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ABSTRACT

In many fields today such as radiology, images of interesting structures are ob-

tained. From these images the physician or scientist attempts to make decisions using a va-

riety of techniques. The existing techniques for representing and analyzing particular

structures include volume rendering, and surface renderings from contours, free-form sur-

faces and geometric primitives. Several of these techniques are inadequate for accurate

representations and studying changes in the structure over time. Further, some of these

techniques have large data requirements that prevent interactive viewing.

It is believed that if the structures of interest can be extracted from the image back-

ground, viewed and analyzed in an interactive setting, more accurate decisions can be

made. The research described in this dissertation explores a new technique for shape re-

covery with deformable models using B-spline surfaces. The current literature shows that

there have been many successful attempts to create deformable models but always at a loss

in shape information and/or continuity. To overcome these limitations, we show that tem-

plate models each having a unique topology can be developed and the template models

can be joined without a loss in smoothness at their boundaries. Further, new techniques

have been developed to extract and relate image data to these deformable models.
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CHAPTER 1

INTRODUCTION

With the development of Magnetic Resonance (MR) and Computed Tomography

(CT) imaging techniques physicians now have the ability to view areas of the human anat-

omy previously not possible without invasive procedures. These techniques have led to the

ability to create three-dimentional (3D) data sets from a series of orthogonal two-dimen-

tional (2D) images and true 3D images.1 Although these techniques have allowed for im-

aging of the anatomy, the ability to view and analyze these image(s) has not been very

robust. This analysis includes the ability to obtain quantitative measurements such as the

size and volume measurements of an organ to more complicated analysis such as model-

ing the blood flow through a diseased artery. The main focus of this research is to develop

a tool for accurately and precisely recovering the shape of objects in an image. The princi-

pal application of this research is the human cerebral arterial system. With this tool in

place, it will be possible for a person to explore the data further, performing the necessary

analysis rather than simply viewing the images.

1.  A true 3D image is a single image that has been formed using 3D point sampling or 3D reconstruction
techniques. tThis is in contrast to a 3D data set which can be created from a series of 2D orthogonal slices th
have been formed using 2D reconstruction techniques.
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1.1  History

Traditionally, 3D data sets have been viewed as series of 2D slices which forces

the viewer to mentally reconstruct the 3D object. During the past decade two alternative

viewing techniques for 3D data sets have been reported in the literature, surface rendering

[1, 50, 57, 99] and the more recent volume rendering [31, 51]. These techniques have been

instrumental in increasing the vierer’s ability to view the data but do not always provide

the ability to further analyze the data. Volume rendering, although important for viewing,

is the least able to provide information for data analysis. This is because traditional vol-

ume rendered images treat the 3D data set as a whole and use an additive projection of the

3D data onto a 2D viewing plane. The additive projection information can not be used for

secondary analysis such as determining the volume of an object. Similarly, surface render-

ing which requires the recovery of the boundary of an object can suffer from the same

problem depending on the representation used.

The type of representation used to describe the data greatly influences the ability to

visualize and analyze the data. Much of the research into this area has been done by the vi-

sion community to solve the surface recovery or surface reconstruction problem. While

Bolle and Vemuri [11] provide an excellent summary of many of the current techniques

found in the literature, several deserve particular attention for our purposes and are dis-

cussed in Chapter 2. Traditionally, most surface/shape recovery techniques have relied

upon edge following to create a contour or fitting procedures to match a surface to the da-

ta. Recently several researchers have taken a new approach to recovering surfaces from 2D

and 3D data sets [22, 62, 74, 75, 87-93]. Their techniques employ deformable surfaces to

approximate the data. The deformable surface representation evolves over time, at first

crudely approximating an object, and then deforming to better represent an object’s sur-
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face. The deformation process is controlled through a minimization process using the

strength and location of the detected boundary. Several authors have simulated physical

properties, such as elasticity and plasticity in their surfaces in combination with the laws

of continuum mechanics as their minimization function [90-92]. Deformable surfaces with

these properties also allow the surfaces to become active and respond to external forces in

much the same way a real object would. This can be of great benefit if secondary opera-

tions are to be done on the surface such as recovery of nonrigid motion and structure [75,

88]. Deformable surfaces may have either open or closed forms and have been based upon

finite elements [22, 87, 90-92], superquadrics with finite elements [74, 75, 87], parametric

representations [93], and geometric primitives [62].

The current work using deformable surfaces typically requires the user to actively

select the type of surface topology needed for a particular application. Further, the user

may be required to seed the surface within the image for the shape recovery process to

work correctly. In many cases, the topologies available do not represent the topology of

the object. To overcome this problem, multiple surfaces have been used. Yet when com-

bined, they still do not represent the actual topology. However, we have observed that dur-

ing most shape recovery operations the general shape of the object is already known by the

user and the shape recovery provides the local detail of the object. As such, it is reasonable

to not only use a series of topologically different template surfaces but also have the shape

recovery process select the proper topology for the surfaces reducing the amount of user

interaction.
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1.2  Research Conducted

The research described in this dissertation explores several new techniques for

shape recovery from images using physically based deformable models consisting of mul-

tiple surfaces represented with B-splines. Underlying the B-splines is a finite element rep-

resentation which allows for the deformation process. Further, a collection of

topologically different templates was developed that can be joined together to form a more

complex smooth model. Using topologically different templates has, however, precluded

doing any type of simple object recognition other than that based on the template topology

since each template may be deformed into an infinite number of shapes. The process de-

scribed above can be broken down into three parts:

1. The template selection process which includes:

Creating a set of templates using deformable surfaces that represent the basic shapes of

objects we wish to recover.

