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Abstract

The rapid development of modeling techniques has brought many opportunities

for data-driven discovery and prediction. However, this also leads to the chal-

lenge of selecting the most appropriate model for any particular data task. Infor-

mation criteria, such as the Akaike information criterion (AIC) and Bayesian

information criterion (BIC), have been developed as a general class of model

selection methods with profound connections with foundational thoughts in sta-

tistics and information theory. Many perspectives and theoretical justifications

have been developed to understand when and how to use information criteria,

which often depend on particular data circumstances. This review article will

revisit information criteria by summarizing their key concepts, evaluation met-

rics, fundamental properties, interconnections, recent advancements, and com-

mon misconceptions to enrich the understanding of model selection in general.
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1 | INTRODUCTION

Data-driven discovery and prediction have been the backbone of many science and engineering domains. Multiple
candidate models are often considered when we establish models for a particular data task. Examples include selecting
the most appropriate biological model to understand a disease, choosing the time window to predict economic trends,
and ranking the models in an online data competition. Model selection is such an area that studies principled machin-
ery for scientists to obtain a reliable model for interpretation and prediction purposes. Information criteria represent a
broad class of model selection criteria, which have found extensive applications in fields such as economics (Pesaran,
1974), social studies (Raftery, 1995), psychology (Zucchini, 2000), ecology (Johnson & Omland, 2004), epidemiology
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(Walsh, 2007), and engineering (Hong et al., 2008). There have been several information criteria proposed from
different perspectives. Among them, two representative information criteria, Akaike information criterion (AIC)
(Akaike, 1974, 1998) and Bayesian information criterion (BIC) (Schwarz, 1978), are perhaps the most influential and
have been built into the standard tool-kits of data science software such as R, STAT, SPSS, and SAS.

In application, since different information criteria typically give different results, one may eventually have to choose
one for reaching a final model. Unfortunately, this often puzzles data analysts in multiple aspects: (1) Which one is the
best among various information criteria available? (2) How to correctly interpret the obtained model selection results?
(3) Is the final model reliable? Indeed, when and how to use information criteria appropriately is a complex problem,
and the uncertainty of model selection should be properly assessed. In the past few decades, researchers have found
that the successful use of each method may depend on many factors, including the underlying data-generating process,
postulated models (in particular, how close they are to the data-generating process), sample size, and evaluation met-
rics. Overall, it is impossible to have a single criterion that fits all circumstances. As such, it is crucial to understand the
theoretical foundations of information criteria and their practical implications.

We see the emerging need for reviewing information criteria and related methods with increasing data and model-
ing problems. While there are several articles on the overview of general model selection techniques (see, e.g., Ding
et al. (2018b) and the references therein), a summary of foundational aspects of information criteria is relatively lacking.
Also, there have been new developments in model selection and assessment based on information criteria. These have
motivated our review article on information criteria, which aims to enrich its understanding of the following elements:

• Model selection objectives, evaluation metrics, challenges, and insights.
• Insights into the theoretical properties of AIC and BIC.
• Connections between information criteria and other related methods.
• Recent research advancements on the use of information criteria.
• Clarification of misleading folklores and practical guidelines.

The information criteria were historically developed for traditional statistical models, such as linear regression and
autoregression models. Here, we use “traditional statistical models” to generally refer to candidate models that are basi-
cally pre-determined, have a relatively small set of continuously-valued unknown parameters, satisfy some regularity
conditions (e.g., smoothness with respect to the parameters), and have many existing well-understood technical ana-
lyses. Needless to say, semi-automated and highly complex machine learning procedures, which we generally refer to
as “blackbox methods,” have become increasingly popular in many applications. For example, nowadays, tree ensem-
bles and deep neural networks have been frequently applied to regression and classification problems, especially when
both the sample size and input dimension are considerable. Nevertheless, studying model selection in traditional statis-
tical models is still critically important for the following reasons. First, traditional statistical models, with advantages in
interpretability and uncertainty quantification, continue to be appropriate tools for scientific understanding beyond
pure prediction. For example, Ye et al. (2018) illustrated how linear regression could provide more reliable descriptions
of variable importance than random forest. Second, when the sample size is relatively small (e.g., hundreds or thou-
sands), the traditional models often perform better or much better in prediction (Bartol et al., 2022; Dudoit et al., 2002).
Third, the developed understanding based on traditional statistical models may apply to blackbox methods since their
underlying principles such as the bias-variance tradeoff may be the same. Finally, choosing between a regular statistical
model and a blackbox method when both are applicable for prediction is also a model selection problem, which can be
addressed by proper cross-validations, as will be reviewed later. This provides an angle into how model selection princi-
ples initially developed for traditional models can leverage the power of blackbox methods.

We emphasize that considering traditional statistical models as candidate models does not mean that the underlying
data-generating process is restricted to belong to any candidate model. In other words, the models may not be
well-specified—an essential aspect of model selection that will be presented in this review.

The outline of the article is as follows. Section 2 introduces the model selection settings, including common objec-
tives, desirable properties, and an example to illustrate the key challenges. Sections 3 and 4 introduce AIC and BIC,
respectively, which have played foundational roles in developing model selection literature. We will review their stan-
dard forms, theoretical properties, and intuitive explanations of asymptotic behaviors. Section 5 introduces some other
information criteria that represent different perspectives. Section 6 reviews the connections between information
criteria and other methods for model selection. Section 7 discusses recent research advancements in bridging the gap
between AIC and BIC (and their variants). Section 8 presents information criteria for high-dimensional regression.
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Section 9 focuses on the model selection uncertainty and introduces information criteria-based tools to assess and con-
trol the uncertainty. Section 10 clarifies some common misconceptions about information criteria. Section 11 provides
concluding remarks of this review article.

2 | MODEL SELECTION FRAMEWORKS

Suppose we observe data D with an unknown probability density function p� with respect to a -finite measure. In this
work, any specification of a set of probability density functions for D is called a model. To estimate p�, we consider a
pre-determined set of parametric models ℳm :m�f g, where  is an index set, ℳm can be written as
pθm : θm �ℋm
� �

, θm is a continuously valued parameter that uniquely determines the function pθm , and ℋm is a
dm-dimensional parameter space of θm. Different models may overlap in the sense of sharing some density functions.
Given a specific model, θm can be estimated by a proper method, such as the maximum likelihood estimation and the
method of moments. The core interest of model selection is to choose ℳm (m�) most suitable for the objectives for
modeling the data D. Next, we will elaborate on some common model selection problems in Section 2.1, discuss differ-
ent objectives and evaluation metrics in Section 2.2, and highlight the challenges through a specific example in
Section 2.3.

2.1 | Common problem formulations for model selection

We first consider model selection in regression models. Suppose

yi ¼ f xið Þþ εi, i¼ 1,…,n, ð1Þ

where yi �ℝ is the response, xi �ℝd is the vector of the predictor variables, f :ℝd !ℝ is the underlying regression func-
tion, and εi represents independent random noise with variance σ2. Since in regression problems, one typically does not
study the distribution of the predictor variables, a postulated model ℳm ¼Δ f θm : θm �ℋm

� �
often focuses on rep-

resenting the regression function together with a specification of the error distribution. Given the observed data
Dn ¼Δ zif gni¼1, where zi ¼Δ yi,xið Þ, the estimated parameters of ℳm are usually obtained by solving

bθm ¼Δ argmin θm �ℋm

Xn
i¼1

s f θm ,zi
� �

, ð2Þ

where s is a proper scoring function, such as the quadratic loss s : f , y,x½ �ð Þ 7! f xð Þ� yð Þ2. The performance of the models
is evaluated by the out-sample prediction loss for a future observation z that follows p�:

ℒn mð Þ¼Δ � s fbθm ,z� �
jDn

� �
�σ2, ð3Þ

where � denotes the expectation with respect to the data-generating distribution (random-design settings). Here, the
uncontrollable future noise variance is subtracted to sharpen the evaluation metric in distinguishing different estima-
tors. In the case of quadratic loss, we have

ℒn mð Þ¼Δ � y� fbθm xð Þ
� �2

jDn

� 	
�σ2 ¼� f xð Þ� fbθm xð Þ

� �2
jDn

� 	
,

where x is treated as a random vector. For fixed-design regression settings, we consider the estimation loss (in terms of
estimating the regression function at fixed design points):

ℒn mð Þ¼Δ n�1
Xn
i¼1

f xið Þ� fbθm xið Þ
� �2

: ð4Þ
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Next, we introduce two other commonly studied model selection settings: order selection in time series and model
selection in density estimation. In history, many model selection methods have been initially developed for selecting
the lag order in autoregressive models. More specifically, suppose the data-generating process is yt ¼

P∞
i¼1βiyt�iþ εt,

where εt is random noise with variance σ2. A candidate model ℳm may be formulated as

yt ¼ f θm yt�1,…,yt�dm

� �þ εt,

where f θm yt�1,…,yt�dm

� �¼Δ Pdm
k¼1θm,k � yt�k, and θm ¼Δ θm,1,…,θm,dm½ �T �ℋm ⊆ℝdm is the parameter vector that can be esti-

mated by the quadratic loss for time series:

s : f θm , yt,…,yt�dm


 �� � 7! yt� f θm yt�1,…,yt�dm

� �� �2
:

The performance of a time series model can be evaluated by the one-step prediction loss:

ℒn mð Þ¼Δ � s fbθm , ynþ1,…,ynþ1�dm


 �� �
jy1,…,yn

� �
�σ2:

In order selection problems, we consider the set of nested models ℳ1,…,ℳdmax with increasing orders
where 1< dmax <n.

