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Abstract—Zeroth-order optimization (ZO) typically relies on two-
point feedback to estimate the gradient of the objective function.
Nevertheless, two-point feedback cannot be used for online opti-
mization with time-varying objective functions, where only a single
query of the function value is possible at each time step. In this
work, we propose a new one-point feedback method for online
optimization that estimates the gradient using the residual between
two feedback points at consecutive time instants. Moreover, we de-
velop regret bounds for ZO with residual feedback for constrained
convex and unconstrained nonconvex online optimization prob-
lems. Specifically, for both deterministic and stochastic problems
and for both Lipschitz and smooth objective functions, we show
that using residual feedback can produce gradient estimates with
much smaller variance compared to conventional one-point feed-
back methods. As a result, our regret bounds are much tighter
compared to existing regret bounds for ZO with conventional one-
point feedback, which suggests that ZO with residual feedback
can better track the optimizer of online optimization problems.
In addition, our regret bounds rely on weaker assumptions than
those used in conventional one-point feedback methods. Numeri-
cal experiments show that ZO with residual feedback significantly
outperforms existing one-point feedback methods.

Index Terms—Online optimization, regret analysis, zeroth-order
optimization (ZO).

I. INTRODUCTION

Zeroth-order optimization (ZO) algorithms have been widely used
to solve online optimization problems where first or second-order
information (i.e., gradient or Hessian information) is unavailable at
each time instant. Such problems arise, e.g., in online learning and
involve adversarial training [1] and reinforcement learning [2], [3]
among others. The goal is to minimize a sequence of time-varying
objective functions {f;(x)}:=1.7, where the value f;(z:) is revealed
to the agent after an action x; is selected and is used to adapt the agent’s
future strategy. Since the objective functions are not known a priori, the
quality of an online decision is measured using notions of regret, that
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compare the total cost incurred by an online decision to the cost of the
fixed or varying optimal decision that a clairvoyant agent could select.

Perhaps the most popular zeroth-order gradient estimator is the two-
point estimator that has been extensively studied in [4], [5], [6], [7],
[81, [9], and [10]. This estimator queries the function value f;(z) at two
different decision variables at each time step, and uses the difference
in the two function values to estimate the desired gradient (two-point
feedback), i.e.,

52@) = 2w+ 60) — (@) w M

where § > 0 is a parameter and « is uniformly sampled from a unit
sphere US? in space R?. Although this two-point estimator produces
gradient estimates with low variance that improve the convergence
speed of ZO, it can only be used for online optimization when the same
objective function can be queried multiple times, e.g., for online learn-
ing with incoming data streams in [11]. When the objective function
changes by nature or by an adversary with every new query, one-point
estimators can be used instead that query the objective function f;(x)
only once at each time instant (one-point feedback), i.e.,

g ()

2)

d
Eft(z: + du)u.

One-point feedback was first proposed and analyzed in [12] for
convex online optimization problems. Subsequently, the authors in [13]
and [14] showed that the regret of convex online optimization methods
using one-point gradient estimation can be improved if the objective
functions are assumed to be smooth and self-concordant regularization
is used. More recently, Gasnikov et al. [15] developed regret bounds
for ZO with one-point feedback also for stochastic convex problems.
On the other hand, Hazan et al. [16] characterized the convergence
of one-point zeroth-order methods for static stochastic nonconvex
optimization problems. However, as shown in these studies, one-point
feedback produces gradient estimates with large variance which results
inincreased regret. In addition, the regret analysis for ZO with one-point
feedback usually requires the strong assumption that the function value
is uniformly upper bounded over time, so this method cannot be
used for practical nonstationary optimization problems. In [17], the
authors studied a two-point oracle that evaluates different objective
functions at the two queries. The analysis is based on a strong convexity
assumption and cannot be extended to general convex and nonconvex
problems.

Contributions: In this article, we propose a novel one-point gradient
estimator for the zeroth-order online optimization and develop new
regret bounds to study its performance. Our proposed estimator uses
the residual between two consecutive feedback points to estimate the
gradient and, therefore, we refer to it as residual feedback. We show
that, for both deterministic and stochastic problems, using residual
feedback produces gradient estimates with lower variance compared
to those produced using the conventional one-point feedback proposed
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in [12] and [15]. As a result, we obtain tighter regret bounds both for
constrained convex and unconstrained nonconvex problems, especially
when the value of the objective function is large. Moreover, our regret
analysis relies on weaker assumptions compared to those for ZO with
conventional one-point feedback. Finally, we present numerical exper-
iments that demonstrate that ZO with residual feedback significantly
outperforms the conventional one-point method in its ability to track
the time-varying optimizers of online learning problems. To the best of
our knowledge, this is the first time a one-point zeroth-order method
is theoretically studied for nonconvex online optimization problems. It
is also the first time that a one-point gradient estimator demonstrates
comparable empirical performance to that of the two-point method.

