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ABSTRACT
This paper introduces a new technique to measure the feature
dependency of neural network models. The motivation is to
better understand a model by querying whether it is using in-
formation from human-understandable features, e.g., anatom-
ical shape, volume, or image texture. Our method is based on
the principle that if a model is dependent on a feature, then
removal of that feature should significantly harm its perfor-
mance. A targeted feature is “removed” by collapsing the di-
mension in the data distribution that corresponds to that fea-
ture. We perform this by moving data points along the fea-
ture dimension to a baseline feature value while staying on
the data manifold, as estimated by a deep generative model.
Then we observe how the model’s performance changes on
the modified test data set, with the target feature dimension
removed. We test our method on deep neural network mod-
els trained on synthetic image data with known ground truth,
an Alzheimer’s disease prediction task using MRI and hip-
pocampus segmentations from the OASIS-3 dataset [1], and
a cell nuclei classification task using the Lizard dataset [2].

1. INTRODUCTION

Deep neural networks (DNNs) have shown great success in
many medical imaging tasks but lack transparency in their
decision-making processes. This is particularly problematic
in medical applications of deep learning for at least two rea-
sons. First, for a deep learning system to be trustworthy when
making health care decisions, it is critical that its decision
rules be explainable and plausible to a medical expert. Sec-
ond, in clinical research it is often important to derive under-
standing of a biological process. Both scenarios benefit from
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the ability to explain the features a DNN is using in terms that
a human expert can understand. In this work, we are specif-
ically interested in evaluating whether certain target features
are indeed used by an existing DNN. This is in contrast to ex-
plainability methods that strive to extract features being com-
puted by a DNN and present them in a hopefully interpretable
fashion [3–8]. Rather, we wish to take features that are known
to be interpretable—and important in a particular domain—
and query if those features are being used by the DNN. For
example, it is a well-established fact that Alzheimer’s disease
(AD) causes atrophy of the hippocampus. If we are given a
DNN that classifies AD patients versus healthy subjects from
magnetic resonance imaging (MRI), we would want to know
if that classifier is in some way using the volume of a subject’s
hippocampi in its decision rule.

To address this problem, one prevailing option is to locally
approximate the nonlinear decision boundary with an easier to
interpret linear approximation, either in data space [9, 10] or
latent space [11]. Yet, most interpretable features of interest
are nonlinear functions, which can be lost by linear approx-
imations. Jin et al. [12] tackles non-linearity by interpreting
neural networks in terms of the alignment between gradients
of a classifier and gradients of a feature along the gradient
flow of classifiers. However, the magnitude of the gradient
alignment can itself be hard to connect to how important that
feature is to the classifier. Closer in nature to our proposed ap-
proach, CaCE [13] explores the impact of modifying discrete
concepts of the input by utilizing conditional generators. We
extend it to continuous features and draw comparison with
our proposed method in the experiments.

Our proposed method aims to “remove” a feature from a
test dataset and measure how much this negatively affects the
test performance of the DNN. When the features are merely
subsets of the original input dimensions, they can be easily
masked [14]. However, this is often not useful for imaging
data, where the original input dimensions correspond to indi-
vidual pixel/voxel values. When the target feature is a com-
plex, nonlinear function of the input image, removing it from
the data, while keeping it valid and realistic, is not trivial. We
propose to do this by modeling feature collapse as an integral
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data manifold

Fig. 1: Illustration of integrating a feature gradient in the am-
bient data space, where the resulting endpoint, x′ lands off of
the data manifold (left). Example of this effect using aspect
ratio of an ellipse as the feature (right).

curve of the target feature’s gradient vector field in the latent
space of a generative model that has learned the data distribu-
tion. By restricting to the data manifold estimated by the gen-
erative model, we ensure that other characterizing features of
the data are preserved. We can eliminate a target feature from
the test data by manipulating each data point to have a com-
mon constant value for this feature (e.g., adjust MR images
so that they all have equal hippocampal volume).