Model selection is generally used for density estimation where y1,…,yn are independent and identically
distributed (IID) observations following a density function p�. We postulate a set of candidate models ℳm :m�f g,
where ℳm ¼Δ pθm : θm �ℋm

� �
represents a parametric family of density functions pθm ,θm �ℋm

� �
with ℋm ⊆ℝdm . The

parameters are often estimated by

bθm ¼Δ argmin θm �ℋm

Xn
i¼1

s pθm ,yi
� �

,

where s p,yð Þ : p,yð Þ 7! � logp yð Þ is the logarithmic loss. The performance of ℳm can be evaluated by
ℒn mð Þ¼Δ � s pbθm ,y� �

j y1,…,yn
� �

for a future observation y, which is equivalent to the Kullback–Leibler loss

� log
p� yð Þ
pbθm yð Þjy1,…,yn

 !
:

2.2 | Model selection objectives and evaluations

In practice, there may be various goals of model selection. We roughly categorize them into two types: (1)
prediction that aims at selecting the best model in terms of the out-sample prediction loss (e.g., minimize
the one-step prediction loss in time series modeling), and (2) inference that focuses on improving the
explainability and interpretability of the unknown data-generating process (e.g., selecting essential variables).
For prediction, it may not be a concern if the model selection result keeps switching between some candidate
models with similar performances when the sample size or signal-to-noise ratio is slightly changed (see Zhang
et al. (2023) for an example). In contrast, for interpretation, the selection result must be stable to characterize
the data-generating process reliably. Let bm denote the index of the model obtained from a model selection method.
In line with the above goals, the following notions characterize the desirable model selection properties from
different perspectives.

To simplify the notation, let us consider a regression setting and let f denote the underlying regression function and
 the set of postulated candidate models. We define the set of “well-specified” models to be
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w ¼Δ m� : 9θm �ℋm, s:t: f ¼ f θm
� �

, ð5Þ

which may contain none, one, or more elements. For example, suppose the considered candidate models are polyno-
mial regression functions of a variable x �ℝ with degrees ranging from 1 to dmax , namely, f θm xð Þ¼Pdm

i¼0θm,i �xi with
dm ¼ 1,…,dmax . Then, w is empty if the underlying data-generating regression function is f xð Þ¼ ex , w contains one
element if f xð Þ¼ xdmax , and w contains multiple elements if f xð Þ¼ xd with d< dmax . When w contains more than
one element, it is desirable to identify the most parsimonious model, denoted by ℳm� , namely m� ¼ argminm �wdm.
Such a model is often called the true model or data-generating model.

For the following definition, we assume ℳm� exists and is unique. The property of consistency aims to select a reli-
able model for inference purposes.

Definition 1. (Consistency). A model selection method is consistent if it selects a model bm that satisfies

P bm¼m�ð Þ! 1,asn!∞:

From a prediction perspective, we may not require the existence of ℳm� . Instead, we may only need the selected model
to predict as accurately as the theoretically best model (asymptotically), even if the selection result itself may not be
stable.

Definition 2. (Efficiency). A model selection method is asymptotically efficient if it selects a model bm that
satisfies

ℒn bmð Þ
min
m �

ℒn mð Þ!p1asn!∞:

Whether a model selection method has the above properties depends on the underlying data-generating distribution
and the candidate model class. Such dependence can be roughly categorized into the following two scenarios.

Definition 3. (Parametric scenario). In a parametric scenario, there is at least one well-specified candidate
model, in the sense that w defined in Equation (5) is not empty.

A cautious reader may question whether any theoretical understanding of model selection under this definition is
of practical relevance if “all models are wrong.” It is conceivable that we are rarely in a “true” parametric scenario
(except, e.g., in well-controlled physical/chemical studies, where parametric models are known to be reliable). Never-
theless, in practice, the developed understanding does not necessarily require the underlying data-generating distribu-
tion to sit in the model class in the strict sense. The theoretical knowledge acquired from a parametric scenario may
also apply to a “practically parametric” scenario, depending on the sample size and underlying distribution, which we
will discuss in Section 10.2.

Definition 4. (Nonparametric scenario). In a nonparametric scenario, it is assumed that the data are gener-
ated in a way that cannot be fully characterized by any candidate models, namely w ¼;, and the models
may provide better and better approximations to the underlying data-generating process when the model
complexity increases.

We will illustrate that an efficient information criterion in a nonparametric scenario may not be efficient in a
parametric scenario and vice versa. It is worth noting that the above notions of parametric and nonparametric scenarios
correspond respectively to the M-closed and M-open views in a Bayesian framework (see, e.g., Section 6.1.2 of Bernardo
and Smith (2009) for more details).
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Next, we provide an alternative notion, “minimax rate optimality,” to evaluate model selection from a prediction
perspective. Compared with the above definition of efficiency, this definition will focus on the worst-case scenario.
More specifically, while efficiency characterizes a model selection method by assuming a fixed underlying data-
generating distribution, the minimax rate optimality provides a uniform guarantee of its performance on a set of
possible data-generating distributions. We will introduce formal notions by focusing on regression models.

In the parametric scenario, given model m�, we define the minimax risk

ℛn mð Þ¼Δ infbf sup
θm �ℋm

θm

1
n

Xn
i¼1

f θm xið Þ�bf xið Þ
� �2( )

,

where bf is over all estimators of f based on the data, and θm denotes the expectation with respect to θm being the true
regression parameter. If m� were known, for the estimation of f , we can achieve the smallest worst-case risk by using
the minimax estimator of m�. With m� unknown and bm selected, we hope the resulting estimator converges at the mini-
max rate ℛn m�ð Þ.

In the nonparametric scenario, consider an infinite-dimensional class of regression functions ℱ as the target collec-
tion of regression functions to learn. To that end, a countable list of finite-dimensional models is used to approximate
the target functions. The minimax risk for estimating f �ℱ is defined as

ℛn ℱð Þ¼Δ infbf sup
f �ℱ

f
1
n

Xn
i¼1

f xið Þ�bf xið Þ
� �2( )

,

where bf is over all estimators of f based on the data, and f denotes the expectation with respect to f being the true
regression function. For the selected approximating model bm, we hope the associated estimator achieves the same con-
vergence rate as ℛn ℱð Þ.

Definition 5. (Minimax rate optimality). A model selection method is minimax rate optimal if it selects a
model bm that satisfies:

1. In the parametric scenario, for all m�,

sup
θm �ℋm

θm

1
n

Xn
i¼1

f θm xið Þ� fbθbm xið Þ
 !2( )

≤C �ℛn mð Þ

for some constant C>0 for all n≥ 1.
2. In the nonparametric scenario,

sup
f �ℱ

f
1
n

Xn
i¼1

f xið Þ� fbθbm xið Þ
 !2( )

≤ eC �ℛn ℱð Þ

for some constant eC>0 for all n≥ 1.

We focused on regression with a fixed design under the squared error loss in the above definition. Proper modifica-
tions are needed for random design and other loss functions.

2.3 | Fundamental challenges through an example

To highlight the fundamental challenges in model selection, we consider a very specific setting where the underlying
data-generating process is a fixed design linear regression with the underlying function f xð Þ, x �ℝd, and independent
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noise ε with a known variance σ2. Let yn ¼Δ y1,…,yn½ �T, f n ¼Δ f x1ð Þ,…, f xnð Þ½ �T, and εn ¼Δ ε1,…,εn½ �T. We consider the candi-
date models ℳm consisting of the regression functions f θm xð Þ¼ xTmθm where xm is a subset of variables in x with size
dm ≤ d and θm is the unknown parameter. Note that the true f may or may not belong to any of the candidate models.
Denote the projection matrix of yn onto the column span of the predictors in model ℳm by Fn mð Þ and let fbθm ¼Δ
Fn mð Þyn be the fitted values from ℳm. Then, the expected prediction loss (also known as the risk under the average
squared error), up to the difference of a factor n, can be written as

� k f n� fbθmk22 ¼ bias2þvariance, ð6Þ

where � is the expectation taken under the data-generating distribution with respect to εn, k � k2 denotes the ℓ2 norm
of vectors, bias¼Δk f n�Fn mð Þf nk2, and variance¼Δ � εTnFn mð Þεn

� �¼ dmσ2. It indicates that dm should be properly cho-
sen since a small dm may lead to a large bias due to missing useful predictors and a large dm will increase the variance.
However, we do not have future observations to evaluate the out-sample prediction loss. Instead, we only have access
to the in-sample loss RSSm ¼Δk yn� fbθmk22, which favors an over-complicated model that fits not only f n but together
with the noise εn. More specifically, we have

RSSm ¼k εnk22þk f n� fbθmk22þ2εTn f n� fbθm� �
¼k εnk22þk f n� fbθmk22�2εTnFn mð Þεnþ2εTn I�Fn mð Þð Þf n:

Note that the last term 2εTn I�Fn mð Þð Þf n has a zero mean. The formula suggests that if our goal is to estimate the predic-
tion loss from RSSm (up to a quantity that does not depend on m), we may add a bias correction term

2� εTnFn mð Þεn� εTn I�Fn mð Þð Þf n
� �¼ 2� εTnFn mð Þεn

� �¼ 2dmσ2: ð7Þ

Nevertheless, having a reasonable estimate of the prediction loss does not necessarily guarantee a selection of the best
model. The intuition is that for selection purposes, we need to compare the relative performance between models
instead of their absolute performance. For example, consider the setting where two nested models ℳm1 and ℳm2

(dm2 > dm1 ) are both well-specified. It can be shown that ℳm1 has a smaller expected loss value than ℳm2 thanks to its
fewer parameters to estimate. Also, it can be verified that in this case

RSSm ¼k εnk22�εTnFn mð Þεn, m� m1,m2f g, ð8Þ

and thus

RSSm1 �RSSm2 ¼ εTn Fn m2ð Þ�Fn m1ð Þð Þεn � χ2dm2�dm1

with a positive probability of being larger than the bias correction term 2 dm2�dm1ð Þσ2 obtained in Equation (7), where
χ2k denotes the chi-squared distribution with k degrees of freedom. Consequently, we cannot attain selection consistency
or efficiency by the penalty 2dmσ2 for fixed dm2 and dm1 . We need a model complexity penalty term that goes to infinity
to sufficiently discourage the choice of the larger model. In summary, we see two major challenges in model selection.
First, we may need to approximate the out-sample prediction loss from the sample already used for estimating the can-
didate models and use that as a basis to select models. Second, an accurate approximation of the prediction loss may
not directly lead to selecting the best model since the selection results may also depend on the relative performances
between the candidate models.
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3 | AKAIKE INFORMATION CRITERION

We will first introduce the Akaike information criterion (AIC) (Akaike, 1974, 1998), which is the earliest information
criterion with a profound influence on the development of model selection techniques. The original form of AIC selects
a model m� for the density estimation problem by minimizing

AICm ¼Δ �2
Xn
i¼1

logpbθm yið Þþ2dm, ð9Þ

where bθm denotes the maximum likelihood estimate under the model m. The above formula can be extended to regres-
sion and time series settings by replacing pbθm by the conditional density of y j x or yt j yt�1,…,yt�dm estimated from the
model, respectively.

To develop insights into Formula (9), let us consider the Kullback–Leibler (KL) divergence

DKL pθ�

���pθm� �
¼� log pθ� yð Þ� �� ��� log pθm yð Þ� �� �¼�� log pθm yð Þ� �� �þ c�,

where c� does not depend on m. Then, minimizing the KL divergence is equivalent to minimizing the expected logarithmic
loss for each model m. The quantity of AICm (after re-scaling) can be regarded as an estimate of �� log pθm yð Þ� �� �

using

its sample analog n�1Pn
i¼1 log pbθm yið Þ

� �
plus a bias-correction term n�1dm. Notably, the bias-correction term is needed

because n�1Pn
i¼1 log pbθm yið Þ

� �
has overused the observed data (once for the sample average and once for estimatingbθm). To see this, we assume ℳm is well-specified and use second-order Taylor expansion to obtain

� log pbθm yð Þ
� �� �

≈ � log pθ� yð Þ� �� 1
2n

GT
nJGn

� 	
, ð10Þ

1
n

Xn
i¼1

log pbθm yið Þ
� �

≈
1
n

Xn
i¼1

log pθ� yið Þ� �þA� 1
2n

GT
nJGn, ð11Þ

where Gn ¼Δ
ffiffiffi
n

p bθm�θ�
� �

is expected to converge to N 0,J�1ð Þ in distribution as n!∞,
J ¼Δ � rθ logpθ� yð Þð Þ rθ logpθ� yð Þð ÞT

n o
, and

A¼Δ n�3=2Gn �
Xn
i¼1

rθ logpθ� yið Þ≈n�1GT
nJGn: ð12Þ

Here, N denotes a Gaussian distribution and rθ denotes the gradient with respect to θ. From asymptotic
normality of bθm, it can be verified that GT

nJGn follows the chi-squared distribution with degrees of freedom dm
and � GT

nJGn
� �¼ dm. Therefore, by taking the expectation of the right-hand side of (11) and comparing it with (10),

we have

� log pbθm yð Þ
� �� �

≈n�1
Xn
i¼1

log pbθm yið Þ
� �

�n�1 �dm,

which leads to the formula of AICm that aims to approximate �2n� log pbθm yð Þ
� �� �

.
Next, we will first illustrate the properties of AIC under a linear regression setting and then present its properties

under general settings.
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3.1 | AIC for regression

For regression models, AIC is often known in the following particular form

AICm ¼Δ n log n�1RSSm
� �þ2dm, ð13Þ

which is derived from (9) by assuming y j x�N f xð Þ,σ2ð Þ. In fact, it can be calculated that

AICm ¼ n log 2πð Þþn logbσ2mþRSSmbσ2m þ2dm: ð14Þ

where bσ2m ¼ n�1RSSm. By rearranging it and dropping model-independent terms, we obtain the formula in (13).
To illustrate the properties of AIC in terms of consistency and efficiency, we consider the linear regression example

in Section 2.3 with known σ2 and an alternative form of AIC:

AICm ¼Δ RSSmþ2dmσ2, ð15Þ

which is obtained by multiplying the right-hand side of (14) by σ2 and dropping model-independent terms. We let ¼
m1,m2f g and focus on the following three scenarios.

1. The parametric scenario with both candidate models well-specified and ℳm1 being nested in ℳm2 : Here, “nested”
means any element in ℳm1 also belongs to ℳm2 . Based on the result in Equation (8)

AICm2 �AICm1 ¼�εTn Fn m2ð Þ�Fn m1ð Þð Þεnþ2 dm2 �dm1ð Þσ2:

Therefore, the probability of the event AICm2�AICm1 < 0f g is lower bounded by a positive constant, and AIC cannot
choose the data-generating model with probability going to one.

2. The parametric scenario when ℳm1 is misspecified and ℳm2 is well-specified: By Equation (8)

AICm2 ¼k εnk22� εTnFn m2ð Þεnþ2dm2 ¼k εnk22þOp dm2ð Þ: ð16Þ

Also, it can be shown under mild conditions (Shao, 1993) that

RSSm ¼k εnk22þk f n� fbθmk22�2σ2dmþop k f n� fbθmk22� �
ð17Þ

for misspecified m, and k f n� fbθm1

k22!p∞ goes to infinity at the rate of n as n!∞. Thus,

AICm1 ¼k εnk22þk f n� fbθm1

k22þop k f n� fbθm1

k22
� 	

: ð18Þ

Combining Equations (16) and (18) gives AICm1 �AICm2!p∞, which further implies that AIC favors the well-
specified model with probability going to one as n!∞.

3. The nonparametric scenario where both models are misspecified: In this case, the form in Equation (18) applies to both
AICm1 and AICm2 (withm1 replaced withm2). Therefore, comparing AICm1 and AICm2 is asymptotically equivalent with
comparing k f n� fbθm1

k22 and k f n� fbθm2

k22, namely, the out-sample prediction losses. This suggests that AIC is efficient.

From the above, we see that as long as there are at least two correct candidate models, AIC has a non-vanishing
probability of selecting the larger one. Hence, AIC is inconsistent in selection in general.
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To provide insights into the minimax rate optimality, which is less transparent to see, we first restrict the setting to
the simple linear regression where ℳm1 is the model with intercept only and ℳm2 has one predictor. Based on theorem
2 of Yang (2007), it can be seen that for a criterion that minimizes RSSmþλndmσ2, it is minimax rate optimal if and only
if λn is bounded in the context. It implies the minimax optimality of AIC in such a setting. More generally, due to its
bias-correction nature, AIC is minimax rate optimal for both parametric and nonparametric situations. We refer to
proposition 1 in Yang (2005) for such a result and section 4 in Yang and Barron (1999) for an understanding of why the
bias correction of AIC leads to minimax rate optimality for nonparametric regression.

3.2 | AIC for general models

In general settings, AIC has similar properties to those in Section 3.1. Under a more general setting of the nonparamet-
ric scenario where the size of  increases as n!∞, it has been shown that AIC is asymptotically efficient (Ing
et al., 2012; Ing & Wei, 2005; Shibata, 1980, 1981). However, it is neither efficient nor consistent in the parametric sce-
nario when there is more than one well-specified candidate model (Nishii, 1984; Shao, 1997). Also, AIC is minimax rate
optimal in both parametric and nonparametric scenarios (Barron et al., 1999; Yang, 2005; Yang & Barron, 1998).

4 | BAYESIAN INFORMATION CRITERION

The Bayesian information criterion (BIC) (Schwarz, 1978) is another cornerstone of information criteria. For the density
estimation problem, BIC selects a model that minimizes

BICm ¼Δ �2
Xn
i¼1

logpbθm yið Þþdm logn, ð19Þ

where bθm denotes the maximum likelihood estimate under the model m. Similar to AIC, BIC can be applied to linear
regression and time series under distributional assumptions on ε. It has a nice Bayesian interpretation of choosing the
model with the largest posterior probability

p ℳmjDnð Þ¼ p Dnjℳmð Þ � p ℳmð Þ
p Dnð Þ ,where ð20Þ

p Dnjℳmð Þ¼
Z
ℝdm

exp
Xn
i¼1

log pθm yið Þ� � !
pm θmð Þdθm, ð21Þ

and pm θmð Þ denotes the prior density of θm under model ℳm. To see the interpretation, we use Laplace approximation
to approximate p Dnjℳmð Þ as

exp
Xn
i¼1

log pbθm yið Þ
� � !