Related Work: Online optimization problems are only one instance
of optimization problems that ZO methods have been used to solve.
For example, Balasubramanian and Ghadimi [18] applied ZO to solve
a set-constrained optimization problem where the projection onto the
constraint set is nontrivial. The authors in [19] and [20] applied a
variance-reduced technique and acceleration methods to achieve better
convergence speed in ZO. Wang et al. [21] improved the dependence
of the iteration complexity on the dimension of the problem under an
additional sparsity assumption on the gradient of the objective function.
The authors in [22] and [23] applied zeroth-order oracles to distributed
optimization problems when only bandit feedbacks are available at each
local agents. Our proposed residual feedback oracle can be used to solve
such optimization problems as well. Also related is the work in [24],
in which the authors considered nonconvex online bandit optimization
problems with a single query at each time step. However, this method
employs the exploration and exploitation bandit learning framework
and the proposed analysis is restricted to a special class of nonconvex
objective functions. The authors in [25], [26], and [27] studied online
bandit algorithms using ellipsoid methods. In particular, these methods
induce heavy computation per step and achieve regret bounds that
have bad dependence on the problem dimension. As a comparison, our
one-point method is computation light and achieves regret bounds that
have better dependence on the problem dimension. A similar one-point
oracle was proposed in [28] and [29] for static convex optimization
problems but the analysis cannot be extended to the online optimization
sefting.

1. PRELIMINARIES AND RESIDUAL FEEDBACK

In this section, we provide basic definitions and results on ZO that
will be needed in the subsequent analysis. We also define the residual
feedback gradient estimator to solve online optimization problems with
unknown gradient information. Consider the following online bandit
optimization problem:

-1
gleiggft(z) ®)

where X C R? is a convex set and {f;}; is a sequence of objective
functions that are unknown to the agent a priori. Specifically, we
assume that at any time ¢, first the agent makes a decision z; and
then the value of the objective function f; at x; is revealed. We also
assume that the derivatives of the objective functions are unavailable.
Therefore, the agent needs to use a zeroth-order oracle to estimate the
derivative information. The goal is to determine an online decision z;
(or a sequence of time-varying decisions) with cost that is as close as
possible to the cost of a fixed decision (or a sequence of varying optimal
decisions) that a clairvoyant agent could select, which is measured by
notions of regret.

First, we define the class of Lipschitz and smooth objective
functions we are concerned with. Consider the set X5 == {z:z =
T + du, for any x € X and u € US?}, where US? represents the unit
sphere in space R9.

Definition 2.1 (Lipschitz functions): The class of Lipschtiz-
continuous functions C%° satisfies: forany f € C%9,|f(z) — f(y)| <
Lollz — y|| V=z,y € X5, where Ly > 0 is the Lipschitz parameter
over set A5. The class of smooth functions C'+! satisfies: for any f €
CHL V() = V@)l < Lillz —y|l Vz,y € X5, where Ly >0
is the smoothness parameter over set Xj5.

The key idea in ZO is to estimate the unknown first-order gradient
of the objective function f using zeroth-order oracles that perturb
the objective function around the current point along all directions
uniformly. The ability of these oracles to correctly estimate the gradient
is typically analyzed using the smoothed version of the function f
defined as fs(z) := E,_ygd[f(z + du)], where the coordinates of the
vector u are uniformly sampled from a unit ball UB< in space R¢. Note
that the objective function f; is defined over the larger domain X5 rather
than X', since the objective function f; can be evaluated outside the set
A&’ during iterations. On the other hand, the smoothed function f5; is
defined over the set X'. We have the following results bounding the
approximation errors of the function f5(x).

Lemma 2.2: Consider a function f and its smoothed version f5. It
holds that

Lo, iff e C0
o) - 1@ < {3 G

and ||V f5(z) — Vf(z)|| < 6L1 d, if f € CTL.

The smoothed function f5(x) also satisfies the following amenable
property.

Lemma 2.3: If f € C%" is Lo-Lipschitz, then f5 € C'*! with Lip-
schitz constant L, 5 = d6~! L.

The proofs of the above lemmas are included in [30].

Definition 2.4: (Objective functions) We call the sequence of ob-
jective functions {fy, f1,..., fi} naturally nonstationary when the
objective function f; is selected based on the agent’s past decisions
{zq + dug,z1 + duq,-..,zs_1 + du,_; } and does not depend on its
decision x; + du,;. The same sequence of objective functions is called
adversarially nonstationary if the selection of f; depends also on the
agent’s current decision x; + du;. In addition, at each time step ¢, the
objective function f; is bounded by a constant f; from below.