2. METHODS

We consider a neural network classifier as a mapping g :
RD → RK , where an input image is considered as a point
x ∈ RD, and the corresponding output is the vector of as-
signed log class probabilities, ln p(y = k | x), k = 1, . . . ,K.
We define a feature as a differentiable function f : RD → R.
To measure the dependency of the classifier g on the feature
f , we propose to observe the change in performance of g, e.g.,
accuracy, when the feature f is “removed”. Given the origi-
nal test dataset X , we modify each point in X by collapsing
the dimension corresponding to the feature f . The modified
test set with the feature f collapsed is denoted Xf . We then
test the classifier g on this new test dataset and compare the
performance on Xf to the original performance on X . The
dependency of g on the feature f is reflected by how much
the performance drops.

Collapsing a feature dimension is generally a non-trivial
task. If the feature is a linear function of the input, i.e.,
f(x) = v · x, where v ∈ RD is a constant unit vector, then
collapsing the feature dimension is simply projection onto the
orthogonal complement of v. In other words, the collapsing
operation in the linear case is given by xf = x − (x · v)v.
The resulting collapsed data points will have constant feature
value, f(xf ) = 0, so the information from f is effectively
removed. The more general case, where f is a nonlinear
function, is more complicated. We might consider moving
data points along integral curves of the gradient of f until
we arrive at a constant value for f . That is, we integrate the
ordinary differential equation

dc

dt
(t) = ∇f(c(t)), (1)

with initial conditions c(0) = x, and stopping when f(c(t)) =
b for some predetermined baseline value b. Note that this is

data manifold

Fig. 2: Illustration of the proposed feature collapsing method.

analogous to the linear case, where orthogonal projection
moves along the constant gradient field, ∇f = v. Also note
that the integration of (1) may need to be forward or backward
in t, depending on whether the inital feature value, f(x), is
above or below the baseline b.

There is a serious drawback to this strategy of moving
a data point along the integral curves of ∇f , which is that
the integral curve may move outside of the data distribution.
More specifically, if we think of our data distribution as ly-
ing on a lower-dimensional manifold in the data space, the
integral curves of∇f may leave the data manifold. This is il-
lustrated in Fig. 1. Thus, moving along the integral curves of
∇f may produce invalid data, i.e., data that does not look like
realistic samples from the data distribution. As an example,
imagine we have a dataset of images of white ellipses on a
black background, and we can compute the aspect ratio of the
ellipse as our feature f . As shown on the right side of Fig. 1,
if we try to change the aspect ratio of an ellipse image directly
by moving along the gradient direction of this feature in the
ambient image space, then we produce an image that does not
look like an ellipse with adjusted aspect ratio. This is because
we have moved off of the manifold of valid ellipse images.

To handle this, we propose to first train a deep gener-
ative model to learn the data distribution and then restrict
movements along our feature gradient to remain on the es-
timated data manifold. In this work we use a variational au-
toencoder (VAE) [15] with encoder ψ : RD → Rd and de-
coder ϕ : Rd → RD, where Rd (d < D) is the latent space.
Given a data point x ∈ RD, we first encode it to produce a
latent representation, z = ψ(x). Now, we proceed with the
same strategy to collapse the feature f by moving along the
gradient direction, but now we constrain this to be the gradi-
ent of f restricted to the estimated data manifold. The feature
f restricted to the VAE manifold is given by f ◦ ϕ, and the
integral curve of the gradient is now

dc

dt
(t) = ∇z(f ◦ ϕ(c(t))) = Dϕ(c(t))T∇xf(ϕ(c(t))), (2)

where c(t) is a curve in the latent space, Rd, Dϕ is the Jaco-
bian matrix for ϕ, and ∇z , ∇x are gradients with respect to
a latent z or data x, respectively. Note that the multiplication
by DϕT in (2) comes from the chain rule and is computed as
a backpropagation through the decoder, ϕ.

