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Abstract. Functional connectivity from resting-state functional MRI
(rsfMRI) is typically represented as a symmetric positive definite (SPD)
matrix. Analysis methods that exploit the Riemannian geometry of SPD
matrices appropriately adhere to the positive definite constraint, unlike
Euclidean methods. Recently proposed approaches for rsfMRI analysis
have achieved high accuracy on public datasets, but are computationally
intensive and difficult to interpret. In this paper, we show that we can get
comparable results using connectivity matrices under the log-Euclidean
and affine-invariant Riemannian metrics with relatively simple and inter-
pretable models. On ABIDE Preprocessed dataset, our methods classify
autism versus control subjects with 71.1% accuracy. We also show that
Riemannian methods beat baseline in regressing connectome features to
subject autism severity scores.

1 Introduction

Resting-state functional MRI (rsfMRI) has shown to be a promising imaging
modality for diagnosing neurodevelopmental and neurodegenerative diseases,
e.g., autism spectrum disorder (ASD) and Alzheimer’s disease, and identifying
associated biomarkers. However, analyses of imaging studies suffer from issues
of low sample sizes, such that the conclusions are often not generalizable across
datasets. The Autism Brain Imaging Data Exchange (ABIDE I) dataset is a joint
effort from multiple international groups to aggregate a large dataset of imaging
and phenotypic data for the purpose of identifying biomarkers of autism. To
address heterogeneity in multisite data, the Preprocessed Connectome Project
uses state of the art preprocessing that has shown good generalizability to the
whole ABIDE I cohort [7]. This has fostered new methods for machine learning
on covariance / correlation matrices of the preprocessed data.

Several recently proposed methods use deep neural networks (DNN) [17, 2,
15, 9, 11] to classify autism, achieving high accuracy. DNN learns a nonlinear
mapping to semantically separate the data, but comes at the expense of high
computation cost and difficult interpretability. These proposed methods do not
take into account the SPD properties of correlation matrices.

Correlation matrices are symmetric semi-positive definite, and can be made
symmetric positive definite (SPD) with a simple regularization step. The space
of SPD matrices forms a Riemannian manifold. Using Euclidean operations on
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the manifold can be problematic, but many machine learning algorithms are
only designed for the Euclidean space features. The two most commonly used
Riemannian metrics proposed for the SPD manifold are the affine-invariant met-
ric (AIM) and the log-Euclidean metric (LEM). The AIM is based on Lie group
action on points on the SPD manifold, defined by a base point such that all other
points are compared relative to. The LEM is equivalent to a special case of the
AIM for which the base point is at identity, mapping the SPD manifold to the
Euclidean space. These frameworks have been applied to brain network analy-
ses in multiple studies. Varoquaux et al. [20] introduced a probabilistic model
based on the AIM for comparing single subject correlation matrices from a group
model to identify outlier stroke patients from a group of healthy controls. Ng et
al. [16] used the AIM for transport on the SPD manifold to remove nonlinear
commonalities between scans in longitudinal studies. Other works use the LEM
to define kernels on the manifold for machine learning algorithms [8, 23].

1.1 Contribution

Although works mentioned above have studied brain connectivity representa-
tions as SPD matrices on a Riemannian manifold, to the best of our knowl-
edge, no one has demonstrated the performance of Riemannian methods on a
ubiquitously used benchmark dataset such as ABIDE. Furthermore, regression
between Riemannian representations of brain networks with neuropsychiatric
features has not been explored. In our first contribution, we show that classi-
fication with a simple logistic regression using log mapped correlation matrices
under the LEM achieves comparable results to other state-of-the-art deep neu-
ral network methods on the ABIDE dataset, with an accuracy of 70.0%. It uses
a simple classification method (logistic regression) with little parameter tuning
or engineering tricks. Due to the linearity of the classifier decision boundary,
and the fact that log-Euclidean correlations retain the interpretatibility of the
original correlations between pairs of regions, we can visualize the resulting clas-
sifier. Our second contribution is to show that the AIM can improve upon this
accuracy, by proposing an optimization over the base point that yields a better
performance at 71.1% accuracy.

