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ABSTRACT

Our understanding of the human connectome is fundamen-
tally limited by the resolution of diffusion MR images. Re-
constructing a connectome’s constituent neural pathways
with tractography requires following a continuous field of
fiber directions. Typically, this field is found with simple tri-
linear interpolation in low-resolution, noisy diffusion MRIs.
However, trilinear interpolation struggles following fine-scale
changes in low-quality data. Recent deep learning methods in
super-resolving diffusion MRIs have focused on upsampling
to a fixed spatial grid, but this does not satisfy tractography’s
need for a continuous field. In this work, we propose FENRI,
a novel method that learns spatially-continuous fiber orienta-
tion density functions from low-resolution diffusion-weighted
images. To quantify FENRI’s capabilities in tractography, we
also introduce an expanded simulated dataset built for eval-
uating deep-learning tractography models. We demonstrate
that FENRI accurately predicts high-resolution fiber orienta-
tions from realistic low-quality data, and that FENRI-based
tractography offers improved streamline reconstruction over
the current use of trilinear interpolation. 1.

Index Terms— ***

1. INTRODUCTION

Mapping the human connectome relies upon a continuous and
accurate representation of the underlying brain tissue. This is
needed for tracing streamlines, resolving crossing fibers, and
deciding when to terminate a tract. Often, tractography al-
gorithms rely on simple trilinear interpolation to “fill out” a
continuous field from discretely-sampled diffusion magnetic
resonance images (dMRIs). If this interpolation could be im-
proved, then tractography algorithms could produce more de-
tailed and accurate human white matter (WM) fiber tracts.

In this work, we propose FENRI (Fiber orientations from
Explicit Neural RepresentatIons), a novel deep learning-
based super-resolution model for estimating fODFs con-
tinuously in space. We demonstrate FENRI’s capabilities
through the following experiments: 1) a quantitative evalua-
tion of fODF reconstruction in Human Connectome Project
(HCP) data, 2) a qualitative evaluation of tractography in
HCP data, and 3) a quantitative measure of tractography

1Our project and code can be found at https://osf.io/dvnxw/

performance on a new, expanded simulation dataset. As an
image upsampler, FENRI outperforms more generic single-
image super-resolution (SISR) methods on a variety of test
metrics. We also show how, as a tractography enhancement,
FENRI’s explicit representation sampling provides a power-
ful improvement over standard tractography methods.

Background. Reconstructing streamlines from diffusion-
weighted images (DWIs) requires a model of neuron fiber
directionality. One popular model is the general fODF rep-
resented by coefficients in the spherical harmonic (SH) or-
thonormal basis, estimated by constrained spherical deconvo-
lution (CSD) [1]. Several deep learning models have recently
been proposed to super-sample diffusion representations. For
example, Qin et. al., 2021 used convolutional neural net-
works (CNNs), an efficient sub-pixel CNN (ESPCN) layer,
and high-resolution T1w volumes to predict high-resolution
diffusion model parameters [2, 3]. However, these previous
works were limited to upsampling by an integer upscaling
factor, e.g. 2×, which is not ideal for estimating continu-
ous fields. The recently proposed implicit neural representa-
tion (INR) method, which learns continuous-valued represen-
tations in some Euclidean space, is one solution to this chal-
lenge [4]. INRs are most commonly applied to 3D rendering,
but INR-like models have been used in SISR. For example,
the Local Implicit Image Function where a low-resolution in-
put image is encoded into a feature space and sampled contin-
uously for upsampling [5]. To our knowledge, the only pro-
posed model that utilizes INRs for super-resolving dMRIs is
given in [6], which focused on uncertainty in continuous pre-
dictions rather than tractography. We place FENRI alongside
these INR models, but note that FENRI does not model an
implicit function, but an explicit function of SH coefficients.

2. METHODS

Our objective is to predict fODFs at arbitrary, continu-
ous spatial coordinates given only low-resolution DWIs. We
have a set of subject DWIs S with a continuous space Ω ⊂
R3. Now, S is sampled on a discrete, finite, rectilinear grid
P ⊂ Ω at coordinates p ∈ P. Given a query coordinate
q ∈ Ω, we wish to find the vector of SH coefficients dq that
represents the fiber orientations at q. Thus, we construct a
function Gθ, with parameters θ, such that Gθ(S,P, q) = dq .