In this article we consider both natural and adversarial objective
function sequences, as defined in Definition 2.4. Natural nonstationary
learning problems arise, for example, in reinforcement learning, when
the environment changes because of the natural shift in the noise
distribution of the agent dynamics and reward functions. On the other
hand, in multiagent games, if an agent plays against an adversarial
agent who selects its policy based on the first agent’s policy at time
t, then the first agent faces an adversarial nonstationary environment.
In such problems where the system evolves from f; to f;41, two-point
feedback (1) cannot be used to estimate the unknown gradient of f; asit
requires two different evaluations of f; at two different decisions x; and
¢ + du, at the same time, which is not possible since f; changes after
one decision variable is evaluated. Instead, a more practical approach is
to use the one-point feedback scheme (2) in [15]. However, the gradient
estimates produced by the one-point feedback method in (2) have large
variance that leads to large regret and, therefore, poor ability to track
the optimizer of the online problem. To address this limitation, in this
article we propose a novel one-point gradient estimator, which we call
a one-point residual feedback estimator, that has reduced variance and
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is defined as
~ d
Ge(xe) == 3 (fe(me + 0ug) — feo1(meq + Oupy)) ue (3)

where u,_y,u, ~ US? are independent random vectors. To elaborate,
the proposed residual feedback estimator in (3) queries f; at a single
perturbed point z; + du;, and then subtracts the value f; 1(z; ; +
du¢—1) obtained from the previous iteration. Next, we discuss some
basic properties of this new estimator. We first show that this estimator
provides an unbiased gradient estimate of the smoothed function fs ;.

Lemma 2.5: The residual feedback estimator satisfies E[g;(z;)] =
V fs.¢(z:) forall z; € X and ¢.

Proof: The proof follows from the fact that % fe(xs + dui)ue is an
unbiased estimator of V5 +(x¢) according to [12] and u; has zero mean
and is independent from u;_1, Ty_1. | |

In this article, we consider the following ZO projected gradient
update with residual feedback

Tip1 = Iy (iF: —7?5’: (It)) 4)

where 7 is the learning rate and Ily is the projection operator onto
the constrained set X'. For unconstrained problems, let X = R%. The
following result bounds the second moment of the gradient estimate
generated by using residual feedback.

Lemma 2.6 (Second moment): Assume that f, € C° with Lips-
chitz constant L for all time ¢. Then, under the ZO update rule in (4),
the second moment of the residual feedback (3) satisfies
4d2 L2

52

where D; = 16d2L2 + %E[(ft(mt—l + 0up 1) — fia(zmes +
5“:—1))2]-

The proof of the above lemma can be found in [30]. The above
lemma shows that the second moment of the gradient estimates obtained
using residual feedback forms a contraction with perturbation term
Dy, provided that we choose i and 4 such that the contracting rate
satisfies o« = 4d2L2n?6-2 < 1. As we show later in the analysis, this
contraction property leads to gradient estimates with small variances
that allow to reduce the regret of the online ZO algorithm (4).

E[[lg(z.)]?] < E[[|ge-1(ze-1)I1] + Dy ()

Ill. ZO WiTH RESIDUAL FEEDBACK FOR CONVEX ONLINE
OPTIMIZATION

In this section, we consider the online bandit problem (P), where the
sequence of functions { f; }+—o.7—1 are all convex and the constraint set

is compact. In particular, we are interested in analyzing the static regret
of algorithm (4) defined as

-1 T-1
Rr:=E |} fi(z) -min}_ fi(z)]| . 6)
t=0 t=0

Denote X* = argmin,,_, Z;f:_ol fi(x) the set of all optimal points and
let z* = argmin__y. ||z||. Let zp be a given initial point and define
R = ||zo — 2.

First, we make the following assumption on the nonstationarity of
the online learning problem.

Assumption 3.1 (Bounded variation): There exists V; > 0 such that
forall £ and all z € Xj, | fe(z) — fi1(z)| < V5.

Assumption 3.1 states that the variation of the objective function
between two consecutive time instants is uniformly bounded over time.
‘We note that this assumption is weaker than the assumption that the ob-
jective function is uniformly bounded, i.e., |fi(z)| < B Vt,z, which
is used in the analysis of ZO with conventional one-point feedback
in [12] and [15].

For any sequence of objective functions, natural or adversarial, as
defined in Definition 2.4, the following result characterizes the regret
of ZO with residual feedback when the objective function f; is convex
and Lipschitz.

Theorem 3.2 (Regret for Convex Lipschitz f;): Let Assumption 3.1
hold. Assume that f; € C':0 is convex with Lipschitz constant L over
the compact set X5 for all £. Run ZO with residual feedback with n =

1 _1
and 6 = v/ dT~ 7. Then, we have that
2v2dLg 1 v

- 2
Rr < V2dLoR*T% + M +4v2d2 L, TT
2v2dLoT1

Vdv?
+ VAL TT + —LT1.
0 V3L

0

The proof can be found in Appendix A. Next, we present the regret of
Z0 with residual feedback when the objective function f; is convex and
smooth. Since f; is defined on a compact set A, if f; has a Lipschitz
gradient then it is also Lipschitz with a constant L over the set Aj5.
As before, the sequence of objective functions can be either natural or
adversarial, as per Definition 2.4.