Determine which template(s) should be used in the deformation process.

2. The boundary selection process which includes:

Application of a boundary operator.

Thresholding to remove the weaker boundary locations.

3. The shape recovery process which combines the template(s) and the boundary data to

recover the object’s shape.

A flow chart of these steps are shown in Figure 1.1. Each of these parts raises ques-

tions that will be addressed as part of this dissertation. For instance, if two templates are to

be used, can their surfaces be joined so smoothness is maintained along the common

boundary during the deformation process? This is an important characteristic which has

been not possible with the previously developed deformable surfaces. The main focus of

this research has been on the creation of a set of deformable template models and the de-

velopment of a technique to select the correct template for the deformation process. In ad-
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dition we have focused on the improvement of several deformation techniques and the

numerical methods needed to solve them.

Figure 1.1. Flow diagram of the shape recovery process.
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CHAPTER 2

BACKGROUND

Previously during the shape recovery process a bottom up approach has been taken

when trying to recover the shape of an unknown object. For instance, with a 2D image,

one may apply any number of gradient operators to first find the edges. To form a contigu-

ous boundary (i.e., “stitch” the strongest edges together), a technique such as graph

searching or dynamic programing has been used [32]. This technique works well when

complete edge information is available but when faced with missing or noisy information

it can fail. This failure is due to the technique being unable to form a contiguous boundary

when information is missing or in the case of noisy information, the boundary may wander

aimlessly from noise spike to noise spike.

When working with 3D data and surface fitting, similar problems may be encoun-

tered. In [11], an excellent review of the current methods is given, however, some of the

more notable problems are worthy of discussion here. For instance, if the object contains

concavities the initial surface placement for the fitting may be such that the concavity

could be misinterpreted. Thus, a very good initial estimate to the final surface must be

used. In addition, it is not always clear how the data should be mapped onto the surface

when it is very irregular. Even when a mapping is obtainable, determining a minimization

function can be difficult. The most prevalent error function is a sum squared differences
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which is minimized using an iterative method.

The above problems demonstrate that the current surface fitting techniques are not

always able to give satisfactory results. The addition of global constraints, such as curva-

ture or symmetry, help reduce the failures but at an added complexity. Instead, a dynamic

process using deformable surfaces has been chosen as the technique for doing the shape

recovery. This dynamic process is based on a well understood physical process which al-

lows for the inclusion of global constraints. Further, the numerical techniques used to in-

teractively solve for the deformations are also well understood. Deformable models, such

as the ones proposed, are not without problems either, but hold more promise than other

techniques proposed because of their reliance on the well developed area of finite element

analysis. The remainder of this chapter is devoted to discussing the current deformable

models and their advantages and disadvantages.

2.1  Deformable Models

Surfaces that are modified over time using physically based properties are called

deformable surfaces and are unique in that they are able to respond dynamically to forces

acting on them in a manner similar to that of a real object. A deformable surface typically

begins as a simple shape such as a flat sheet, cylinder or sphere. It is then deformed ac-

cording to modified rules of Newtonian or Lagrangian dynamics. The deformation can be

elastic and/or plastic and is based on internal and external constraints in the form of forces.

In shape recovery, the forces are based upon image potentials such as the strength of an

object’s boundary in the image. The potentials are converted into forces based on a heuris-

tic function, and it is these forces which cause the surface(s) to deform. Terzopoulos, et al.

first brought this idea to the computer vision community in 1987 [88]. Since then, many



8

others have contributed to this field [61, 62, 74].

The advantage of deformable surfaces over edge linking techniques for shape re-

covery is that neither continuous nor complete boundary information is needed to recover

the object’s shape. Since the surface is continuous, it can approximate the shape where

boundary information is missing. Further, depending on the internal and external physical

properties applied, it is possible to obtain different results. For instance, if the internal

properties such as the stiffness, are relaxed then the surface can assume a more irregular

shape. Another advantage of deformable surfaces is that it is possible to use a surface with

an axis of symmetry to infer 3D shape from 2D views even when the object is partially

hidden [88].

Deformable surfaces may be constructed from geometric primitives, have a para-

metric representation or be a combination of both.  The geometric primitive representation

is most prevalent since there is a large body of literature on how to represent and deform

objects using these primitives as finite elements. Each representation has its own advan-

tages and disadvantages as discussed below.

Creating and using deformable surfaces have been studied by Barr [3], Miller [62],

Pentland [74, 75], Terzopoulos [87-92], Thingvold [93], and others as a mechanism for 3D

surface recovery and animation sequences. All of the techniques currently found in the lit-

erature are based upon physical mechanical properties except for Miller’s which uses only

geometric properties.

Terzopoulos [87-92], Pentland [74, 75], and Cohen [22] have advocated the use of

the finite element method (FEM) in their deformable surfaces. The FEM is a standard tool

used by engineers to analyze the static and dynamic behavior of objects. The advantage of

the FEM is that it is very easy to relate external forces to the object and to track changes in
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an object through nonrigid motion, such as the motion found in a beating heart [75]. While

Terzopoulos and Cohen both use a standard approach with finite elements, Pentland uses

modal analysis which is computationally less expensive and allows for a closed solution to

be found. Both methods however, perform poorly when complex shapes are being repre-

sented. This is because many nodes are required to adequately represent the object and

thus the solution becomes computationally too expensive.