Encoder. The encoder compresses the spatial and angu-
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lar information found in the input DWIs, described as E :
(S,P) → L, where L has feature vectors of length cL, and the
spatial ordering of feature vectors in L is assumed to be equiv-
alent to that of P (and S). We chose a 3D implementation of
the Cascading Residual Network (CARN) as the core of our
encoder, a high-performing SISR architecture, [7]. We also
add a kernel size 2 average-pooling layer and a single batch-
norm layer at the output of the decoder to reduce checker-
board artifacts and improve training stability [8].

Continuous Decoder. The decoder predicts SH coeffi-
cients at any given query point q ∈ Ω based on encoded
features and the query coordinate itself, described by D :
(L,P, q) → dq . The decoder at its core is a simple fully-
connected network with nD hidden layers [5]. Every query
point q requires 8 forward passes through the same decoder
network. As mentioned in Chen et. al., 2021 as the “local
ensemble”, the features in L given to the decoder correspond
to the 2 × 2 × 2 spatially nearest-neighbors to q as deter-
mined by the input DWI grid P [5]. Each feature vector in
this ensemble is given a forward pass through the decoder,
and all 8 outputs are trilinearly weighted as the final step in
the model prediction. This is done to smooth the prediction
when “crossing over” discrete points in P with q.

Here we describe a single forward pass of the decoder for
a query q and sub-grid point Li ∈ L, the i’th input vector
local to q, and its input coordinate pi. The first layer takes a
concatenation of Li, pi, q, and the Fourier positional encoding
of pi − q. We normalize pi − q to [0, 1) (denoted NP) and
use the encoding map F (with the number of frequencies m)
proposed as the “Positional encoding” method in Tancik et.
al., 2020 [9]. The full input size is cL + 6 + 6m, and the
output is an SH coefficient vector.

3. EXPERIMENTS

Comparison Models. We compare FENRI to a variety of
upsampling and tractography methods. The baseline method,
which we label as “Trilin-DWI,” is a trilinear upsampling of
the noisy and low-resolution DWIs into the target spatial res-
olution. SH coefficients are then estimated from these upsam-
pled DWIs with multi-shell, multi-tissue CSD (MSMT-CSD)
[1]. We also evaluated a network that used the more common
SISR ESPCN layer, which we named Fixed-Net (as in “fixed-
size upsampling network”). Fixed-Net utilized a similarly pa-
rameterized CARN encoder to that used by FENRI, allowing
Fixed-Net to also serve as a rough FENRI ablation model.
Fixed-Net’s encoder (by way of its ESPCN layer) upsampled
low-resolution DWIs by 2× the input spatial resolution, then
used trilinear interpolation to resample its latent space into the
target spatial resolution. The resampled latent space is then
passed through a smaller CARN-style network to refine the
trilinear resampling, producing an upsampled SH coefficient
volume. For tractography, FENRI continuously samples its
latent space L for SH coefficients at every tracking iteration,

while all other models used trilinear sampling on predicted
SH coefficients. The streamline tracking method was a de-
terministic gradient ascent-based tractography algorithm im-
plemented for use on a graphics processing unit (GPU). We
chose tracking parameters to closely match the defaults for
the “SD Stream” tractography in MRtrix3 [10].

Experiment 1: HCP ODF Reconstruction. We tested
all models on voxel-wise ODF reconstruction of the HCP
Young Adult dataset [11]. All HCP DWIs were prepro-
cessed with the standard HCP pipeline and normalized by
b0 intensities [12, 10]. We degraded the DWIs to make
them more clinically-realistic by: 1) angularly resampling
gradient directions to the first 9 b0’s, 45 b1000’s and 45
b3000’s of the HCP diffusion protocol, 2) downsampling
from 1.25mm to 2.00mm, and 3) adding Rician-distributed
noise to a 30 dB signal-to-noise ratio. Each model predicted
a 1.25mm isotropic volume of even-degree SH coefficients
with lmax = 8 from these degraded DWIs. Ground truth
volumes were estimated from 1.25mm DWIs with multi-
shell multi-tissue CSD (MSMT-CSD) and normalization
[10, 1, 13]. We evaluated models over three metrics: a
weighted mean-squared error (WMSE) of the SH coeffi-
cients, the mean-squared Jensen-Shannon Distance (MSJSD)
of the ODF, and the weighted average angular error (WAAE)
of the ODF peaks. The WMSE is simple MSE with each
degree l scaled to a standard normal distribution; this is also
the loss function for FENRI and Fixed-Net. The MSJSD
calculates the JS Distance between the predicted and target
ODFs with density functions estimated over a discrete set of
directions [14]. Finally, the WAAE compares ground truth
ODF peaks to the closest peak available in the predicted ODF
[15]. The angular distance was minimized between (at most)
the two largest target peaks and (at most) the three largest
prediction peaks, with a minimum peak of 0.1. False positive
and negative prediction peaks were penalized by 0.0073π/2,
the empirically-estimated normalized median peak amplitude
times the maximum angular distance.