Theorem 3.3 (Regret for Convex Smooth f;): Let Assumption 3.1
hold. Assume that f;(x) € C*! is convex and smooth with constant
L4 over the compact set X for all £. Run ZO with residual feedback

with g = 1 § = —*—. Then, we have that
2y2Ld3 T3 dETT

~ 2
Rr <V2L,d¥R2T% 4 E{llgo(zo)II")] [||go(I02)|| 2]
2v2Lod3T3
d+4)? 2
+ sﬁm#ﬁ +2d3L, T3 + id%vfzﬁ.
dT Ly
The proof can be found in Appendix B. According to Theorems 3.2
and 3.3, using the proposed residual feedback gradient estimator, the
regret of the one-point ZO no longer depends on the uniform bound
of the function value, which can be very large in practice. Instead, our

regret only relies on how fast the function varies over time.

IV. ZO WITH RESIDUAL FEEDBACK FOR NONCONVEX ONLINE
OPTIMIZATION

In this section, we analyze the regret of ZO with residual feedback
for the unconstrained online bandit problem (P), where the objective
this is the first time that a one-point zeroth-order method is studied for
nonconvex online optimization. Throughout this section, we make the
following assumption on the objective functions.

Assumption 4.1: There exist W, W > 0 such that for any se-
quence {z,}I_, the following conditions hold.

T
D i (felze) — fii(ze)) < Wg‘:
2) Yooy (felme) — feo1(ze))? < Wr.

The above two conditions in Assumption 4.1 measure the accumu-
lated first-order and second-order function variations. Such variations
are called the regularity measures in online nonstationary learning
problems as in [10] and [31].

First, we consider the case where { f; }; are nonconvex and Lipschitz
continuous functions. Since the objective function f; is not necessarily
differentiable, V f(¢) may not exist. Therefore, we define the regret
as the accumulated gradient of the smoothed function, i.e., Rg:d =
23:01 E[||V fs,¢(x+)||?], inspired by the study of zeroth-order oracles
in static nonsmooth optimization problems in [8]. In addition, similar
to [8], we require that the smoothed function f; ; is close to the original
function f; such that |f5.(x) — fi(z)| < e for all ¢. To satisfy this

Authonized licensed use limited to: Texas A M University. Downloaded on May 06,2025 at 19:09:33 UTC from IEEE Xplore. Restrictions apply.



6312

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 9, SEFTEMBER 2024

condition, we need to choose § < (Lg) 'e; according to Lemma 2.2.
Then, we can show the following regret bound for ZO with residual
feedback, when the objective functions are either natural or adversarial,
as per Definition 2.4.

Theorem 4.2 (Nonconvex Lipschitz f;): Let Assumptions 4.1 hold.
Assume that f, € C%% with Lipschitz constant Ly and that f; is
bounded below by f; for all £. Run ZO with residual feedback with

n=ec(2/2L2d#T%) 1 and § = ¢;Lj'. Then, we have that
_a
R] ;< 2V2L§ (E[fso(x0)] — fir +Wr) d¥e, 7T

— L -
L3 d#Wr | <7 ElllGo(=o)[?]

+4VaL2e 3T 4
0¢s 2 ?T,}r 2v2dT

_3 —
Asymptotically, RT ; = O(d? L3¢, (Wr + WrT-1)T%).
The proof can be found in Appendix C. Theorem 4.2 implies that

3
the regret bound satisfies Rg’, s/T — 0 whenever W = O(Té e}) and

— 3
Wr = o(T% €7 ).In particular, if the bounded variation Assumption 4.1

holds, then we have Wr < (’)(TV?), and it suffices to let T~ % e;% =
o(1).

Next, we assume that the objective functions f; in (P) are noncon-
vex and smooth and define the regret R := 3" E[[|V f,(z,)|?].
Specifically, we provide the following regret bound for ZO with
residual-feedback for natural or adversarial objective functions, as per
Definition 2.4.

Theorem 4.3 (Nonconvex smooth f;): Let Assumptions 4.1 hold.
Assume that f, € €%° n €11 with Lipschitz constant L and smooth-
ness constant L and that f; is bounded below by f; for all £. Run ZO
with residual feedback for T iterations with 1) = (2¢/2Lod3T %)~}
and § = (d37T%) 1. Then,

RT < 4V2Lo (E[fs0(z0)] — fir + Wr) d3T? + 2L} d3T*

\/_Ll L1E [[|go(z0) %]

4+ 8V2L1Lod3T? + Y2 La3 Wy + —
V2Lod3T=

Asymptotically, RT = O(d% LGWTT% +d3 L, Lo "W).
The proof can be found in Appendix D. Theorem 4.3 implies that the
regret bound satisfies RY /T — 0 whenever Wr = o(T’i) and W =

o(T'). We note that these requirements on Wy and Wi are weaker than
those in the case of nonsmooth problems, as they do not rely on the small
parameter €.