Thingvold [93] introduced deformable surfaces using a B-spline representation

and Newtonian dynamics. The use of B-splines overcomes the computational expense by

approximating complex objects and their physical properties. If the approximation is accu-

rate enough then this technique is an advantage, however this technique can produce poor

results if the approximation is not accurate. Thingvold models both elastic and plastic de-

formations in his surfaces. This allows for forces to be applied to a surface, deform it, and

then be removed. This is currently not possible with some of the finite element surfaces

which will contain no plastic properties and subsequently return to their “natural” or “re-

laxed” shape after the force is released.

Miller [62] deviated from the physically based approach, creating a deformable

surface based on geometric constraints using geometrically deformable models (GDM).

His technique uses a collection of triangular faces which topologically approximated a

sphere. Each vertex on the sphere is moved (deformed) based on the local topology. Each

vertex has a cost associated with it that must be calculated at each iteration. A local mini-

mum is found through the use of a gradient descent method. Representing simple surfaces

with GDMs may require up to 7500 vertices and 200 iterations before a local minimum is

found. Miller reports that the technique is sensitive to the weighting used in the minimiz-

ing function and can cause a lack of precision in the deformation process.
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The main disadvantages with current deformable surface methods being used for

shape recovery are their inability to represent objects with a genus greater than one (e.g., a

torus), the difficulty in mapping the image potentials to the surface, and the overall com-

putational expense. Miller’s GDMs, and Terzopoulos’ and Pentland’s superquadrics are

genus zero. Although Terzopoulos can use a single surface to create a cylinder, torus, or

sphere, it can not be used without a loss of smoothness for bifurcating objects. This is be-

cause no attempt was made to create topologically different surfaces which could be

joined together.

The other disadvantage to the current deformable surface techniques is that they

can be computationally expensive when used to model complex shapes. Even a simple

shape such as a tooth may require several thousand vertices or nodes for an accurate repre-

sentation. Although Miller describes an automatic method for local subdivision that limits

the number of vertices created, the finite element techniques do not currently allow for any

type of subdivision. Thus, if the original grid is too coarse, high frequency surfaces char-

acteristics could be lost, conversely if the grid is too fine, the computational expense may

be prohibitive.

Another area of concern with the current deformable models is the deformation

operators. Operators that rely upon radial attractive forces have been found not to perform

adequately in certain circumstances such as when the object is very symmetric or when

the initial guess is very poor [23, 75]. In [23], a technique is presented that “inflates” the

initial deformable surface until it can be attracted by the image boundary. This technique

does help solve the problem but is an added step that the user must use to get adequate re-

sults.

As described above, there are several important research questions that if answered
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would improve the current deformable surfaces. These improvements include:

Using an underlying representation that allows for maximum flexibility with a mini-
mum number of parameters.

Using multiple surfaces with smooth continuous boundaries to represent topologically
different objects.

Applying new deformation operators and numerical techniques to solve for the defor-
mations.

2.2  Surface Representations

A problem that has plagued the current deformable models has been how to repre-

sent objects in a manner that can easily be utilized for both surface viewing and also in the

deformation process. Ideally, one would want a representation that could allow for maxi-

mum flexibility but with a minimum number of parameters. For example, geometric prim-

itives [62] have maximum flexibility but may require so much information as to make

them impractical during the deformation process. Superquadrics [74] that use only a few

parameters fail to adequately represent complex shapes and must be broken down into

smaller primitives in order to be used [87].

A goal of this dissertation is to use a representation that can accurately represent

complex objects, be used during the deformation process without any conversion steps and

maintain smoothness with as few parameters as possible. A brief discussion of the more

popular representations is presented.

2.2.1  Geometric Primitives

Geometric primitives are the earliest representations used by researchers. In their

seminal papers on marching cubes and dividing cubes, Lorensen and Cline [18, 57]
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showed that geometric primitives (triangles) can be used to interpolate surface data and

achieve excellent viewing results without sacrificing quality. Miller and others have incor-

porated triangular primitives into their deformable models and have obtained satisfactory

results. The main advantage of geometric primitives is that the deformation process is eas-

ily configured. However, if the surface being recovered is very complex, a very large num-

ber of primitives will be required; which is a disadvantage of geometric primitives.

Another disadvantage of geometric primitives is that further manipulation and analysis

can be difficult. For instance, even though specialized hardware, such as the geometry en-

gine [17], has made their display quite rapid, other operations such as volume measure-

ments are much more difficult because each primitive is typically considered

independently of its neighbors.

2.2.2  Implicit Surfaces

Another commonly used representation is implicit surfaces. Implicit surfaces are

able to describe a wide variety of shapes using a single equation. Their advantage is that it

is possible to achieve a large data reduction while still representing complex shapes. Im-

plicit surfaces are currently used when the desired shape of the object is already known

and researchers are also developing techniques to use implicit surfaces for surface recov-

ery of range data. Muraki [66] has shown that it is possible to do shape recovery using

Blinn’s “Blobby Model” [8], however the author admits that it is currently computational-

ly too expensive, (some of his representations took several days to complete). Although

implicit surfaces show promise due to the significant reduction in data, computational ex-

pense currently precludes their common use.
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2.2.3  Superquadrics

Superquadrics are a set of parametric shapes based on quadric surfaces and solids.