We start integrating (2) at the encoded input data point,
c(0) = z, and we integrate (forward or backward) until we



Algorithm 1 Feature Collapse

Require: A data point x
Ensure: Data point xf returned
z ← ψ(x) and x′ ← ϕ(z)
s← sign(f(x′)− b)
while s · (f(x′)− b) > 0 do
v ← Dϕ(z)T∇f(x′)
z ← z − sα · v
x′ ← ϕ(z)

end while
return x′

Fig. 3: Sample cropped images from OASIS-3 (top) and
Lizard (bottom).

reach a desired baseline feature value at some time T . The
end result is a point zf = c(T ) that lies on the baseline level
set for f , Lb = {z | f(ϕ(z)) = b}. This corresponds to
a data point with the f feature collapsed, that is, it produces
xf = ϕ(zf ), such that f(xf ) = b. The overall process is il-
lustrated in Fig. 2. In practice, we perform the gradient vector
field integration with a discrete Euler integration step, which
is summarized in Algorithm 1.

3. EXPERIMENTS

3.1. Setup

We test our method on three image datasets: a synthetic
dataset of binary ellipse images, hippocampi from MRI in
OASIS-3 [1], and cell nuclei histology images from the
Lizard dataset [2]. All experiments are implemented using
PyTorch [16]. For each classification task, we perform 5-
fold cross validation. We evaluate the dependency of each
classifier on certain interpretable features using our proposed
feature collapse method (Algorithm 1) applied to the test set,
and compare the results to CaCE scores [13].

The ellipse dataset contains 10,000 grayscale images of
white ellipses on black backgrounds with five varying gener-
ative factors: x and y position, size, rotation angle, and as-
pect ratio. We assign them to two classes separated by only
aspect ratio. For the hippocampi dataset, we cropped a re-
gion of interest around the left and right hippocampi in T1w
MRI from 925 different subjects in the OASIS-3 dataset [1],

(a) Volume in the hippocampus dataset

(b) Hue in the cell nucleus dataset

Fig. 4: Original samples (top rows) and samples after collaps-
ing the given feature dimension (bottom rows).

Fig. 5: Hippocampi volume histogram of the original data,
samples generated from conditional VAE and the samples af-
ter collapse along volume feature dimension

masked out the background voxels using Freesurfer segmen-
tations [17] and applied Gaussian blur. The task is to classify
AD versus healthy subjects. The cell nuclei histology data is
derived from the Lizard dataset [2]. We cropped the images
around each nucleus, 2000 from each of the six annotated nu-
clei types, masked out other areas and applied Gaussian filter.
For each dataset we trained a deep convolutional classifier for
the task, a plain convolutional VAE to learn the data manifold
for our method, and a conditional VAE to implement CaCE.

We have chosen several interpretable features to test for
classifier dependency as listed in Table 2. The aspect ratio
is calculated by taking the ratio of major and minor eigen-
values of the second-order moments. For every dataset, we
also included ten random linear features as baselines. Since
CaCE was originally proposed for discrete concepts, we ex-
tend it by using a low and a high feature value to represent
each feature and generate two sets of random samples using
the conditional VAE. Different choices of feature values have
been experimented as shown in the Table 2.



Table 1: Accuracies of evaluated classifiers on the original
and reconstructed data. (mean ± std)

Dataset original data reconstructed data
Ellipse 0.872 (± 0.010) 0.854 (± 0.013)

Hippocampus 0.821 (± 0.020) 0.816 (± 0.028)
Nucleus 0.606 (± 0.004) 0.581 (± 0.002)

3.2. Results

First, we visualize the feature collapsing results in Fig. 4
for two examples: hippocampus volume and cell nucleus
color hue. Every feature is collapsed to the mean value over
the dataset. The altered images remain realistic, while the
selected feature is successfully changed. In Figure 5, we
illustrate the distributions of volume feature values for three
datasets: the original hippocampus data, samples generated
by a conditional VAE with volume conditions set to the
same baseline value, and samples generated by our method,
which collapses the volume feature dimension. Our method
demonstrates superior precision in constraining feature val-
ues around baseline values compared to the conditional VAE.
Specifically, our generated samples consistently exhibit a
feature value standard deviation less than 2% of the original
dataset. In Table 1, we report the performance of the eval-
uated neural network models on the original dataset, which
is averaged over 5 folds. The balanced accuracy is used for
the hippocampus dataset. To verify that the reconstruction
quality of the VAE is not affecting the classifier performance
significantly, we also test the model on the reconstructed
dataset, which shows a slight impact on the performance.