V. ZO WITH RESIDUAL FEEDBACK FOR STOCHASTIC ONLINE
OPTIMIZATION

Our proposed residual feedback gradient estimator can be also
extended to solve stochastic online bandit problems. Since the regret
analysis is similar to that for deterministic online problems presented
before, we only introduce the key technical lemmas and comment on the
differences in the proof. Consider the stochastic online bandit problems

T-1
min ; E[F(z;&)], where E[Fy (; &) = fi(z) Vi

where £; denotes a certain noise that is independent of z. Different from
the deterministic online problems discussed before, the agent here can
only query noisy evaluations of the objective function. To solve the
above problem, we propose the following stochastic residual feedback:

() = L8 (B (4 Bue: ) — Fir(@es + bue13601)) (1)

where &;_; and £; are independent random sample noises at consecutive
iterations ¢ — 1 and ¢, respectively, and u; and u;—; € US? are random
search directions sampled by the user. Since the noisy function value
F(x;&;) is an unbiased estimate of the objective function f;(z), it is
straightforward to show that (7) is an unbiased gradient estimate of the
function f5 (). To analyze the regret of ZO with stochastic residual
feedback, we first consider the convex case and make the following
assumption on the variation of the stochastic objective functions.

Assumption 5.1: (Bounded stochastic variation) There exists
Vie >0 such that for all ¢ and =, ; € X5, E[(Fi(zi-1,&) —
Fy_1(z4-1,6-1))%] < V7., where the expectation is taken over the
evaluation noises &; and &;_1.

The above assumption generalizes Assumption 3.1 to stochastic
problems. The bound If}"",E controls both the variation of function
and the variation due to stochastic sampling. The following lemma
characterizes the second moment of the stochastic residual feedback
gradient estimates. Its proof can be found in [30].

Lemma 5.2: Assume F(zx,£) € C%° with Lipschitz constant L, for
all £ and = € A5. Then, under the ZO update rule, we have that

- 4d2L27}2 -
E[||ge(z:)[I?] < 5—20]E[||g;(1:_1)||2] + Dee

where D, ¢:=16L3 d2+2%
Oug1,& 1)) ]

Observe that the above second moment bound is very similar to
that in Lemma 2.6, and the only difference is the perturbation term.
Consequently, ZO with stochastic residual feedback achieves almost
the same regret bounds as those in Theorems 3.2 and 3.3, and one
simply needs to replace V; by Vy .. For nonconvex problems, we adopt
the following assumption that generalizes Assumption 4.1.

Assumption 5.3: There exists Wy, Wy ¢ > 0 such that for any
sequence {z+}1_, the following two conditions hold.

1) Z: 1(Foe(xe) — foe-1(z)) < Wr. .
2) Yo El(Fe(zt-13&) — Feo1(ze-1;601))?] < Wre, where the
expectation is taken over evaluation noises & and &;_1.

Then, following similar steps as those in the proofs of Theorems 4.2
and 4.3, we can obtain similar regret bounds for ZO with stochastic
residual feedback (simply replace W and Wr in Theorems 4.2 and
4.3 by W ¢ and W ¢, respectively).

E[(F:(I: 1H0ue1,6)—Fy1(xe1 +

V1. NUMERICAL EXPERIMENTS

In this section, we compare the performance of ZO with one-point,
two-point, and residual feedback in solving nonstationary resource
allocation problems, where either the reward or transition functions
are varying over episodes. Specifically, we consider a multistage re-
source allocation problem with time-varying sensitivity to the lack of
resource supply. Specifically, 16 agents are located on a 4 x 4 grid.
During episode ¢, at step k, agent 7 stores m;(k) amount of resources
and has a demand for resources in the amount of d;(k). Also, agent 7
decides to send a fraction of resources a;;(k) € [0, 1] to its neighbors
j €N; on the grid. The local amount of resources and demands
of agent 7 evolve as m;(k + 1) = my(k) — >_;cp, @i (k)mi(k) +
D jen; aii(k)m;(k) — di(k) and di(k) = s sin(wik + ¢:) 4 wi k,
where w; ;, is the noise in the demand. At each step k, agent 7 re-
ceives a local cost r; ;(k), such that r; ;(k) = 0 when m; (k) > 0 and
r;.¢(k) = Cym, (k)2 when m; (k) < 0, where (; represents the varying
sensitivity of the agents to the lack of supply during episode ¢. Let
agent z make its decisions according to a parameterized policy function
15.0(04;05.0) = O; — [0, 1]Wil where 6; , is the parameter of the policy
function m; ; at episode t, o; € O; denotes agent :’s local observation.
Specifically, we let o;(k) = [m;(k), d;(k)]T. Our goal is to track the
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Fig. 1. Comparative results of ZO with the proposed one-point residual
feedback (3) (black), the two-point oracle in [7] (orange) and the con-
ventional one-point oracle in [15] (green) for the nonstationary resource
allocation problem. (a) Varying cost J:(#; ) achieved using three different
oracles. (b) Variance of the gradient estimates at agent 1 returned by
the three methods. The two point method (orange) is infeasible to use in
practice and is presented here to serve as a simulation benchmark.