Experiment 2: HCP Qualitative Tractography. We
compared FENRI-based tractography with trilinear interpo-
lation tractography on a real human subject. No method ex-
ists for directly measuring a ground truth tractogram in real,
in vivo HCP data, so our comparison was qualitative in na-
ture. We input degraded DWIs (similarly to Experiment 1)
to both FENRI and Trilin-DWI and bilaterally reconstructed
two tract bundles, chosen for their recognition in the literature
and differences in shape - the cortico-spinal tract (CST) and
the uncinate fasciculus (UF).

Experiment 3: ISMRM-sim Tractography. In the re-
cently updated ISMRM-2015 tractography challenge dataset,
expert-curated WM bundles formed the ground truth of a sim-
ulated DWI dataset [16]. We extend the original dataset from
one to 15 brain-like simulacrums to keep a train-test split for
model training. We used symmetric image normalization reg-
istration (SyN) [17] to match the original dataset’s simulated
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Fig. 1. Predicted SH coefficients on real HCP data and synthetic ISMRM-sim data. (A) Prediction examples on an HCP subject,
located at the yellow selection box on the subject’s T1w image (left). Rows 1 and 2 are axial slices of SH indices of degree 0
order 0, and degree 6 order -1, respectively. Row 3 contains coronal slices of each methods’s ODF lobe plot, with lobes scaled
for visual clarity. (B) Prediction examples on a synthetic ISMRM-sim subject. Image parameters match those in (A).

T1w to 15 real HCP T1w images via the MNI-152 template,
and warped the challenge’s subjects WM bundles to each of
the 15 target subjects. An example warped T1w image is
in Figure 1B. This allowed the dataset to maintain biologi-
cal variability alongside the expert-selected ground truth bun-
dles. Then, each target subject’s warped bundles were used to
create simulated 0.9 mm DWIs, with 4 b0’s, 90 b1000’s, and
90 b3000’s (gradient directions match the standard HCP se-
quence) via Fiberfox simulation [11, 18]. These data are nor-
malized and degraded similarly to the HCP DWIs in Experi-
ment 1; we name this dataset “ISMRM-sim.” Thus, training
FENRI and Fixed-Net on ISMRM-sim data requires upsam-
pling of degraded 2.0 mm DWIs to 0.9 mm SH coefficients.
Examples of ISMRM-sim SH coefficients are shown in Figure
1B. We aimed to measure each model’s ability to reconstruct
the bundles used to create the ISMRM-sim DWIs. Tractog-
raphy was seeded at the length-wise midpoint of each ground
truth streamline in the following bundles: brainstem projec-
tion system (BPS), corpus callosum temporal (CC-t), corpus
callosum u-shaped (CC-u), cingulum bundle (Cing), optic ra-
diation (OR), inferior longitudinal fasciculus (ILF), superior
longitudinal fasciculus (SLF), and uncinate fasciculus (UF).
Performance was evaluated with the challenge’s tractogram
rating script on each separate bundle, giving the same metrics
as shown in the challenge results: overlap voxel ratio (OL),
overreach voxel ratio normalized by bundle volume (OR), and
segmentation f1 (Dice) score.

4. RESULTS & DISCUSSION

Experiment 1: HCP ODF Reconstruction. The quantita-
tive results for predicting HCP SH coefficients are given in
Figure 2, and example predictions are illustrated in Figure
1A. Across all three metrics (WMSE, MSJSD, and WAAE),
FENRI outperformed both Trilinear-DWI and Fixed-Net,
while also showing equal or lower variance between test set
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Fig. 2. Results of predicting HCP SH coefficients from low-
resolution DWIs in white matter voxels. Each point is a score
for a single HCP subject; the distribution plots summarize
the point data. Arrows indicate the direction of better per-
formance. WMSE: weighted mean squared error; MSJSD:
mean-squared Jensen-Shannon distance; WAAE: weighted
average angular error.