Superquadrics can be used to represent many different closed forms such as, spheres, el-

lipsoids, and cylinders although more complicated forms are possible. Pentland [74, 75],

Solina and Bajcsy [82], and more recently Terzopoulos [87] have used superquadrics in

the shape recovery process. Superquadrics have traditionally been used as a representation

to approximate image data using a variety of minimization techniques. However, the limit-

ed number of parameters used to define superquadrics allows for only a rough approxima-

tion of the data. Terzopoulos [87] uses the basic superquadric form but then tessellates the

surface into bilinear quadrilateral elements which allows him to obtain a more refined lo-

cal approximation to the data. This technique does allow for better approximation but at

the cost of increased complexity.

2.2.4  Parametric Surfaces

Deriving representations using parametric surfaces has been an ongoing research

area since the late 1950s and has been extensively studied [7, 24, 27, 77]. There are several

types of parametric surfaces that can be used for representing complex shapes. For in-

stance, Bezier surfaces have been used for almost 30 years in the automobile and aircraft

industry. There have been several systems which have been designed around parametric

surfaces, including Renault’s UNISURF system developed by Bezier in the 1960s. Anoth-

er system, Alpha_1, under development at the University of Utah, is based on non-uniform

rational B-spline (NURBs) curves and tensor-product surfaces [35].

Parametric surfaces and, in particular, NURBs surfaces, have advantages over the

other previously mentioned representations for this application. For example, NURBs can
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represent complex surfaces with a reduced number of parameters (when dealing with

NURBs surfaces the parameters are in the form of control points and possibly knot vec-

tors). In addition, the parameters take on the rough shape of the surface and themselves

form an approximation. Lastly, NURBs have the ability to have local control over the ge-

ometry. Representing complex shapes with fewer parameters allows for a significant re-

duction in data while the local control allows for representing fine detail in the object

where needed. The reduction in the number of parameters does, however, come with the

restriction that the data are usually approximated not interpolated. Data can be interpolat-

ed, but not always with a reduction in the number of parameters. If the original approxima-

tion is not satisfactory it is possible to refine the B-spline surfaces to gain additional

degrees of freedom which can be used to improve the approximation. Several algorithms

such as the Oslo algorithm [20] or the improved Oslo algorithm [59] can be used to refine

the surface.

Thingvold designed a system which uses B-splines as the underlying representa-

tion for the deformable surfaces [93]. However, the surfaces are deformed by using the

control mesh as the finite element mesh. In principle, this technique is acceptable, if the

control mesh is a good approximation to the surface or if the surface does not need to be

known exactly. For animation purposes this technique is acceptable. For shape recovery it

may not be since accuracy is very important.

2.2.5  Summary

Although the literature shows that there are several representations that can be

used for shape recovery, many representations can only represent restricted classes of ob-

jects. For instance, it is currently not possible to represent bifurcating objects using some
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surfaces without using multiple overlapping surfaces or sacrificing shape information.

Further, if multiple surfaces are used, there may be an undesirable loss in surface continu-

ity and smoothness across surface boundaries. As already mentioned, geometric primitives

have large data requirements to fully represent the object and are not smooth across the

boundaries unless a large number are used to approximate the surface. This reduces their

effectiveness for interactive viewing, data reduction, or for using the model in further anal-

ysis. A brief review of the properties of the several representations is listed in Table 2.1.

2.3  Topology Identification

Another problem that plagues the current deformable surface modeling techniques

is that a one-size-fits-all approach has been taken even though apriori information about

the object’s shape and topology may be available. For instance, if the object, such as a

tooth, which has a genus of zero, is to be recovered, then a simple sphere can be used as

the basic surface. Although the sphere can deform into a tooth it may take a very long time

for the surface to completely assume the shape of the tooth especially in area of the roots

which extend away from the main body. Further, because the roots of the tooth extend well

away from the body of the tooth the surface may not be able to fully deform, thus leaving

Table 2.1. Geometric representations and associated properties based on current
implementations.

Representation Accuracy Boundary Data Multiple Ease of Usage

Smoothness Reduction Topologies

Possible

Geometric Primitives High Yes Small Possible Poor

Implicit Surfaces Moderate Yes High Yes Moderate

Superquadrics Low No High No Excellent

Parametric Surfaces Mod./High Yes High Yes Moderate
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the roots incomplete.

One goal of this dissertation is to develop a process in which the basic topology of

the object could be identified automatically and used as a starting point for the deforma-

tion process. The hypothesis is that by identifying the object’s topology and a correspond-

ing template model, a better first approximation to the object’s final shape could be

obtained. Further, by identifying different topologies a more accurate geometric model

can be obtained. For example, a sphere can be deformed into a ‘Y’ shape just as easily as a

‘K’ shape, (Figure 2.1). However, they are two very distinct shapes: the ‘Y’ contains a bi-

furcation while the ‘K’ contains a trifurcation. By simply using a sphere to recover the

shape no more information about the ‘Y’ shape is gained than the ‘K’ shape. However, by

first identifying the topological differences in the object, different template surfaces can be

used. For instance, the ‘Y’ shape can be represented with three cylindrical templates and a

single bifurcation template (Figure 2.2).

The best way to identify the topology is via a graph of the object’s skeleton. How-

ever, obtaining the skeleton requires having a binary object from which to skeletonize,

thus segmentation, skeletonization, and graph formation techniques are all required in or-

Figure 2.1. ‘Y’ Shape represented
initially by a sphere.

Figure 2.2. Shape represented after
determining the topology.
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der to obtain the object’s topology. This three step process is shown in Figure 2.3. A simi-

lar approach has recently been described in [42].