time-varying optimal policy so that the accumulated cost over the grid
J:(6;) = 221 Zfzﬂ ~*r; (k) during each episode is maintained at
alow level, where @; = [...,6;,...] is the policy parameter, H is the
problem horizon at each episode, and ~ is the discount factor.

All experiments are conducted using Matlab R2019a on Ubuntu
18.04 with the AMD Ryzen 2700X 8-core processor and 16 GB
2133 MHz memory. The policy function m; ¢ (0;; 6; ;) is parameterized
as: a;; = exp(zi;)/ ; €xp(zi;), where zy; = 30 1,(0:)0:;(p)
and ; = [...,0,;,...]T and the episode index ¢ is omitted for nota-
tional simplicity. Specifically, the feature function 105 (0;) is selected as
Pp(0:) = ||o; — ep||?, where ¢y, is the parameter of the pth feature func-
tion. Effectively, the agents need to make decisions on 64 actions, and
each action is decided by nine parameters. Therefore, the problem di-
mensionis d = 576. The discount factor is selected asv = 0.75 and the
length of the horizonis H = 30. The time-varying sensitivity parameter
Ci,¢ 1s generated as follows: let ;0 =1 and (i¢4+1 = (it +0.1F;,
where P is a random number uniformly sampled from [—1, 1].

In Fig. 1(a), we present the cost .J; (8, ) achieved during each episode
after ten trials of ZO with residual-feedback, one-point, and two-point
feedback which, as before, is impossible to use in practice for this
nonstationary problem either. It can be seen that ZO with our proposed
residual-feedback achieves a cost J;(6;) that is as low as the cost
achieved by the two-point feedback in this nonstationary environment.
In particular, ZO with both residual and two-point feedback performs
much better than ZO with conventional one-point feedback. Fig. 1(b)
also compares the estimated variance of the gradient estimates returned
by these feedback schemes. It can be seen that the variance of the gra-
dient estimates returned by the residual feedback oracle is comparable
to that of the gradient estimates returned by the two-point oracle and is
much smaller than that returned by the conventional one-point oracle.

VII. CONCLUSION

In this article, we proposed a novel one-point residual feedback
oracle for zeroth-order online optimization, which estimates the gra-
dient of the time-varying objective function using a single query of the
function value at each time instant. For both deterministic and stochastic
problems, we showed that ZO with the proposed residual feedback
estimator achieves much lower regret than that of ZO with conven-
tional one-point feedback for convex online optimization problems. In
addition, we provided regret bounds for ZO with residual feedback for
nonconvex online optimization problems. To the best of our knowledge,
this is the first time that a one-point zeroth-order method is theoretically
studied for nonconvex online problems. Numerical experiments on
a nonstationary reinforcement learning problem were conducted and
the proposed residual-feedback estimator was shown to significantly
outperform the conventional one-point method.

APPENDIX
A. Proof of Theorem 3.2
Note that f5 () is convex for all ¢, we then conclude that

fa‘t(ﬂ?:) - fd,:(E] < (V.fd,:(It]siFt —zx), forallz e X. (8)

Adding and subtracting §; () after V f5 + (=) in above inequality, and
taking expectation over u; on both sides, we obtain that

E [fa‘t(ﬂ?:) - fd,:(E]] <E [@: (z4), T — I)] - (&)
Since x4 = lly[z: — ng(z)], for any z € X we have that

||$:+1 - $||2 = ||y [Et —né(rt)] — Iy [I] ||2

< llze —ng(z:) — ||

= ||z — zl> — 20(Ge(ze), e — ) + 07 [|Ge(ze) 1. (10)
Rearranging the above inequality yields that

(Ge(zt), 70 — )

<— (lze — 2% = llzess — =?) + 2lge(z) |2 (11)

— 2n 2

Taking expectation on both sides of the above inequality over u;,
using inequality (9), and telescoping the resulting bound from ¢ = 0 to
T, we obtain that

T T
E [Z Sau(ze) — Zfa,:(r)]
t=>0 t=>0

T
1 2, 7 - 2
< — — =k .
< grlleo I+ L}zn:ugt(zt)n]

Since f;(z) € €%, we know that | f5 ,(z) — f:(x)| < 8 Lg. Therefore,
we obtain from the above inequality that