Next, we perform the feature dimension collapse and
report the accuracy after collapse (AAC) along with CaCE
scores on corresponding features in Table 2. The performance
drop when collapsed along random linear feature (RLF) di-
mensions is used as a baseline comparison for our method.
In the ellipse dataset, we can see that collapsing the aspect
ratio changes the accuracy to around random chance. This
is exactly what we would hope because this is the only fea-
ture that separates the two classes. Collapsing other features
slightly affects the performance, but is similar to or less than
RLF, from which we can conclude the model does not depend
on them. In the hippocampus experiment, the model depends
heavily on volume, almost dropping to random chance when
volume is removed. The other features (aspect ratio, bright-
ness) do not substantially influence the classifier. Note that
despite the well-known fact that AD reduces hippocampal
volume, because of the black-box nature of deep neural net-
works, we don’t know if volume is a feature that the classifier
has learned. However, our AAC measure confirms that vol-
ume is an essential feature for the classifier to learn. Finally,
for the nucleus dataset, the results suggest size, saturation,
and hue features are being used by the classifier to identify
cell types (note here that random chance is 1/6 = 0.167).

Table 2: The results of our methods: accuracy after collapse
(AAC) along each feature dimension with features of substan-
tial performance drops (relative to RLF) shown in bold; and
the CaCE scores with two different sets of percentiles to rep-
resent low and high feature values.

(a) Ellipse results

Feature AAC (ours)
(mean ± std)

CaCE score
25%/75% 5%/95%

X-coord 0.770 (± 0.013) 0.104 0.0981
Y-coord 0.750 (± 0.017) 0.011 0.007
Size 0.812 (± 0.009) 0.315 0.47
Aspect ratio 0.494 (± 0.010) 0.916 0.989
RLF 0.786 (± 0.021) - -

(b) Hippocampus AD classification results

Feature AAC (ours)
(mean ± std)

CaCE score
25%/75% 5%/95%

Volume 0.530 (± 0.027) 0.407 0.885
Aspect ratio 0.798 (± 0.029) 0.076 0.221
Avg. bright. 0.806 (± 0.026) 0.094 0.296
RLF 0.816 (± 0.025) - -
(c) Cell nucleus type classification results (CaCE not applicable)

Feature AAC (ours) (mean ± std)
Size 0.449 (± 0.013)
Aspect ratio 0.519 (± 0.007)
Saturation 0.468 (± 0.003)
Hue 0.482 (± 0.011)
RLF 0.524 (± 0.010)

While CaCE scores generally align with our method re-
garding the identification of important features, the scale does
not necessarily indicate how critical these features are. For
instance, in the ellipse dataset, the aspect ratio is the sole dis-
tinguishing feature between the two classes; however, the size
feature receives a notably high CaCE score. This could be in
part due to the conditional VAE’s inability to constrain the
feature values effectively as elaborated earlier. Moreover, ap-
plying CaCE to continuous features poses challenges, as vary-
ing feature values leads to unpredictable impacts. Also, note
CaCE is only defined for binary classifiers, and thus we do
not compare it to AAC on the multi-class cell nuclei dataset.

Finally, we performed an ablation study for the hippocam-
pus dataset to test the importance of using the VAE model
to restrict the feature collapse to the data manifold. We re-
peated the hippocampus experiment, but with feature collapse
directly in the data space, i.e., by integrating gradients of the
features using Equation (1) in the ambient data space. The re-
sulting accuracy after collapsing volume is 0.772 (± 0.043).
And the results for aspect ratio and average brightness are
0.814 (± 0.021) and 0.819 (± 0.021), respectively. We can
see that the performance drop in volume is much less drastic
and also much more variable across test/train splits. This in-



dicates that the model’s behavior become more unpredictable
when collapsing features in the ambient data space, perhaps
due to the images being off of the data manifold.

In conclusion, our method effectively captures classifier
feature dependencies, emphasizing the assessment of feature
significance rather than mere relevance. It’s important to note
that our method necessitates a large sample size for VAE
training and relies on access to feature gradients. We plan to
address these challenges in future research.
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