2.3.1  Segmentation

Segmentation techniques have been of great interest over the past three decades

and are typically the first or second step in any type of image processing. These techniques

can range from very simple thresholding to complicated techniques using statistical mea-

sures. Many applications use an interactively defined threshold to segment data [19]. Un-

fortunately, thresholding can give only crude approximations when the data are noisy and

contains artifacts, which is true of medical data based on analog signals. For this research,

the segmentation of anatomical structures will be used as a rough approximation of the

anatomy since it will be used primarily to determine the topology.

As previously mentioned there are many ways to segment an image. Thresholding,

which is a global technique, is the easiest. However, after thresholding it may be necessary

3D Density data

Region Segmentation

Skeleton

Binary Data

Skeletonization

Topology

Graph Formation

Figure 2.3. Steps used to determine the object’s topology.
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to label all of the connected components as being part of a particular region. Another tech-

nique is to use an edge detector and then link the edges together to form a closed region.

Still further there are split and merge techniques which split large inhomogeneous regions

into smaller regions while merging smaller homogeneous region into larger regions. In our

particular case we are interested in finding a single well connected structure surrounded by

background within the image. A natural technique to use is region growing since it can be

used to segment a single region of interest and, as such, it will be the main focus of this re-

search.

Typically region growing techniques use a local property based on regional charac-

teristics to determined whether a voxel should be included in a region or not. On such

property would be a local threshold. A local threshold would be based the gray scale char-

acteristics for a small region surrounding the voxel under question. Using a local property

is very advantageous since the region growing will be influenced only by local changes in

the image. For instance, in many medical images the gray scale values can shift while still

maintaining the contrast between the object and background. If this object were to be seg-

mented with a global threshold only part of the object would be segmented whereas a re-

gion growing technique coupled with a local threshold could potentially segment all of the

object. Region growing techniques using a local property assume that the histogram of the

region is bimodal and that the valley between the peaks can easily be determined [2].

An interesting variation of this technique is to threshold in multidimensional space

[2]. This technique uses a vector based on multispectral data, where each component in

the vector is from each data source. The vector component with the most dominant peak in

its histogram determines the threshold value which splits the region. This procedure is

used recursively until there is no longer a dominant peak in any of the histograms. A simi-



19

lar approach is a classification technique based on a maximum likelihood criteria. Which

uses all of the vector components together, rather than just a single dominate component.

The simplest classification technique is to use a nearest-neighbor rule [2]. Classification

techniques however are only as good as the features that are used in the classifier.

Another advantage of region growing is that the search space can be similar in size

to the actual object space. For instance, in a 1283 image that contains an area of interest

that is 483 it could be computationally excessive to examine every voxel. However, if a

seed location can be identified that is within the area of interest then the region growing

technique might only examine 503 voxels rather than 1283 voxels, a reduction of over 103

voxels. It has been estimated that in most applications the area of interest compromises

only 10%-20% of the total volume thus region growing techniques can be advantageous.

2.3.2  Skeletonization

Skeletonization is the process of reducing an object into a “stick-figure” or skele-

ton. Most techniques form a skeleton by iteratively removing points (thinning) from the

boundary while usually, but not always, preserving path and surface continuity between

regions. Many times it is easier to identify components of an object by looking at features

which represent small portions of the object, rather than by looking at the complete object.

In [67], Nevatia uses the skeleton to identify limbs on biological forms (humans and ani-

mals). The skeleton provides both topological and geometrical information for the identifi-

cation process. In this particular application we are interested in using the skeleton to aid

in deriving only the topology although we could also use the geometric information to de-

cide between two forms that have the same topology but are geometrically somewhat dif-

ferent.
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The skeleton of an object can be described in terms of a medial axis transform and/

or central axis. The medial axis transform (MAT) defined by Blum [10] was one of the ear-

liest algorithms reported that produces a skeleton:

For each point X of a set R find the a circle/sphere with center at X which is tangent to
the boundary of R and does not intersect any part of it. Then the medial axis is defined
as the set of all the points X having a circle/sphere which touches the boundary at least
twice.

Direct implementation of this definition leads to several problems the most notable

being the formation of disconnected skeletons when the original object is connected.

However, it does have the advantage that the object can easily be reconstructed since a ra-

dius can be associated with each point on the axis. A less restrictive description of a skele-

ton would be the central axis which is concerned with maintaining only topology and

connectivity. The central axis can be defined as follows:

For each segment Y of the medial axis of a set R find those segments which are closed
at each end. The central axis is defined as the set of all segments Y with both ends
closed.

(The central axis can also be thought of as being a local axis of inertia.)

Although the definition of a central axis may seem more restrictive since it appears

that one must first obtain the medial axis then the central axis, it is not. For instance, every

concavity on a boundary will produce a segment which will be part of the medial axis.

These segments can easily be formed by a noisy surface and are the segments we may

wish to ignore.

Depending on the criteria used many thinning algorithms produce skeletons which

are central axes (they can also produce the medial axis). There are also cases were the me-

dial and central axis are the same, such as for an ellipse. We observe that, when working

with noisy data, the central axis is less sensitive to noise than the medial axis. This sensi-
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tivity is due to the definition of each axis type. The medial axis is formed based on having

two tangent points on the surface whereas the central axis is only concerned with topology

and connectivity. This latter property allows objects to be thinned in the presence of noise

without greatly affecting the resulting axis (invariably the central axis will shift in the

presence of noise).