�pm bθm� �
�
Z
ℝdm

exp �1
2
bθm�θm
� �T

B bθm�θm
� �� 	

Þdθm

¼ exp
Xn
i¼1

log pbθm yið Þ
� � !

�pm bθm� �
� 2πð Þdm=2 �det Bð Þ�1=2,

where B¼Δ �Pn
i¼1r2

θ logpbθm yið Þ, and det �ð Þ denotes the determinant of a matrix. Here, with the sample size suitably
large, the prior pm θmð Þ is expected to play a less important role compared with the likelihood and thus bθm approxi-
mately minimizes the integrand in (21). As n becomes larger, B=n gets closer to a constant matrix, say B0, under some
regularity conditions, so det Bð Þ�1=2 ≈ n�dm=2det B0ð Þ�1=2. Therefore, taking a logarithm of p Dnjℳmð Þ gives
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logp Dnjℳmð Þ¼�1
2
BICmþop dmlognð Þ,

where op dmlognð Þ denotes a term asymptotically negligible compared with the BIC penalty dm logn. Thus, it follows
from Equation (20) that

logp ℳmjDnð Þ¼�1
2
BICmþop dmlognð Þ� logp Dnð Þ:

Since logp Dnð Þ is a term that does not depend on the model, minimizing BIC is asymptotically close to
choosing the model with the largest posterior probability. The above argument also applies to the selection prin-
ciple based on maximizing the marginal likelihood or Bayes factors, namely based on directly maximizing
p Dnjℳmð Þ over m�. As will be discussed in Section 8, the prior on the models needs to be brought to light in case
of addressing exponentially many candidate models. We will introduce more properties of BIC in the following
subsections.

4.1 | BIC for regression

Like AIC, BIC in regression takes the form of

BICm ¼Δ n log n�1RSSm
� �þdm logn:

To illustrate its properties in terms of consistency and efficiency, we consider the same parametric settings in Section 3.1
for AIC, where BIC has the alternative form BICm ¼Δ RSSmþdmσ2 logn.

1. The parametric scenario with ℳm1 nested in ℳm2 and both being correct. We have

BICm2 �BICm1 ¼�εTn Fn m2ð Þ�Fn m1ð Þð Þεnþ dm2 �dm1ð Þσ2 logn:

Since the term dm2�dm1ð Þσ2 logn is dominating, BIC selects ℳm1 with probability going to one.
2. For the parametric scenario with ℳm1 misspecified and ℳm2 well-specified, by a similar argument as the point 2 in

Section 3.1, BIC selects the well-specified model with probability going to one as n!∞.

From the above, we see that with the penalty dm logn, since logn!∞ as n!∞, it prevents over-selection. For
minimax rate optimality, recall that we require λn defined in Section 3.1 to be upper bounded. Since logn does not meet
this requirement, BIC is not minimax optimal, even for the parametric scenario.

4.2 | BIC for general models

For linear regression, BIC was shown to be consistent in the parametric scenario but not efficient under the nonpara-
metric scenario (Nishii, 1984; Shao, 1997). It is not minimax rate optimal (Foster & George, 1994; Shao, 1997;
Yang, 2005).

5 | OTHER INFORMATION CRITERIA

This section reviews some of the most popular information criteria apart from AIC and BIC. We only list some of them
that represent different perspectives.

ZHANG ET AL. 11 of 27
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• Takeuchi's information criterion (TIC) by Takeuchi (1976) is a surrogate of AIC for possibly misspecified models.
It calculates

TICm ¼Δ �2
Xn
i¼1

logpbθm yið Þþ2tr V�1
n mð ÞJn mð Þ� �

,

where ‘tr’ denotes the trace of a matrix,

Jn mð Þ¼Δ 1
n

Xn
i¼1

rθ logpbθm yið Þ
� �

rθ logpbθn yið Þ
� �T

,

Vn mð Þ¼Δ �1
n

Xn
i¼1

r2
θ logpbθm yið Þ:

The derivation of TIC follows the same argument as in Section 3 except that Gn converges in distribution to
N 0,V�1JV�1ð Þ, where J is as before and V ¼Δ � �r2

θ logpθ� yð Þ� �
. Notably, when ℳm is well-specified, J ¼V , and the

argument reduces to the same as AIC. The penalty term in TICm is a sample-analog of 2tr V�1Jð Þ. The asymptotic effi-
ciency of TIC and its generalizations was established by Ding et al. (2021).

• Hannan–Quinn (HQ) information criterion (Hannan & Quinn, 1979) was proposed for order selection in time series.
It selects a model that minimizes

HQm ¼Δ n log bσ2m� �þ2 c dm log logn,

where bσ2m is the estimated variance from ℳm and c is an arbitrary constant greater than one. It can be shown under
some conditions that log logn from the penalty term has the slowest possible rate of increase to guarantee strong
consistency, in the sense that ℳm� will be eventually selected as n!∞ with probability one.

• Finite sample corrected AIC (AICc) (Hurvich & Tsai, 1989) adds a correction term 2dm dmþ1ð Þ= n�dm�1ð Þ to AICm

by assuming Gaussian noise in linear regressions. When n is large relative to dm, the correction term is small com-
pared with the AIC penalty, and AICc tends to have the same selection result as AIC.

• The risk inflation criterion (RIC) (Foster & George, 1994) aims to select a linear regression model that minimizes the
relative risk inflation

sup
θ � ℝd

θ n�1Pn
i¼1

f θ xið Þ� fbθm xið Þ
� �2� �

θ n�1
Pn
i¼1

f θ xið Þ� fbθ xið Þ
� �2� � ,

where d is the total number of predictors, f θ : x 7!θTx is the regression function with coefficient vector θ�ℝd, bθm
denotes the estimated coefficients from the model ℳm, bθ denotes the estimated coefficients from the regression model
that only includes the predictors with nonzero coefficients in θ, and θ represents the expectation with respect to the
distribution with regression function f θ. A suggested form of RIC by Foster and George (1994) is to select a model that
minimizes RSSmþ2dmbσ2d logd, where bσ2d is the estimator of the unknown variance using all the d variables. Com-
pared with AIC, its penalty also depends on the size of the largest candidate model (namely d).

• The focused information criterion (FIC) (Claeskens & Hjort, 2003) focuses on the ℓ2-loss of an estimator of any
particular estimand obtained from the model. As such, the optimal candidate model is not necessarily consistent
with the one selected from the likelihood-based approach like AIC and BIC. For example, a well-specified model
may be undesirable due to the estimation error from considering too many parameters unrelated to the estimand.
More specifically, FIC considers the setting where y1,…,yn are IID sampled from a density function pβ yð Þ, where
β¼ θ,γ0þδ=

ffiffiffi
n

p½ �, θ and δ are unknown vectors, and γ0 is assumed to be known. An estimand is a function of θ and
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δ. Each candidate model consists of θ and a subvector of δ. We refer to Claeskens and Hjort (2003) for the detailed
formula of FIC.

• The deviance information criterion (DIC) (Spiegelhalter et al., 2002) is developed for Bayesian hierarchical modeling,
where the number of parameters is not clearly defined. To measure the model complexity, DIC calculates

pD mð Þ¼Δ D θmð Þ�D θm
� �

,

where D θmð Þ¼Δ �2
Pn

i¼1 logpθm yið Þþ c with c being a term taking the same value for all candidate models, and D θmð Þ
and θm are the posterior means of D θmð Þ and θm, respectively. DIC selects ℳm that minimizes

DICm ¼Δ D θm
� �þ2pD mð Þ:

One can show that DIC is closely related to AIC. More specifically, it was shown in (Spiegelhalter et al., 2002) that
pD mð Þ is approximately the trace of the product of the Fisher information matrix and the posterior covariance matrix.
Thus, the Bernstein–von Mises Theorem (e.g., Ghosh & Ramamoorthi, 2003, theorem 1.4.2) implies that pD mð Þ is
asymptotically the model dimension under some regularity conditions. In addition, the posterior mean θm is asymp-
totically close to the maximum likelihood estimate up to op n�1=2

� �
under standard regularity conditions

(e.g., Ghosh & Ramamoorthi, 2003, theorem 1.4.3). As such, DIC may be regarded as a Bayesian counterpart of AIC.
In applications, pD mð Þ is often numerically calculated using Markov chain Monte Carlo techniques.