T T T T
S hie) -3 @) zfa‘amt)—zfa‘t(z)]
t=0 t=0 t=0 t=0

E =E

T T
+E [Z (fe(ze) — foe(ze)) — Z (fe(z) — f&,:(I))]

t=0 t=0

T
D lge(=e)I? | +2LodT- 12)

1
< —|lzo — 2| + 1E
2n 2 Pt
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On the other hand, telescoping the second moment bound in
(5) over t = 1,2, ..., T, adding E[||go(z0)|?] on both sides, adding

d—LgDW—]E[HgT(zT)HZ] to the right-hand side and using Assump-
tion 3.1, we obtain that

T
E [Z |I§t(2::)ll2]
t=0

16 2d42Vv2 1
d2L2T+ 7 (13

— 2 —
<1 ]E[Ilgo (zo)l ]+ T —a 52

27 2,2
where o = ﬂ‘;ﬂq—. Substituting the above bound into (12) yields that

T T
Ui -
E|Y" filzd) = X fi@)| < 5m—=E[ljo(z0)]’]
t=0 t=0 2(1-a)
1 8 2v2
+ —|lzo — z|* + —— L2 d2%4T +2Lo6T + —L LT
2n -« 1—ad?

Since the above inequality holds for all =z € X', we can replace =
with z*. When the upper bound on ||zp — z*|| < R is known, let p =

4d2L2 2
\/_R% andd:@,sothala:—égﬂq—:f;< ,whenT >
2v2dLo T T

RZ?. Then, we obtain that

(ze) — th(:r
[||90(I0)|| ]
2V/2dLoT?

\/ﬁVfT&

‘/_

0

T

E\> fi

t=0

< V2dLoVRT? +

1

+ 4v/2d? LoR3T1

+2LoVdRT? + (14)

When R is unknown, let n = L and § = vd , so that o« =
K 2v2dLg 1 =3
4d2L2i'j2

— = % < % Then, we obtain that

T

T
E Z fe(zs) — Z fe(z)
t=0

t=0

< \2dLyR2T1? + M 1+ 4y2d% L, T
2v/2dLo T

Vdv?
+ VAL, TE + 71
’ V3Lo

(15)

B. Proof of Theorem 3.3

As discussed above Theorem 3.3, there exists a constant Lg with
which f, is Lipschitz over the compact set X;. Since f;(z) € C1:1,
we know that |f5:(x) — fi(z)| < 62Ly. Following the same proof
logic as that for proving (12), we obtain that ]E[Z;F:g fi(ze) —
Yo Fi(@)] < 5zllzo — z(1” + FE[Y 1o [|ge(2e)|?] +2L10°T.
Substituting the TiJOll]’ld in (13) into the previous inequality, we
obtain  that  E[Y7_ fe(ze) — Xp_y fo(@)] < w0 — 2] +

d2v2
sy Elldo(zo) IP] + 25 L3 0T +2L16° T + L 2 T.

Since this inequality holds for all z € A, we can replace = with =*.

4
. . il
Assuming the bound ||zy — z*|| < R is known, let = —E=—
2v2ZLgd3ITTE
43 RY 4d7Lgn? _ 2 1 2
and 6 = === so that a = —2— = 5= < 5 when T > R".
TS

Plugging these parameters into above inequality, we finally obtain that

T T
E Z fe(ze) — Z fi(z)
t=0 t=0

E [l|go(z0)|I*] B3 + 420, d2 RET?

2V2Lod3iT?
+2L,d#RET% 4 (V2Lo) 1RV TR (16)

When the bound |zp—z*|| <R is unknown Choose n=
4dL2p?

dé = thater =
v a¥rg 8 = g sothata = = = 7 <

these parameters into above inequality, we finally obtain lhat

T T
E Z;ft(xt) —Zof:(x)

<V32L,d?R%T% 4

Plugglng

E[|§ 2 d+ 4)?
E \/§L0 d% ||-TO _ I||2 T§ + [”g[](zﬂz)” 2] + 8\/5}‘_—10( +2 ) Tﬂl'
2v2Lo d3T3 dz
2
+2d%L, T# +L£d%vf2T%. 17
0
The proof is complete. |

C. Proof of Theorem 4.2

Note that fi(z) € C%°. According to Lemma 2.2, fs¢(x) has
L s-Lipschitz continuous gradient with L, 5 = %Lg. Furthermore,
according to [32, Lemma 1.2.3], we have the following inequality:

f&,: (-Tt+1)

L
< fé,t(-’rt) + <Vf6,t(3?:)| Te+1 — It) + %thﬂ - $:||2

Ige (ze) >

2
= Jou(ee) ~ (¥ foulme), Ge(ee)) + 222

Lysn’, -
+ = (w02 (18)

where Ay = §¢(x¢) — V f5.+(z¢). According to Lemma 2.5, we know
that E,,, [§:(z:)] = V f5,:(x:). Therefore, taking expectation over u,
conditional on =; on both sides of inequality (18) and rearranging terms,
we obtain that

NE[|V f5,6(z¢)[|*]

< E[fse(ze)] — E[fse(zes1)] + ” E[||ge () ||]

Fowrr(@ess)] + 2 “” E[d0 (z0)?]