In this research we are interested in topology as a source for directing the type of

template(s) used in the shape recovery process. As such, we have directed our research ef-

forts towards thinning algorithms which produce a central axis. For instance, [54], [95]

and [44], describe 3D thinning algorithms based on local connectivity and topology. All of

these algorithms iteratively use local operators to decide whether a point can be removed

from the boundary. Although connectivity and topology are used in the decision process,

they, alone, do not guarantee that a skeleton will be produced. In fact, if used alone, ob-

jects of genus zero would be reduced to a single point. Thus, each algorithm uses an end

condition such as not removing points with a single neighbor to control the thinning. As

previously mentioned, it is possible to get a medial or central axis with many thinning al-

gorithms. For instance in [44] and [95], a central axis was obtained using the criteria that

any voxel with only one neighbor (8 or 26 connected) cannot be thinned. More complicat-

ed criteria will lead to a medial axis.

For our purposes the following criteria must be met for obtaining a central axis:

1. Preserve surface and object topology.

2. Maximal thinning (single voxel thick centerline).

3. Close approximation to the true centerline of the object.

There are many techniques available that will accurately and precisely produce

some but not all of these results. In addition, one must be acutely aware of the criteria be-
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ing used to keep or remove a voxel or unacceptable results will be obtained.

2.3.3  Graph Search

Analogous to the way that the skeletonization drove the need for segmentation,

graph formation drives the need for the skeletonization. Although the results of the skele-

tonization are not graphs they are very close to being graphs. All that remains is to identify

the end and branch points which become nodes in the graph. By forming a graph the to-

pology of the object is known which allows the selection of template(s) to be used during

the shape recovery process.

The simplest method of converting the skeleton into a graph is to track the skeleton

voxel by voxel [72]. During the tracking, each voxel is identified as being either an end,

normal, or junction point. An end point is identified by having only one connected neigh-

bor whereas a normal point has two neighbors. All points with more than two neighbors

are labeled as junction points. This technique relies on having a one voxel thick skeleton

and is easily used on 2D or 3D data. The tracking is implicitly defined as a depth-first-

search (or level-order-search) and as such cycles will be found during the tracking.

Other methods that scan a 2D image line by line and track the perimeter of the

skeleton have been reported in [84]. The advantage of these methods is that they do not

need to have a one pixel wide skeleton to perform correctly. However, these methods can

only be used on 2D images and have not been shown to be extensible to 3D images. In ad-

dition, line by line scanning is not very efficient when used on images containing sparse

data.

One of the current drawbacks of tracking on a voxel by voxel basis is that a single

voxel thick skeleton is required. Previously we have noted this criterion as part of our thin-
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ning requirements. Although this criterion can be met, the labeling technique can fail at

junction points where it is possible to have a maximally thinned junction with voxels hav-

ing more than two neighbors (Figure 2.4).

2.3.4  Summary

A three stage process has been outlined for the identification of the topology of a

given object. This process relies on segmentation, thinning, and graph labeling. The litera-

ture contains many techniques that can be used for this particular application. Region

growing techniques are most applicable for the type of segmentation needed. Algorithms

proposed by Tsao and Fu and Lobgert et al., once improved, will serve as the basis for our

thinning. The final step, graph labeling, has also had some research, but currently does not

meet our criteria.

2.4  Deformation Operators

A surface can deform in response to a variety of forces. For instance, a surface

could deform when the user introduces an external force on it, or as described below, from

images. Since the focus of this research is on surfaces that use properties of physical sys-

Figure 2.4. A maximally thinned junction composed of voxels each having three
neighbors.
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tems, the deformation operators should mimic some physical properties. One such defor-

mation operator is a spring force,  where F is the force, k is the spring constant

and x is the differential length vector from the spring’s resting position. The main difficul-

ty in using this type of operator is deciding how and where to attach the spring to the sur-

face.

The parameters for different current deformation operators can be divided into two

categories, those specified by the user and those from external data. Those forces specified

by external data may originate from many sources, such as range data, monocular images,

surface data, and image data. In this particular case, the ability to create forces from high

contrast 2D and 3D medical images was of interest.

2.4.1  Current User Specified Deformations

Several types of operators might be appropriate to deform a surface. The spring de-

formation operator described above is one such operator that can be controlled by the user.

For instance, the spring would “attach” between the surface and an anchor point [93]. The

user could specify the location of both the anchor and attachment points on the surface. By

adjusting the spring constant, k, the surface could be deformed until the desired shape is

achieved. The impact of deformation on the surface from this simple system is easy to un-

derstand. The drawback is that each spring is considered independent and there may not be

any interdependence between attachment points so that the desired results may be difficult

to achieve.

The simplest user deformation would be to push or pull the surface at a particular

location (conversely a point on the surface could be fixed at a particular location while the

rest of the surface is deformed). Although there are certainly many other types of opera-

F kx=
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tors that could be developed for deformable surfaces we have chosen not to rely upon any

user intervention in the deformation process relying instead only on image based deforma-

tions.

2.4.2  Current Image Based Deformations

This research focuses on shape recovery using high contrast image data. Image

based deformations have the same effect as user based deformations but with more irregu-

lar effects on the shape. Typically the process of converting image data into potentials

(forces) is accomplished using a heuristic function [62, 88]. The heuristic function used is

usually a gradient or boundary detection operator that gives the probability of a point lying

on the boundary of a surface. It is this probability which is converted into a potential.

There are several ways in which image potentials can effect a surface. Image potentials

can act as an attractive or repulsive force on the surface in the same manner that a magnet

would. Conversely the image potentials can act as an obstacle and impede the surface from

deforming any further.