2 Methods

The typical pipeline for rsfMRI analysis begins with the estimation of network
as a connectome matrix using some measure of functional similarity between
all pairs of regions of interest (ROIs) in the brain. To use the connectome for
diagnosis of autism spectral disease, features are extracted from the correlation
matrix as input into machine learning algorithms for classification. For many
correlation-based measures, such as the most commonly used Pearson correla-
tion, the matrices are symmetric semi-positive definite matrices. Thresholding
the eigenvalues by some positive epsilon regularizes these correlation matrices
to SPD.
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We first review AIM and LEM, and then go over our preprocessing steps on
the ABIDE dataset.

2.1 SPD matrices

A d×d matrix M is symmetric positive definite if zTMz > 0, ∀z 6= 0 ∈ Rd. The
space of all SPD matrices, denoted Sd

++, is not a vector space, but a Rieman-
nian manifold. Using Euclidean operations on the manifold can be problematic,
leading to the swelling effect, see e.g., [4]. Several metrics have been proposed for
the SPD manifold [10, 18, 3, 4]. Geodesic distance under the AIM [10, 4], given
by
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addresses these issues. Under this Riemannian framework, two operations are
introduced, the Riemannian exponential map and the Riemannian logarithmic
map:
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where Exp and Log denote the Riemannian operations, and exp and log denote
the matrix exponential and logarithm. ExpM1

(X) returns a point at time one
along the geodesic starting at M1 ∈ Sd

++ and with initial velocity vector X.
LogM1

(M2) is the inverse operation which yields that vector in the tangent
space that Exp maps M1 to M2. For data analysis, consider M1 as the base
point that all data points are compared to. For example, M1 can be set as the
Fréchet mean, such as in [16].

Another proposed metric is the LEM [3], given by

dist (M1,M2) = ‖log (M1)− log (M2)‖F .

Notice that distances under the LEM are equivalent to those under the AIM
when one of the two matrices, M1 or M2, is equal to the identity matrix. This
becomes a way of mapping SPD matrices to the Euclidean tangent space at
identity, i.e., f : Sd

++ → Rd×d

fLEM (M) = log (M) . (1)

After transforming data in Sd
++ via the log map, we can apply Euclidean

models, e.g., logistic regression. In the AIM case, the mapping of M2 with respect
to some basepoint M1 is

fAIM (M2) = log
(
M

− 1
2

1 M2M
− 1

2
1

)
. (2)

We have the choice of either fixing the base point M2 to the Fréchet mean and
proceeding with Euclidean methods, or learning the base point simultaneously
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during optimization to select the best base point for the learning task. The reader
may refer to [10] for the computation of the Fréchet mean for the SPD manifold
under AIM.

For the optimization over the base point, we propose to use the backpropaga-
tion computation for matrix operations, i.e., matrix logarithm, described in [13,
12]. As a concrete example, in the 2-class logistic regression case, the probability
of a data point M2 being in class Y is given by
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where M1 is a base point to optimize over and vec (·) is the vectorization of a
matrix. The energy function is the standard cross-entropy for logistic regression.
Because of chain rule, minimizing the cross-entropy with respect to M1 involves
computing the matrix logarithm backgradient Z, using a neural network-like
setup such that the matrix logarithm is a “layer” upon its inputs (refer to [12]

for details). Afterwards, the gradient with respect to C = M
−1/2
1 is ∇C =

M2CZ+ZCM2. We can update the base point in a couple of ways: 1) by standard
(additive) gradient descent and then regularizing the resulting M1 to have all
positive eigenvalues, or 2) by taking the Exp map, Cnew = ExpCold

(∇Cold
).

