and O. Stepankova, “Radviz and identification of clusters
in multidimensional data,” in IEEE InfoVis, 2009, pp. 104–109.

[58] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 881–892, 2002.

[59] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[60] M. Novotny and H. Hauser, “Outlier-preserving focus+context visual-
ization in parallel coordinates,” IEEE Transaction on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 893–900, 2006.

[61] H. Nguyen and P. Rosen, “Improved identification of data correlations
through correlation coordinate plots,” in International Conference on
Information Visualization Theory and Application, 2016.

[62] D. J. Lehmann and T. H., “Features in continuous parallel coordinates,”
IEEE Transaction on Visualization and Computer Graphics, vol. 17,
no. 12, pp. 1912–1921, 2011.

[63] S. Rados, R. Splechtna, K. Matkovic, M. Duras, E. Groller, and
H. Hauser, “Towards quantitative visual analytics with structured brush-
ing and linked statistics,” in Computer Graphics Forum, vol. 35, no. 3.
Wiley Online Library, 2016, pp. 251–260.

[64] L. Harrison, F. Yang, S. Franconeri, and R. Chang, “Ranking visualiza-
tions of correlation using weber’s law,” IEEE transactions on visualiza-
tion and computer graphics, vol. 20, no. 12, pp. 1943–1952, 2014.

Hoa Nguyen Hoa Nguyen received her MS in
Cyber Informatics from Keio University, Japan in
2010 with full scholarship from 2008 to 2010.
She is currently a PhD candidate in Computer
Science at the University of Utah. She received
a full scholarship from the Vietnam Education
Foundation from 2011 to 2013. She works as
a research assistant for Scientific Computing
and Imaging Institute, Lawrence Livermore Na-
tional Laboratory, and Lawrence Berkeley Na-
tional Laboratory. Her research interests include

data visualization, data mining, graphics, high performance computing,
and computer networks.

Paul Rosen Paul Rosen is an Assistant Profes-
sor at the University of South Florida with the
Department of Computer Science and Engineer-
ing. He received his PhD degree from the Com-
puter Science Department of Purdue University.
His research interests include topological data
analysis, software visualization, human oriented
design, and visualization education.