• Arlot and Massart (2009) proposed a model selection criterion under the least-square regression framework where
the penalty is adaptively determined by the data. It chooses ℳm that minimizes

crit mð Þ¼Δ RSSmþK �pen mð Þ, ð22Þ

where pen mð Þ :!ℝþ is a known and properly chosen penalty function and K is data-driven. For example, one
may take pen mð Þ¼ dm, in which case crit mð Þ is similar to AIC except for a rescaled penalty. Let m Kð Þ denote the min-
imum of (22) over m�. Arlot and Massart (2009) suggested the following procedure to obtain the best K, say bK:
First choose a Kmin > 0 such that dm Kð Þ is “large” when K <Kmin and “small” when K >Kmin . Then, choose bK to be
2Kmin . This algorithm is based on the “slope heuristic” (Birgé & Massart, 2007). It considers the approximation of the
prediction loss �s fbθm ,z� �

by RSSmþpen1 mð Þþpen2 mð Þ plus a negligible term, where s denotes the quadratic loss,

pen1 mð Þ¼Δ � s fbθm ,z� �
� s f θ�m ,z
� �� �

,

pen2 mð Þ¼Δ n�1
Xn
i¼1

s f θ�m ,zi
� �

� s fbθm ,zi� �� �
,

and θ�m minimizes �s f θm ,z
� �

over ℋm. It can be shown that pen2 mð Þ is a “minimal penalty” for the prediction loss
not to blow up and under some modeling framework, for example, regressograms (Tukey et al., 1961),
pen1 mð Þ≈ pen2 mð Þ. These motivated the use of a penalty in the form of 2pen2 mð Þ, which corresponds to choosingbK ¼ 2Kmin for model selection.

• The bridge criterion (BC) (Ding et al., 2018a) is an information criterion developed to combine the strengths of AIC
and BIC. BC aims to adaptively attain the properties of BIC in the parametric scenario and AIC in the nonparametric sce-
nario. In contrast to information criteria whose penalty terms are linear in dm, BC uses a penalty term proportional to the
harmonic number of order dm, which is the sum of the reciprocals of the first dm positive integers for model m. This
penalty is designed to select the most appropriate model in a way adaptive to the underlying scenario, with the following
intuition. The penalty term in BC increases with the model dimension, but the rate of increase depends on the model
specification. In the parametric scenario, data tend to favor candidate models with relatively small or constant dimensions,
where the penalty increases more quickly, similar to BIC. In the nonparametric scenario, competitive models tend to have
larger dimensions, where the penalty rises more slowly, similar to AIC. It allows BC to adaptively choose the best model
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for the data without knowing whether we are in parametric or nonparametric scenarios.
We refer to Ding et al. (2018a) for more detailed interpretations and analysis of how BC works. A suggested form of BC is
to select a modelm that minimizes

�2
Xn
i¼1

logpbθm yið Þþn2=3
Xdm
k¼1

1
k
,

where the dimension of model m, dm, is restricted to be no more than that of the AIC-selected model. BC is the only
information criterion known so far to simultaneously attain asymptotic efficiency in both parametric and nonpara-
metric scenarios (and consistency in the parametric scenario).

6 | CONNECTIONS BETWEEN INFORMATION CRITERIA AND OTHER
METHODS

We present the connections between the earlier information criteria, cross-validation, penalized regression, minimum
description length, and other methods in Sections 6.1, 6.2, 6.3, and 6.4, respectively.

6.1 | Information criteria and cross-validations

We first provide a brief review of cross-validations, which has many connections with information criteria. It is a
model-free approach based on splitting the data into two parts: the first part (“training set”) for estimating bθm and the
second part (“test set”) for calculating the validation loss

CVm ¼Δ n�1
v

Xnv
i¼1

yi� fbθm xið Þ
� �2

ð23Þ

that approximates the out-sample prediction loss, where yi,xið Þ with i¼ 1,…,nv constitute the test set. To reduce the var-
iation of the validation results, one typically repeats the above data-splitting process many times to obtain an average
validation result. Notably, the right-hand side of (23) may involve an additional weighting factor (also known as a
targeted CV) (Zhang et al., 2023) to accommodate, for example, new evaluation goals, data distributional shifts, and
focused sub-populations.

For example, leave-one-out CV (Allen, 1974; Geisser, 1975; Stone, 1974) uses nv ¼ 1 and requires n possible data
splittings. Another popular CV method is the leave-nv-out CV (Shao, 1993; Zhang, 1993) that takes the test set size
1<nv <n and considers all n

nv

� �
data splittings. Since it requires computing the results from all possible data-splittings,

leave-nv-out can be computationally infeasible. Instead, one may randomly choose a certain number of data-splittings,
for example, using data-splittings without replacement (Breiman et al., 1984; Burman, 1989; Zhang, 1993) and with
replacement (Picard & Cook, 1984). We refer to Arlot and Celisse (2010); Ding et al. (2018b) for more CV-related
references.

Like the penalty terms in AIC and BIC, the validation proportion nv=n plays a vital role in the asymptotic property
of CV methods. It is known that the leave-one-out CV is asymptotically equivalent to AIC under some regularity condi-
tions (Stone, 1977), and it is indeed efficient in the nonparametric scenario (Shao, 1997) as AIC. Leave-nv-out CV is
shown to share a similar asymptotic property as BIC when nv=n! 1 (Shao, 1997) in terms of achieving consistency in
the parametric scenario. In time series settings, a predictive validation approach, which selects a model based on the
accumulated prediction loss (Rissanen, 1986a), is often used since data are not permutable. The choice of the data win-
dow to use plays a counterpart role as the data-splitting in CV, and its intimate connections with AIC and BIC have
been given in, for example, Wei (1992) and Ing (2007).

In summary, in the use of CV for comparing parametric models, the data splitting ratio nv=n drives the selection
result to resemble AIC or BIC or in between. Since no single data splitting ratio generally works well, Zhan and
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Yang (2022) proposed to examine a profile of the performances of the candidates with multiple data splitting ratios
considered to make a better informed and adaptively well decision. It is worth mentioning that data splitting is
used not only in cross-validation but also in model diagnostics (Zhang et al., 2022). But data splitting ratios for
desired theoretical properties there may need to be chosen in the opposite direction as required for selection con-
sistency in CV.

As mentioned in the Introduction, besides the advantage of simplicity and interpretability for the traditional models,
even for pure prediction purposes, they may often perform better than sophisticated blackbox procedures such as the
random forest when the sample size is relatively small. Interestingly, CV can be used to select among modeling proce-
dures, particularly when choosing between traditional modeling and blackbox approaches. For example, one procedure
uses BIC to choose a linear regression model, and the other is a random forest. If CV clearly prefers the first procedure,
the data analyst has reasonable confidence that the selected linear model provides a sensible explanation of the regres-
sion relationship on top of its prediction accuracy advantage. In contrast, if random forest wins the CV competition, the
linear models have likely missed important nonlinear effects such as interactions and higher-order terms. Finally, it is
helpful to point out that in the context of comparing general modeling procedures, the data splitting ratio in the use of
CV can be very different from that for comparing parametric models, as described earlier. We refer to Ding et al.
(2018b); Zhang and Yang (2015) for details and more references.

6.2 | Information criteria and penalized regression

Penalized regression is a popular tool for analyzing high-dimensional data where the sample size is moderate or small
compared with the number of predictors. We typically have only one full parameter vector θ for penalized regression
instead of pre-specified subvectors that represent candidate models. The estimated regression coefficients are
obtained by

bθ¼Δ argmin θ � ℝd

Xn
i¼1

s f θ,zið Þþ
Xd
j¼1

v jθjj;λ,ψ
� � !

,

where θ¼ θ1,…,θd½ �T is the unknown parameter vector with d possibly much larger than n, τ 7! v τ;λ,ψð Þ is a penalty
function, and λ and ψ are tuning parameters. When all subsets of variables are considered as candidates, information
criteria may be viewed as penalized regression methods with the ℓ0 penalty, namely v θj;λ

� �¼ λ k θjk0 with

k θjk0 ¼Δ
0 if θj ¼ 0,

1 otherwise:

�
ð24Þ

In particular, λ¼ 2σ2 and σ2 logn correspond to AIC and BIC, respectively, when σ2 is known.
Penalties based on ℓq norms with q≥ 1 are widely studied due to their convexity and subdifferentiability. One of the

most popular methods is the least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996) that uses
v jθjj;λ,ψ
� �¼ λ j θj j. The tuning parameter λ controls kbθk1 and determines the strength of the penalization. A problem
of LASSO is that it over-penalizes parameters with large values, which leads to substantial biases in bθm. The method of
smoothly clipped absolute deviation (SCAD) (Fan & Li, 2001) uses the penalty

v θj;λ,ψ
� �¼

λjθjj if jθjj≤ λ,

2ψλjθjj�θ2j � λ2

2 ψ�1ð Þ ifλ< jθjj≤ψλ,

λ2 ψþ1ð Þ
2

if jθjj>ψλ:

8>>>>><>>>>>:
It corrects the biases in LASSO by assigning constant penalty λ2 ψþ1ð Þ=2 to large parameter values. A similar method
is the minimax concave penalty (MCP) (Zhang, 2010) that uses the penalty
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v θj;λ,γ
� �¼ λjθjj�

θ2j
2ψ

if jθjj≤ψλ,

ψλ2

2
if jθjj>ψλ:

8>>><>>>:
Other penalized regression methods include elastic net (Zou & Hastie, 2005) with q θj;λ1,λ2

� �¼ λ1 j θj j þλ2θ
2
j that

addresses highly correlated predictors, group LASSO (Yuan & Lin, 2006) to select predictors in pre-specified
subgroups, and adaptive LASSO (Zou, 2006) that adaptively assigns weights to each predictor to achieve variable
selection consistency. We refer to Ding et al. (2018b) for theoretical results on the penalized regression methods for
model selection.