2.2 ABIDE

The ABIDE I dataset is a collection of rsfMRI and phenotypic data for typi-
cally developing controls and ASD subjects acquired at 20 different sites. The
Preprocessed Connectome Project [7] has preprocessed ABIDE data using state
of the art pipelines to promote shareability and fair comparison of results. We
obtain the fMRI data from the Project, preprocessed with the CPAC pipeline
and parcellated according to the Harvard-Oxford atlas, and select the 871 sub-
jects (468 controls, 403 ASD) to be consistent with [1, 17]. The resulting time
series at each of the d = 111 regions are normalized to mean = 0 and standard
deviation = 1.

3 Results

3.1 Classification

We first compare between raw and Fisher-transformed Pearson’s correlation ma-
trices, as well as eigenvalue-regularized and log-Euclidean transformed matrices
as input for each subject into logistic regression for classification. We eigen-
decompose raw correlation matrices and lower-bound small eigenvalues to 0.5,
and re-compose them into regularized correlation matrices to ensure that the
matrices are SPD. Log-Euclidean matrices are obtained by taking the matrix
logarithm of the regularized correlation matrices. All matrices are then reduced
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to upper triangles and vectorized into feature vectors. Matrix features involv-
ing log-Euclidean transform are of 6205 dimensions because diagonal entries are
included in the upper triangle, whereas all other features are of 6105 dimensions.

We use the Scikit-Learn implementation of logistic regression with L2 penalty
as classifier, and evaluate the classification performance through a nested ten-
fold cross-validation scheme (folds selected at random). At each fold, 10% of the
data is set aside for testing, and the other 90% is ten-fold cross-validated to get
the best parameter for L2 penalty. The range of parameters we cross-validate
over are [0.01, 0.05, 0.075, 0.1, 0.2, 0.5, 0.75, 1.0, 3.0, 5.0].

We then also compare the affine-invariant transformed matrices with an
optimization for the base point in TensorFlow using the same ten-fold cross-
validation scheme. At the first layer, square correlation matrices are affine-
invariant transformed with variable M2, then linearized to a 6205 dimensional
vector and fed into a sigmoid function for classification. The cost function to
optimize over is the sum of the logistic regression cross-entropy plus L2 penalty
with parameter λ. In TensorFlow, the range of parameters we cross-validate
over are [5, 10, 15, 20, 100, 200]. The matrix backpropagation is modified to the
method described in the previous section. The optimization is run until conver-
gence within 50 iterations.

Table 1 shows the results. Our baseline of using just vectorized correlation
matrix features has an accuracy score of 65.7%, comparable to baseline scores
reported in [1, 17]. A t-test shows that both the log-Euclidean and the affine-
invariant transformed features have a statistical significant improvement in per-
formance over the raw correlation baseline (p = 0.02 and p = 0.002, respec-
tively). The regularized correlation matrix shows similar accuracy to the raw
correlation features, indicating that the increase in performance is solely due to
the Riemannian mappings. Figure 2 describes the range of classification accu-
racy from ten-fold cross-validation for the baseline compared to log-Euclidean
and affine-invariant mapped features. Using the model learned from the log-
Euclidean features, we visualize the highest weights in the classification thresh-
olded at |w| > 0.25 in Figure 3. Red connections indicate positive weights that
push classification toward the ASD group (label=1) and blue connections are
negative weights toward the control group.

Figure 1 is a diagram of the learned weights on the ROIs grouped by subnet-
works from [19]–visual, default mode, sensorimotor, auditory, executive control,
and frontoparietal networks. The colormap runs from negative values in blue
(driving classification toward control) to positive values in red (toward autism).
For visualization, very small weights have been filtered. There is evidence of
patterns within and between subnetworks. The weights within a subnetwork are
simplified to their means within a block. Our results show that control subjects
tend to have higher intranetwork connectivity especially within the sensorimo-
tor, executive control, and default mode networks, whereas subjects with ASD
have stronger internetwork connectivity, e.g., between the default mode and the
sensorimotor networks. This is in agreement with existing literature that the de-
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Fig. 1. Classification weights grouped by subnetwork

Fig. 2. Box plots of the classification accuracy over ten-fold cross-validation.

fault mode network is not well segregated from other subnetworks for the ASD
population [5, 21, 22].