If image potentials are used as an attractive or repulsive forces there must be a way

to relate the image data to the surface. Witkin [98] introduced different ways to attach two

objects together using spring forces. The attachments could be in the form of surface-to-

surface attachments, surface-to-fixed point attachments, floating attachments, and others.

Point attachments have the disadvantage of being only able to directly influence a single

point on the surface. Although the single point on the surface will indirectly influence

many other points which will in turn effect other points, it can be a slow and cumbersome

way to deform a surface.

In his 2D symmetry-seeking surfaces, Terzopoulos [88] projects the 3D surface
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into the 2D image plane and uses the image data that is near the boundaries. For 3D image

data, the surface does not need to be projected since both the surface and image data are

3D [61]. The image data then act as a radial force field to deform the surface (the forces

are attracted to the nodes that define the surface). This type of image potential is referred

to as having a one-to-many relationship. That is, each image potential affects many loca-

tions on the surface. This method is able to achieve good results when the object being re-

covered lacks symmetry, is not initially placed in the center of the image data, and is close

to the final position. This technique can be considered to be the current best results for

comparison.

Pentland [75] follows a similar technique but rather than create a radial force field

he projects the 3D image data onto the surface using an ellipsoidal coordinate system de-

fined by the image data’s axes of inertia. The image data are then “attached” to the surface

using a virtual spring model. Since image data rarely correspond directly to a node point

the data are distributed to those nodes that surround the data. Further, more than one image

data point can be “attached” to the surface thus a one-to-many relationship is used. Pent-

land reports that he is able to achieve an accurate and stable solution when the axes of in-

ertia of the image potentials and the surface are within 15 degrees of each other.

Obviously, when the initial guess is greatly different from the final solution, this is a draw-

back. The other drawback is that for complicated objects this calculation must be done at

each iteration which can be computationally expensive. Further, as part this research, it

was found that using a similar approach for distributing the forces to the corresponding

nodes could cause the surface to deform past the true boundary.

Miller [62] takes an opposite approach using the image data that is intersected by a

surface normal located at the vertices on the initial surface. However, this can cause prob-
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lems if data is missing or ignored so that an intersection is impossible (Miller is able to

avoid this problem by using a closed boundary). Further, the normal and intersection must

be recalculated for every node at each iteration. Another drawback is that not all of the im-

age data is utilized during each iteration since a one-to-one correspondence is used.

2.4.3  Summary

Several techniques have been described for deforming surfaces. All of these tech-

niques follow physical processes such as springs or gravitational systems with one excep-

tion, Miller’s, which is not tied to any physical phenomena. However, each has specific

limitations which if not properly addressed will give undesirable results causing additional

work for the user. Some of the limitations have been addressed but at the expense of re-

quiring two deformation operators [23].
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CHAPTER 3

SURFACE REPRESENTATION

The choice of the underlying representation was an important decision for many

reasons. For instance, it is necessary to have one representation that can be used for vari-

ous topologies, have a high degree of flexibility, and can be used in the deformation pro-

cess. The decision was made to use only tensor product NURBs surfaces as the underlying

representation since many of their shape retaining approximation properties and computa-

tional algorithms are supportive of the types of techniques we needed to create. Further,

many of their properties are well understood and have been implemented for a variety of

applications. In what follows is a discussion of the properties of B-splines that were ex-

ploited for this research.

3.1  B-spline Surfaces and Finite Element Meshes

B-spline surfaces are usually 3D surfaces1 defined by three items, two knot vectors

and their associated orders define the basis function, and a matrix of coefficients, common-

ly referred to as the control mesh. The control meshes will be manipulated during the de-

formation process. As explained in Chapter 5, the finite element based deformation

1.  It is possible to have a 2D B-spline surface which would be considered a flat sheet. One such application
of a this type of surface would be in an image warping system where continuity can be maintained while the
surface is being warped.
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process assumes the nodes in the finite element mesh are on the surface. However, the B-

spline control mesh elements may not be on the surface, even though they approximate the

shape and behavior of the surface. However, Cohen [21] and Lyche [58] show that it is

possible to refine the control mesh so that it can be used as an approximation to the B-

Spline surface. As such, the mesh can be changed into a finite element mesh with very lit-

tle effort as described below. It should be noted that direct manipulation of the surface is

certainly possible [38], but becomes impractical when thousand of locations may need to

be moved.

To overcome the problem of the control mesh not lying on the surface poses, we

have developed a hierarchical process where each B-spline surface is refined so its corre-

sponding control mesh approximates the surface to within a given tolerance. Refinement

of a B-spline surface is accomplished by increasing the number of knots in the knot vector

and replacing the control mesh with a new mesh containing an additional row or column

for each knot inserted [4, 36]. Although the new knot vectors and control mesh are differ-

ent from the originals, the surface they define is the same as the original surface. Normally

when refining a B-spline surface, one is concerned with where the refinement will take

place since the user might want to increase the degrees of freedom in one area but not an-

other. For this particular research, however, the amount of refinement was also of concern

since the goal was to refine the surface until it could be approximated by the control mesh.

Both where and the level of refinement are controlled by the definition of the definition of

the B-Spline surface (i.e., the knot vectors and control mesh).

Once the B-spline surface was approximated by the control mesh, the control mesh

was converted directly into a finite element (FE), mesh. This approximation did not come

without a penalty. The goal of approximating complex objects with a minimal number of
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parameters was lost! To manage the number parameters (i.e., control points) a tolerance

between the approximated surface (i.e., control mesh) and the B-spline surface was set.