6.3 | Minimum description length criteria

The minimum description length (MDL) is a generally applicable principle for model selection from an
information-theoretical perspective (Barron, 1985; Barron et al., 1998; Hansen & Yu, 2001; Rissanen, 1978, 1982;
Rissanen, 1986b). This principle has been applied in a variety of fields, including engineering. It states that the best
model is the one that can describe the observed data in the most efficient way, using the minimum amount of space
in coding.

To apply the MDL principle, let y denote the observed data. For simplicity, assume y is discrete (otherwise, a suit-
able discretization needs to be performed), and we want to represent y via binary coding. If the probability mass func-
tion of y is known to be p yð Þ, the Shannon code can describe y in a binary sequence of length � log2p yð Þ (ignoring
rounding). If p yð Þ is unknown but known to be in pθ yð Þ,θ�ℋf g, we may first describe which θ is to be used and then
describe y with the Shannon code based on pθ yð Þ. When describing/encoding θ, a proper discretization of ℋ is needed
and one may, without any prior preference, code the discretized values with equal length. Thus, the total code length
for describing y is the code length for describing θ plus � log2pθ yð Þ. Consequently, minimizing the total code lengths is
equivalent to maximizing the log-likelihood logpθ yð Þ, which yields the maximum likelihood estimation (up to the dis-
cretization error).

Now instead of a single given model, we consider a set of parametric models pθm yð Þ,θm �ℋm,m�
� �

. Recall that
dm denotes the dimension of ℋm. With the added layer of modeling uncertainty, to describe the observed y, we may
first describe the model index m, then describe the parameter θm to be used, and finally describe y with code length
� log2pθm yð Þ. It is intuitively clear that in this case, the description lengths of the parameters θm can be very different: a
larger model (in dm) may require longer codes to describe its parameters. Specifically, for each parameter, the dis-
cretization precision at the familiar rate 1=

ffiffiffi
n

p
leads to the code length of order 1=2ð Þ log2n for describing the parameter.

With dm parameters, we have code length of order dm=2ð Þ log2n. In the case where the number of models to be com-
pared is relatively small, the code length for describing the model index m is negligible and the shortest total code
length for model m is roughly

� log2pbθm yð Þþdm
2

log2n, ð25Þ

where bθm is the maximum likelihood estimate for model m. When minimizing the above total description length over
the models, we have arrived at the familiar BIC, but from an information-theoretical viewpoint in terms of coding.
Thus, when MDL is applied as above, it shares the theoretical properties of BIC.

In the case of a large number of candidate models being considered, the code length to describe the model index m
becomes important. For example, for all subset selection in regression with many explanatory variables, the coding of
the model index should naturally favor sparse models (see, e.g., Yang and Barron et al. (1998)). Note also that the
description length of the model index in the MDL approach corresponds to the model index descriptive complexity in
the high-dimensional information criteria in Section 8.1.

Consistency and rates of convergence for estimators based on MDL have been well studied. For example, Barron
and Cover (1991) pioneered the examination of MDL in the context of density estimation based on a countable list of
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candidate densities. It is shown that the MDL density estimator has a Hellinger loss upper bounded by an index of
resolvability that provides the best trade-off between approximation error (in Kullback–Leibler divergence) and descrip-
tion complexity of the candidate density. It results in optimal or near-optimal density estimators in both parametric and
nonparametric settings. Other results in various settings and applications can be found in a review article by Barron
et al. (1998) and Hansen and Yu (2001).

We emphasize again that MDL is not merely a single model selection criterion. The versatile principle of MDL
can be applied in different ways that lead to different theoretical properties. For example, in some cases, with
proper constraints on the parameters, unlike the BIC form in (2.5), the MDL principle can actually produce a mini-
max optimal criterion of a form with the penalty term of the same order as that in AIC (Barron et al., 1994), which
is crucial to attaining the minimax rate of convergence when the target function is in typical nonparametric func-
tion classes.

6.4 | Information criteria and other selection criteria

Information criteria are also connected to several other model selection methods. The generalized CV (GCV) (Golub
et al., 1979) is a convenient approximation to the leave-one-out CV. Leeb (2008) showed that GCV could outperform
AIC, AICc, and BIC in terms of efficiency when the sample size is small relative to the complexity of the data-
generating model and the dimension of the best candidate model is large; The Akaike's final prediction error (FPE)
(Akaike, 1970), Mallows' Cp (Mallows, 1973), and the prediction sum of squares (PSS) (Allen, 1971) are shown to be
asymptotically equivalent to AIC (Nishii, 1984; Shao, 1997). For variable selection in the generalized estimating equa-
tion approach, Pan (2001) developed a modification of AIC by replacing the likelihood with the quasi-likelihood con-
structed under the working independence model.

7 | BRIDGING AIC AND BIC

As presented in previous sections, one group of model selection methods, including AIC, Mallows' Cp, and
leave-one-out CV may be efficient in nonparametric scenarios but not consistent or efficient in the parametric
scenarios, while another group that includes BIC and leave-nv-out CV with nv=n! 1 have the reversed properties.
A natural question is whether we can share the strength of these two groups of model selection methods. To
illustrate this problem, we focus on AIC and BIC due to their fundamental roles in model selection. Recall that AIC
is also minimax rate optimal in both parametric and nonparametric scenarios. However, for the question of whether
we can share the strength between AIC and BIC in terms of consistency and minimax rate optimality in the parametric
scenario, the answer is negative. Yang (2005) has proved that any consistent model selection method cannot be
minimax optimal under rather general settings. Intuitively speaking, for a criterion that minimizes RSSmþ λndmσ2,
consistency requires λn !∞ as n!∞, which conflicts with the minimax rate optimality that requires λn to be upper
bounded.

Another direction is attaining efficiency in both parametric and nonparametric scenarios. Compared with
minimax rate optimality, efficiency is more optimistic in the sense that it only needs a “point-wise” convergence
of the out-sample prediction loss to the best possible one rather than a “uniform” guarantee over different
data-generating models. Fortunately, adaptively achieving efficiency in both scenarios is shown to be possible.
One way is to identify the underlying scenario and decide which information criterion to use. In this direction,
Liu and Yang (2011) has developed a parametricness index that goes to infinity in the parametric scenario
and converges to one in probability in the nonparametric scenario. A similar notion of parametricness index
was developed based on an adaptive model selection criterion Ding et al. (2018a). A second way is to perform a
level-two model selection in the sense of selecting between AIC and BIC via cross-validation. For regression
with orthogonal basis expansion, Zhang and Yang (2015) has shown that this approach is efficient with splitting
ratio nt ¼ o nvð Þ where nt ¼n�nv is the training size. Another direction of thought is to develop new information
criteria that simultaneously attain the desirable properties of AIC and BIC in a way adaptive to the underlying
data-generating distribution and model specification. An example of methods in this direction is the bridge criterion
(Ding et al., 2018a) introduced in Section 5.
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8 | HIGH-DIMENSIONAL INFORMATION CRITERIA

The traditional information criteria of AIC, BIC, and the like were derived in the framework that the number
of candidate models to be compared is essentially small relative to the sample size. More technically speaking,
they typically address the following example scenarios: (1) The models are nested (e.g., autoregression of
various lag orders, function estimation from ordered basis functions), and the number of most relevant models is
much smaller than n. In these cases, there is only a single model for each candidate model dimension. (2) The total
number of predictors, d, is fixed and small compared with n, and all subset models are considered as candidates.
Here, although we have multiple candidate models of the same dimension, the number of such models is still consid-
ered small.

However, the above frameworks become improper in various situations because there may be many relevant models
of the same dimension. Examples include (1) The number of predictors d is close to or larger (or even much larger) than
n, and the predictors are not pre-ordered by their importance. This is called a high-dimensional regression setting.
(2) The number of predictors is moderate (quite a bit smaller than n), but higher-order interaction terms are considered.

Even if we consider only two-way interactions, there are
d

2

� 	
many interaction terms, which is fairly large when d is

larger than n2=3, for instance. It is conceivable that in some applications, one may need to explore higher-order
interactions, which makes the complexity of the candidate model class even higher. In these situations, a key fea-
ture is that there are many candidate models of the same or similar dimensions and a comparison of many such
models of similar dimensions may lead to the so-called selection bias (see, e.g., Yang and Barron (1998); Barron
et al. (1999)), meaning that the probability of selecting the true or best model cannot be guaranteed high no matter
how one designs the selection criterion.

We review the modified information criteria below to address the selection bias issue in high-dimensional linear
regression. From both information-theoretic and Bayesian viewpoints, on top of the traditional information criteria, it
is natural to add a penalty in the form of

γ log
d

dm

� 	
, ð26Þ

to describe the model class complexity, where dm is the model dimension and γ is a positive constant (Barron et al., 1999;
Yang & Barron, 1998). From a Bayesian point of view, this penalty means that all the subset models of the same dimen-

sion dm are assigned with the same prior probability. From an information-theoretic perspective, log
d

dm

� 	
represents

the order of complexity associated with encoding the index of a specific model of dimension dm.