3.2 Regression

To show that the Riemannian features also have predictive power in regression,
we compare the performance of log-Euclidean and affine-invariant transformed
matrices versus raw correlation matrices in the prediction of autism severity
as measured by the ADOS Total score. Though there has been work on doing
regression on Riemannian manifolds [6, 14], it has not been applied for ASD
analysis. Because regression is more challenging than classification, and some
sites lack ADOS scores for control subjects, we limit our analysis to the largest
site with a roughly even split of ASD and control subjects that have ADOS
Total score. The Utah site has 62 subjects with scores ranging from 0 to 21.
Scores below 10 are considered typically developing. We use partial least squares
regression (PLS), with the features projected down to one component and re-
gressed to ADOS. It is not trivial to adapt the base point optimization for the
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Table 1. Accuracy performance of Riemannian and various state of the art classifica-
tion methods

Method Validation Accuracy (Stdev) Sensitivity Specificity

Abraham et al. [1] CV10 0.668 - -

Dvornek et al.[9] CV10 0.685 (0.06) - -

Parisot et al.[17] CV10 0.695 - -

Heinsfeld et al. [11] CV10 0.70 0.74 0.63

Raw Correlation CV10 0.657 (0.06) 0.728 0.573

Fisher Correlation CV10 0.672 (0.05) 0.737 0.594

Regularized Correlation CV10 0.660 (0.06) 0.741 0.565

Log-Euclidean CV10 0.700 (0.05) 0.809 0.575

Affine-Invariant CV10 0.711(0.05) 0.838 0.585

NIPALS algorithm in solving PLS. Instead, here we fix the base point to the
Fréchet mean. Table 2 shows the root mean squared error (RMSE), R2 and Q2

coefficient of determination values between Riemannian and baseline correlation
matrix features. The R2 is computed over the whole data subset, and the Q2

value is calculated through a leave-one-out cross-validation (LOOCV) scheme.
The plot of true versus predicted ADOS using the Fréchet mean base point
is shown in Figure 4. To show the statistical significance of improvement, we
do a permutation test. We sum up the absolute value of the residuals of the
LOOCV predictions and take the difference of the proposed method from the
baseline correlation as the test statistic. Then we do 10000 permutations swap-
ping the predictions between the two classes and sum up the number of times
that the differences are greater than our nonpermuted test statistic value. Both
log-Euclidean and affine-invariant metrics signicantly improve over the raw and
Fisher correlation baselines (also similarly significant by t-test on the RMSE).

The regression weights in Figure 5 show similar patterns to the classification
results, though not the same. This is expected because the regression data is
only a single-site subset. The classification and the regression weights share a
correlation of 0.31, reasonably consistent for such high-dimensional data. Sum-
marizing weights into means of each block, we can see the pattern that the
intraconnectivity in the default mode and sensorimotor networks drives the re-
gression toward low ADOS scores (control) and interconnectivity between the
two networks pushes regression toward high ADOS scores.

Table 2. Comparison of Riemannian features against baselines in PLS regression

RMSE R2 Q2 Raw Corr Improve Fish Corr Improve

Raw Correlation 6.17 0.631 -0.05 - -

Fisher Correlation 6.18 0.624 -0.062 - -

Log-Euclidean 5.42 0.816 0.182 p =0.0112 p =0.0127

Affine-Invariant 5.36 0.837 0.202 p =0.0064 p =0.0069
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Fig. 3. Plot of the connections with highest weights in the classification

4 Conclusion

In this paper, we have established that the Riemannian representation of SPD
matrices is beneficial for the autism classification and regression tasks and com-
parable in performance to other modern methods. In particular, the results are
interpretable under the log-Euclidean metric, whereas the affine-invariant met-
ric leads to high learning performance. For future work, we will compare how
the choice of ROI may have an effect on predictions. We will also develop the
affine-invariant base point update for other analyses, and study whether it may
yield an improvement in performance in a deep neural network.
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