+E[fst+1(ze+1)] — E[fse(ze41)] a9

where the expectation is conditional on x,. Then, we can further con-
dition both sides of (19) on =, without changing the sign of inequality,
and then apply the tower rule of conditional expectation to make the
expectation in (19) become full expectation. Telescoping the above
inequality over t =0,...,7 — 1 and dividing both sides by 7., we
obtain that

T-1

ZE[nvm(zt)u

< E[fs(z:)] — E

o ZE 1ge(ze)|1?]

E[fs.0(x0)] — E[fsr(zr)] + Wr
n
E T _ = W- T-1
< Aol ~Jir W | 1ot S g el o)
t=0
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where f; - is the lower bound of the smoothed function f5 (). f5
must exist because we assume that the original function f;(z) is lower
bounded and the smoothed function has a bounded distance from f; ()
due to Lemma 2.2 for all £. The first inequality holds by Assumption4.1;
the bounded accumulated variation of the function f implies that the
smoothed function f; can also be bounded at the same level. This is due
to the definition of the smoothed objective function f5 ;. Specifically,
we have that ¢, (fs.e(«2) = fo-1(e2)) = Euen[30 (fole: +
dv) — feo1(ze + dvt))] < EU;EB[WT] Wr.

Next, we derive the bound on Zt 0 ]E[||gt ()] ] Summing the

bound in (5) from ¢ = 1,...,T, adding E[||§o(x0)||?] on both sides,

and adding 1L-‘-ﬁ,ﬂ‘q—]E[|| gr (:ET] [|2] to the right-hand side, according to

Assumption 4.1, we obtain that

T
E [Z ||§t(%)||{|
t=0

» _
< —1 E [lgo(20) ] + 7= L3’ T + -——

Substituting this bound into the inequality (20), we obtain that

T-1
D EI|V fse(ze)|1?]
t=>0

Elfso(zo)] — fir  Wr dLo
e A (e

n m 1-
dLon 16 o dLon 2d® Wr
% 1o Tt 55 oo

To fullfill the requirement that |f;(z) — f5:(z)| < er, we set
the exploration parameter § = EL. In addition, let the stepsize be

el-® 4d2L2q2

= . Then, we have Lhala_—gﬂ—_—L<
K 2vZL2 d15T 2dl =

when T > %. Therefore, we have that E < 2. Substituting this
bound and the choices of i and § into the bound above, we finally
obtain that 37, 0‘ B[V fo.(20) ] < 2V2LY(Elfs.o(wo)] — fir +

dl 5 E[llgo(zo)ll 15 dl-5wW
WT) Lo +4V2LGe}d T% + J%—,—E} 5T;
The proof is complete. |

D. Proof of Theorem 4.3

Note that when f, € C'*! with Lipschitz constant L, the smoothed
function f5; € C 1.1 with Lipschitz constant L. Therefore, following
the proof of Theorem 4.2 but replacing L s with L1, we obtain that

T-1
D E[IV fse(ze)])?]
t=0

< E[fs.0(z0)] — f5r qu ZE[HQ: w7+ nrr_ 22)

n t=0

Since f, € C1:1, according to Lemma 2.2, we have that ||V f; . (z) —
V fi(z)|| € dL,4. Furthermore, we have that

T-1 T-1
STE[IVF()P] = Y ElIVF(ze) — Vfse(ze) + Viselze) ]
t=0 t=0
T-1 T-1
<23 E[Vf(ze) = Vise(ze) 2] + 2D El|Vfse(ze) 2.
t=0 t=0

6315
Substituting the bound in (21) into (22) and using
the bound above, we obtain that 23’_01 E[||V f(z:)|]?] <

E[f5,0(z0)]-f}
2%4_2“’7 + L1 E[”gu(ﬂ?u)” In+ 1GL1L2d2T;T n
2L Wr g 4 2d?L36°T. Choose n=—27— and

2L21;2 NELud’JTE
1 4d

5__}?1_ Then, o= —w — and 1—<2

d
Substituting these results into the previous 1nequa11ty, we finally
obtain that - 37370 E[[[V f(z0)|?] < 4V2Lo(Elfs0(x0)] - fir +
Wr)dT% + LElGe@ol®] | 8\/31, Lo d¥T% + L1447,

T) +EE,‘D_J%_TL£J+ V2L1Lo + 5 T+
212 d3T'%. The proof is complete. [ |
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