A drawback of the above penalty is that when dm > d=2, the penalty becomes decreasing as dm increases. This is
clearly undesirable from a sparse modeling perspective. Consequently, it may be better to replace the penalty with a
nondecreasing upper bound

γdm log 1þ d
dm

� 	
, ð27Þ

which can be found in, for example, section 2.5 and remark 4 of Wang et al. (2011).
The constant γ in (26) or (27) and in the criteria in the later two subsections needs to be chosen in application. Theo-

retical results on regression function estimation and variable selection consistency typically require γ to be a large
enough constant. From this angle, the role of γ here is very different from the tuning parameters in LASSO, SCAD and
the like, where the optimal tuning parameters depend on the sample size and are not of the constant order. Clearly, a
larger choice of γ in (27) leads to a sparser selected model and the optimal choice depends on the specific situation of
applications. The literature in this area seems to suggest that a (more or less) natural choice of γ¼ 1 or γ¼ 1=2 often
works quite well based on numerical studies.
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8.1 | Minimax rate optimality for estimation and prediction

In the high-dimensional linear regression case with d predictors and all-subset models considered, for the purpose of esti-
mating the regression function or prediction, it is known that the selection bias (which corresponds to the “searching
price” of finding out the best subset of predictors) dominates the estimation error. It results in an interesting phenome-
non that the minimax rate of convergence for estimating the regression function is no longer dm�=n, but is determined
by the searching price (Wang et al., 2014). For high-dimensional linear regression with soft sparsity, where the vector of
coefficients from the data-generating model has its ℓq (0 < q≤ 1) norm upper bounded, the minimax rate is achieved at
an “effective model size” (Raskutti et al., 2011; Wang et al., 2014) that depends on d, n, and the sparsity level.

To achieve the minimax rate, Yang (1999) proposed the ABC criterion that selects a model ℳm that minimizes

ABCm ¼Δ RSSmþ2dmσ2þ γσ2Cm,

where γ is a positive constant and Cm is interpreted as the model index descriptive complexity that satisfies Cm >0 andP
m �e

�Cm ≤ 1. A particular choice is Cm ¼ dm 1þ log d=dmð Þð Þþ2log dmþ2ð Þ. When σ2 is unknown, we may use its
estimate in the criterion. A stochastic search (e.g., via a genetic algorithm) or a greedy procedure may be used instead
of enumerating all the subset models for implementing ABC. As shown by Wang et al. (2011), the ABC criterion leads
to a minimax rate optimal estimation of the regression function for both hard (meaning that the number of nonzero
coefficients in the data-generating model is upper bounded) and soft (in the sense that the ℓq norm with 0< q≤ 1 of the
coefficients from the data-generating model is upper bounded) sparse linear models adaptively.

8.2 | Consistency

Apart from achieving the minimax rate optimality, selection bias is also critical to deal with when model selection con-
sistency is pursued.

8.2.1 | Extended BIC

Chen and Chen (2008) considers high-dimensional settings where the number of predictors d may increase at a polyno-
mial rate of n. It selects a model that minimizes

EBICm ¼Δ n logRSSmþdm lognþ2γ log
d

dm

� 	
, 0≤ γ ≤ 1:

where γ is a tuning parameter. Compared with BIC, extended BIC (EBIC) has the additional penalty term log
d

dm

� 	
.

From a Bayesian perspective, among models of dimension no larger than d=2, it assigns larger prior probabilities to
smaller models compared with the uniform prior (as in BIC), which is essential to ensure variable selection consistency
in high-dimensional regression under conditions on the hard sparsity, magnitudes of the true coefficients, and depen-
dencies of the predictors.

Let mnm� denote the variables inmodelℳm but not in ℳm� . Chen and Chen (2008) showed that under some strong con-
ditions, such as whenℳm� does not vary with n and at least one column of the design matrix associated withℳm� is favor-
ably away from the linear span corresponding tomnm�, EBIC selects m� with probability going to one asn goes to infinity.

8.2.2 | BIC-p

In the previous subsection, EBIC considers a fixed ℳm� . In contrast, BIC-p (Chen et al., 2022; Nan & Yang, 2014) allows
the size of ℳm� to grow with n. The criterion becomes
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BIC�pm ¼Δ n logRSSmþdm lognþ γCm,

where γ is a positive constant and Cm ¼ dm 1þ log d=dmð Þð Þþ2log dmþ2ð Þ. For practical implementation, choosing γ¼ 1
was found to work generally well (Nan & Yang, 2014).

Besides model selection, BIC-p criterion can be nautically used to construct the weights in model averaging, whose
details will be elaborated in Section 9. Chen et al. (2022) showed that the BIC-p weighting is consistent in the sense that
the data-generating model receives weight approaching one in probability under some conditions on the data-
generating coefficients and given that the penalty constant γ is not too small. The result readily implies that BIC-p,
when used for selecting a model, is consistent under the same conditions.

8.3 | Asymptotic efficiency

In the parametric scenario, model selection consistency directly implies asymptotic efficiency. Therefore with the modi-
fied EBIC or BIC-p, when the conditions for model selection consistency hold, the regression estimator is expected to
achieve the smallest loss/risk among the subset models. It should be noted that the conditions are really strong and
often are unlikely to be met in many applications. Consequently, such an asymptotic efficiency result may not be appli-
cable in practice.

To the best of our knowledge, there is no general result on high-dimensional asymptotic efficiency in the nonpara-
metric scenario. Although no formal negative results have been given in the literature (to our understanding), it seems
intuitively convincing that the asymptotic efficiency may be out of reach unless unusually strong assumptions are made
on the data-generating model, or some specific settings are under consideration. A particular setting is selecting the
number of iterations in a step-wise variable selection algorithm for high-dimensional time series (Ing, 2020), where the
author developed a high-dimensional AIC and showed its efficiency in the sense that the selected model performs
closely to the performance under the best possible number of iterations.

9 | MODEL SELECTION UNCERTAINTY

Regardless of which model selection criterion is chosen for the data, a final model is selected. An important question is:
How reliable is the selected model? Is it genuinely the best or data-generating model? Or is it among relatively few top-
performing models? Or is it just one of many models that provide some prediction power? If it is in the first case, the
selected model can be safely used for interpretation, inference, and prediction. In the second case, the selected model is
close to the data-generating model, and we may not be sure whether a few variables are in or not in that model. In the
third case, the selected model may serve the prediction goal quite well, but using it for inference may not be wise since it
can lead to unreliable conclusions. With the above, assessing model selection uncertainty is crucial in model selection.
Information criteria and related criteria can be used for model selection diagnostics. The key idea is to incorporate model
weights based on model averaging in the model assessment process instead of relying on the selected model alone.

9.1 | Selection instability

We may apply instability measures to assess the stability of model selection methods, for example, information criteria,
under slight perturbations of the dataset. For example, the sequential stability (Chen et al., 2007) randomly removes a
small portion of the data and applies the model selection method to the remaining data. One can compare the selection
results by calculating the symmetric difference between the sets of selected predictors. Bootstrap re-sampling can also
assess the instability by regenerating the dataset (Breiman, 1996; Buckland et al., 1997; Diaconis & Efron, 1983). For
instance, to assess the variable selection stability in linear regression by parametric bootstrap, we first obtain the fitted
values from the selected model and then add random noise to obtain the bootstrapped datasets. A summary statistic
can be obtained from the symmetric differences between the set of selected predictors in each bootstrapped dataset and
the one from the original dataset. The method of perturbation instability in variable selection (Nan & Yang, 2014) is
similar to the above methods, except that it generates new data by perturbing the response of the original dataset.
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9.2 | Model averaging for reducing instability

Instead of selecting a single model, we may consider the combined model

bf w xð Þ¼
X
m �

wm � fbθm mð Þ,

where

wm ¼Δ exp �ℐm=2ð ÞP
m0 �

exp �ℐm0=2ð Þ : ð28Þ

Here, the index set  is assumed to be finite, and ℐm is an information criterion value (e.g., AICm or BICm). For high-
dimensional regression where the number of candidate models rapidly grows with n, we may use ℐm ¼BIC�pm
(Chen et al., 2022). For prediction, when the candidate models are hard to distinguish, model averaging may out-
perform model selection due to its increased stability (Yang, 2003). In addition to improving model selection in estima-
tion or prediction accuracy, we can use the model averaging weights to perform model selection diagnosis, as seen in
the next subsections.

9.3 | Variable selection deviation

An important but ignored aspect of the model selection instability measurements is the quality of the selected variables
compared with the data-generating model. In the worst case, for example, a model selection method may constantly
select one predictor with high stability, which is irrelevant to the data-generating model. The variable selection devia-
tion (VSD) is proposed to address this issue. With model averaging methods like adaptive regression by mixing (ARM)
(Yang, 2001) and Bayesian model averaging (with weights of the form in Formula (28)), VSD identifies the number of
predictors in the selected model that are not in ℳm� (defined for the parametric setting) and those in the reversed case.

9.4 | F- and G-measures

When variable selection consistency is of primary interest, it is crucial to quantify the quality of a selection result. While
one may assess false positives and false negatives separately, as in VSD, it is helpful to have a measure that combines
the under- and over-selection aspects. F- and G-measures are popular options in this regard.