subjects. As shown in Figure 1A, FENRI gives high-quality
predictions that preserve high frequency details, both in the
spatial and angular sense. Against Fixed-Net, FENRI better
reconstructs the high degree SH coefficients and produces
an overall more accurate ODF, despite sharing an encoder
architecture with Fixed-Net. While Trilin-DWI is impressive
as a baseline, FENRI still gives quantitatively better predic-
tions. One shortcoming of Trilin-DWI can be seen at the gray
matter-WM boundary in Figure 1A, row 3, where Trilin-DWI
cannot maintain edges over sharp turns in the gyri; FENRI,
however, better preserves these boundaries. Additionally,
Fixed-Net’s performance is surprising compared to Trilin-
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Fig. 3. Qualitative results of both trilinear and FENRI trac-
tography on an HCP subject between FENRI and Trilin-DWI.
Row 1 shows an example unilateral uncinate fasciculus, and
row 2 shows the left and right cortico-spinal tracts.

DWI. Fixed-Net outperformed Trilin-DWI on WMSE, the
network’s optimized loss function. However, Trilin-DWI out-
performs Fixed-Net on both MSJSD and WAAE. We hypoth-
esize that this is caused by Fixed-Net overfitting to the ob-
jective function, while struggling to reconstruct high-degree
SH coefficients on the real HCP data. This can be seen in
Figure 1A, where Fixed-Net’s predicted degree 6 coefficient
is relatively sparse. However, this weakness of Fixed-Net
does not seem as limiting in the more homogeneous ISMRM-
sim dataset, as shown in Figure 1B. Overall, these Fixed-Net
results suggest that more common SISR methods may not be
appropriate for predicting and upsampling ODFs on real data.

Experiment 2: HCP Qualitative Tractography. The
qualitative results of both trilinear and FENRI tractography
are shown in Figure 3. Tracking was poor when interpolat-
ing on Fixed-Net predictions of HCP data and were omitted
for brevity. This poor tracking becomes clear when seeing
the Fixed-Net predicted lobe plots shown in the final row of
Figure 1A. When comparing FENRI tractography to trilinear
DWI upsampling+tractography, FENRI generally produces
smoother, more filled tracts when given the same seeds and
tracking parameters. Row 1 in Figure 3 illustrates an example
UF where FENRI-based tractography produces a smooth and
dense tractogram when compared to Trilin-DWI. A similar
result is found in reconstructed CST. Seed points were only
given in the mid-Pons area of the brainstem, so all produced
tracts must nearly traverse the entire brain longitudinally,
maximizing the chance of integration errors while tracking.

Experiment 3: ISMRM-sim Tractography. Figure 4
shows the quantitative results of ISMRM-sim data tractog-
raphy. Figure 1B illustrates that Trilin-DWI is challenged
by the sparse, thin features of the simulation. These thin
streamlines are obscured by downsampling and noise injec-
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Fig. 4. Quantitative tractography results on ISMRM-sim.
(Top) overreach (OR) vs. overlap (OL) of each tractography
method over selected bundles. Points represent method and
bundle score averaged over all subjects. Regression lines are
fit to each method’s scores, shaded on the 95% confidence
interval. (Bottom) Dice scores for each method and bundle.
Colors match the top row, and error bars represent the 95%
confidence interval. See Section 3 for the full bundle names.

tion, so tractography becomes difficult without learned pri-
ors, such as those learned by FENRI and Fixed-Net. Compar-
ing the learned networks, FENRI matches or exceeds Fixed-
Net in most given metrics. As shown in Figure 4A, FENRI
produces an equal or higher OL on all tested bundles, while
having a generally lower OR, particularly in the SLF, ILF,
and the Cingulum. In Figure 4B, FENRI typically matches
or outperforms Fixed-Net’s Dice score, especially on the CC
bundles. However, Fixed-Net does outperform FENRI in the
ILF, and matches FENRI in most other bundles. We hypothe-
size that the selected bundles are traversable by trilinear inter-
polation given a sufficiently high-resolution ODF. This war-
rants further analysis on other bundles, and gives opportuni-
ties for improving FENRI. Overall, these results suggest that
using FENRI in tractography can produce more accurate trac-
tograms, particularly in smaller WM bundles.

Discussion. We have proposed and evaluated FENRI, a
first-of-its-kind explicit neural representation model built for
tractography. We have shown that FENRI performs well in
predicting and upsampling fODFs on a continuum of spatial
resolutions when given degraded, clinical-quality DWIs. We
have also shown that FENRI can be effectively used in trac-
tography and holds great potential for improving a variety of
tractography-focused methods. Finally, we have expanded the
ISMRM 2015 challenge dataset to 15 HCP subjects and made
these data publicly available for future works in quantitative
evaluation of deep learning models in tractography.
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