Let ℳm� and ℳbm denote the sets of the variables in the data-generating and selected models, respectively. Then, the
precision (or positive predictive value) is defined as the fraction of selected variables in ℳbm that are true variables,
and recall (also known as sensitivity) is defined as the fraction of the true variables that are selected. Then, the F-measure
is the harmonic mean of precision and recall and the G-measure is the geometric mean of precision and recall. Combining
precision and recall into one measure may describe the overall accuracy of a given variable selection method. The F- and
G-measures are between 0 and 1, and a higher value generally indicates a better selection performance. If the F- and
G-measures are very low, say 0:1, the selection result is far from the truth and may not be used to guide which variables
should be included in the data-generating model.

In practical data applications, F- and G-measures cannot be computed since the data-generating model is unknown.
However, we can use information criteria or other methods to calculate the weights of the candidate models and use
them to approximate F- and G-measures. The idea is to pretend each candidate model to be ℳm� , calculate the F- and
G-measures from the selected model and then average those measures according to a model averaging weighting. Yu
et al. (2022) showed that this simple method leads to a consistent estimator of the actual F- and G-measures uniformly
over all m� as long as the model average weighting is weakly consistent, in the sense that the weights of significantly
misspecified models diminish as n!∞.

With the estimated F- and G-measures, one may have a good sense of the reliability of the selected model. For
instance, if the estimated F value of the selection result is 0:9, there is little concern in treating it as a reliable description
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of the data-generating model. Suppose the estimated F value is 0:1. Even if there is good predictive power, the variables
chosen are unlikely to be the most important ones that a scientist hopes to verify in future studies.

9.5 | Variable importance

Variable importance can be used for a prescreening procedure in high-dimensional regression to reduce costs
in data analysis and improve stability. Also, it can be applied to improve the scientific understanding of the
predictors. One method to evaluate variable importance, which is related to information criteria, is sparsity-oriented
importance learning (SOIL) (Ye et al., 2018). For a predictor indexed by j and candidate models indexed by , SOIL
calculates Sj ¼Δ

P
m �wm �  predictor j is inℳmf g, j where the weight wm can be obtained from Formula (28). The SOIL

importance is consistent, meaning that it converges to one in probability for a variable in the data-generating
model and to zero otherwise. While nonparametric variable importance measures such as those based on random
forests (Gregorutti et al., 2017) are more widely applicable, when parametric modeling is proper, SOIL may produce
more reliable and informative variable importance values (Ye et al., 2018).

10 | MISLEADING FOLKLORES

Although the existing asymptotic analysis of information criteria has provided many insights into their fundamental
properties, misconceptions exist about their applications.

10.1 | Folklore one

AIC should be preferred for prediction and BIC for explanation.

The derivations of AIC and BIC at the beginning of Sections 3 and 4 are from different angles: AIC is derived to
predict future data accurately, and BIC is derived to find the actual data-generating model. This fact is often
emphasized in the literature, for example, Shmueli (2010). These distinct angles indeed provide a nice insight
into how different model selection objectives could motivate specific penalties of model complexity. However,
the folklore that AIC should be preferred for prediction and BIC for explanation is an oversimplified view since
it overlooks the difference between the parametric and nonparametric scenarios. For AIC, we mentioned in
Section 3 that it could fail to lead to the best prediction result even when n!∞. For BIC, the consistency of
selecting the data-generating model may not be well-defined in the nonparametric scenario. More closely related dis-
cussions are given in the following subsection.

10.2 | Folklore two

AIC should be preferred since the nonparametric scenario is more realistic in practice (Aho et al., 2014).

More specifically, the viewpoint that the data-generating model has a complicated unknown structure is preva-
lent in, for example, biological studies (Anderson & Burnham, 2002; Burnham et al., 2011; Johnson &
Omland, 2004). The above statement overlooks that the performance of information criteria in practice may also
be affected by the sample size. For instance, consider linear regression in the nonparametric scenario where only
a few coefficients are significant at the given sample size. BIC, which selects a standing-out model, may be
preferred in this setting. In contrast, in the parametric scenario where the coefficients are all small with different
magnitudes and the sample size is insufficient to estimate them accurately, AIC performs better in selecting
among competing candidate models with similar performances. The above two scenarios are referred to as
“practically parametric” and “practically nonparametric” (Ding et al., 2018b; Liu & Yang, 2011). Zhang and Yang
(2015) gave an example where the relative performance in terms of out-sample prediction loss between AIC and
BIC switches as the sample size increase for a fixed data-generating model.
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In the (practically) parametric case, which is applicable in many applications, BIC is asymptotically efficient and may
be much better in prediction than AIC. Even for explanation purposes, AIC may be preferred sometimes. For example,
suppose our goal is to identify potentially important genes for treating disease based on a pilot study with a limited sample
size. In this case, the use of BIC may be too conservative in terms of missing important genes that may be revealed in a
follow-up study with a much larger sample size. In contrast, although AIC may choose “noise variables,” it is much less
likely to miss “true variables” with relatively small magnitudes in relation to the pilot sample size.

In practice, in line with the above discussion, it is promising to apply methods in Section 7, which can be adaptive
to “practically parametric” and “practically nonparametric” scenarios. For interpretation, BIC is preferred for its stabil-
ity when there is evidence for a “practically parametric” scenario. For example, in the study to identify genes with
important roles in a certain disease, we hope the variable identification result from the selected models can be general-
ized to future observations, and BIC that penalizes over-selection is required. In contrast, in exploratory studies, AIC
may be preferred since it is less conservative to find possibly important variables where over-selection is accepted.

10.3 | Folklore three

The ℓ0 penalty is not as good as a smoothed penalty such as LASSO, SCAD, and MCP penalty because it is
discontinuous.

Recall that information criteria can be viewed as a penalized regression with the ℓ0 penalty (as defined in (24)).
Whether a penalty is “good” depends on the evaluation goal. In terms of stability, the claim seems plausible since the
objective function with the ℓ0 penalty is indeed discontinuous, and the discontinuity may lead to undesirable instability
of the selection result. But this is not true. First, even for a fixed tuning parameter, there is no known relationship
between the continuity/discontinuity of the penalty function and the behavior of the selection result. Second, with the
tuning parameter selected based on data, there is even less reason to believe the other penalties lead to better perfor-
mance than the ℓ0 penalty.

For adaptive LASSO, SCAD, and MCP, which are known to produce oracle estimators under different conditions, Leeb
and Pötscher (2008) showed that the estimation and prediction risk has a supremum that diverges to infinity, implying that the
selection results may be unstable under a tiny change in data-generating parameters. On the contrary, AIC and high-
dimensional modifications are known to be minimax rate optimal. In fact, to our knowledge, the ℓ0 penalty approach yields
minimax rate optimality under the least stringent conditions than other penalties. While there is much work to be done on
the advantages and disadvantages of the different penalties, there seems to be the increasingly popular view that penalties of
LASSO, SCAD, MCP, and so on are appropriate relaxations of the ℓ0 penalty for computational considerations.

11 | CONCLUDING REMARKS

In summary, in model selection, the model dimension dm needs to be appropriately chosen to strike the best bias-variance
tradeoff for optimal prediction. Identifying the most appropriate model for inference is essential as well. Information criteria
address these tasks by combining the in-sample loss with a penalty term. Their performance depends on the goal of model
selection and the relationship between the data-generating process and postulated models, categorized as parametric and
nonparametric scenarios. AIC represents a group of information criteria that are efficient in the nonparametric scenario in
the sense that the prediction performance of the selected model is asymptotically close to the best among the candidate
models. However, they may fail to be consistent in choosing the most parsimonious well-specified model if it exists. It is
because their penalties are too small to distinguish between two well-specified models and thus will lead to an over-selection
of dm. In contrast, BIC represents another group of information criteria more suitable for a parametric scenario. But
they may penalize too much to enjoy the efficiency in the nonparametric scenario.

Finally, based on the previous results and our experience, we make the following suggestions for the practice of
model selection.

• If the goal of model selection is accurate prediction, we suggest either (1) choosing between AIC-type and BIC-type
methods based on parametricness index or cross-validation, or (2) using adaptive information criteria such as BC to
combine the strength of AIC and BIC.
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• If the main goal is variable selection for interpretation, namely one hopes to reproduce the selected variables in a
follow-up study with a similar sample size, it is better to use BIC-type methods to avoid including variables unlikely
to be shown to be significant.

• If protection of the worst-case prediction accuracy is essential for an application, AIC is preferred due to its minimax
rate optimality. BIC can be arbitrarily worse than AIC in risk ratio but not the other way around. In addition, for
exploratory studies to find possibly relevant variables, even though AIC-type methods may over-select, they are safe
in terms of not missing important variables that one may verify in follow-up studies with large sample sizes.

• When the number of predictors, d, is not small compared with the sample size n and all subsets of the d variables are
considered, it is better to use a high-dimensional AIC or BIC to address the potential severe selection bias.

• Perform model selection diagnosis. Instability, VSD, F- and G-measures, variable importance, and so on may be
investigated to quantify the reliability of model selection results. If diagnostic results are concerning, we may not
trust the selection result and keep exploring other methods.

• When model selection instability is high, for prediction purposes, one may consider model averaging.
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