The second step in the hierarchical process was done after the FE mesh had been

deformed. Although the FE mesh was deformed we assumed that it was still an accurate

approximation to the B-spline surface. This assumption holds if there is not a large amount

of deformation which is true in our particular case. The deformed FE mesh was converted

back into a control mesh and then had a data reduction operator applied to it [60]. In a sim-

ilar manner to the refinement, the level of reduction was dictated by controlling the toler-

ance between deformed FE mesh (i.e., control mesh) and the reduced B-spline surface.

Both the refinement and reduction were previously implemented as functions as

part of the Alpha_1 modeling systems and were used as needed. This hierarchical process

gave the necessary freedom to fully recover the object’s shape while allowing the user to

dictate how many parameters would be needed to obtain satisfactory results.

3.2  Smoothness Between Surfaces

A major effort in this research was to develop a smooth deformable B-spline mod-

el composed of multiple individual surfaces. Further, we required the model to maintain

smoothness across the boundaries between surfaces as part of the deformation process,

(the surfaces could have been part of a single model or from different models). To create

and represent such models, a mechanism that would geometrically “stitch” the surfaces to-

gether had to be created. This required that the common boundary between the two surfac-

es be identical, however this does not imply that the common boundary had to have the

same curve representation. It does require that the representation with the fewest degrees

of freedom dictated how both surfaces would be manipulated.
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To obtain the necessary smoothness between the surfaces, a nonlinear constrained

optimization system was developed. This technique, described below, used the minimum

higher order continuity, known as tangent plane continuity, to obtain the required smooth-

ness. By using the minumum higher order continuity and not higher, there are more de-

grees of freedom to work with during the joining and deformation processes. Although

high order continuity was desirable, the low order continuity had sufficient smoothness to

meet our requirements.

3.2.1  Tangent Plane Continuity

For two surfaces that share a common parametric boundary curve,  and have

C(0) continuity, it is possible to modify the surfaces to achieve higher order continuity or

smoothness mathematically. For instance, if C(1) continuity is needed, then the cross

boundary tangents,  and , for each surface along the boundary curve must have

the same direction and magnitude, that is  (Figure 3.1). Higher orders of

continuity are also possible. Unfortunately, enforcing such higher orders of continuity can

be difficult and overly restrictive. The least restrictive higher order continuity above C(0) is

tangent plane, or G(1), continuity. Tangent plane continuity occurs when the cross bound-

H t( )

F ′ t( ) G ′ t( )

F ′ t( ) G ′ t( )=

igure 3.1. Two continuous surfaces, F and, G with their respective cross boundary
angents, and . Also shown is the boundary tangent, .F ′ t( ) G ′ t( ) H ′ t( )

H ′ t( )

G ′ t( )
F ′ t( )F G

H



32

ary tangents,  and , along the boundary share the same plane, that is, they may,

but need not have the same direction and magnitude as long as they and the boundary tan-

gent, , are in the same plane

Determining tangent plane continuity between two surfaces is done by examining

cosine of the angle formed by  and the normal of the tangent plane containing

and . The cosine can be formed as the triple product of the boundary tangent,

and cross boundary tangents,  and . If the triple product formed is identi-

cally zero for every value along the boundary then the surfaces are tangent plane continu-

ous. That is, define  as

. (3.1)

Then the surfaces, F and G, meet with G(1) continuity along H if and only if .

That is,

. (3.2)

We refer to  as the triple curve since it is a triple scalar product of the curves defin-

ing the tangent planes.

In [28], DeRose described the necessary and sufficient conditions for maintaining

tangent plane continuity across the boundary of two Bezier surfaces (Figure 3.2). Assum-

ing each of the tangent curves, , , and  can be written as Bezier curves,

, and , , or , DeRose’s condition uses a symbolic com-

putation of the Bezier representation of . That is,
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, (3.3)

where , , and  are the coefficients of , , and , respec-

tively. The value in the parenthesis, written shorthand as , is the m-th coefficient com-
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Figure 3.2. Difference vectors for two bi-quintic Bezier surfaces to be joined with tangent
plane continuity.
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posed of the summation of the triple products of the tangent curve coefficients, and

 are the associated Bernstein blending functions for the curve.

Since the set  forms a basis for polynomials of degree D, DeRose ob-

served that  if and only if each coefficient of  is identi-

cally zero. That is,

, (3.4)

where , , and . Checking to see if each

coefficient in equation (3.4) is zero is very easy since they are in terms of just the elements

of the control meshes.

The beauty of the coefficients in equation (3.4) is that for Bezier surfaces it is not

necessary to fully evaluate the tangents. In fact, all that is needed, is to evaluate the differ-

ence between the control points along the boundary and insure that the summation of the

determinants is zero. However, we are using B-spline surfaces, thus, we must reformulate

the condition, , using a B-spline basis instead to

. (3.5)

In equation (3.5), the coefficients, , are the analytical form of the summation of the tri-

ple products of the coefficients from the three tangent curves and  are the ap-

propriate B-spline basis sequence with knot vector, , and order, , determined from ,

, and . As in the Bezier case, the surfaces meet with tangent plane continuity if and

only if these coefficients are all zero. Also, similarly to the Bezier case, the tangent curves

Bm
D{ } m 0=

D

Bm
D{ } m 0=

D

Φ t( ) 0≡ Bm
D Qm m, , 0 … D, ,=

Qm F j
*

Gk
*

Hl
*

j k l+ + m=
∑ 0 m, 0 … D, ,= = =

F j
* nF ′

j 
  F ′ j= Gk

* nG ′

k 
  G ′k= Hl

* nH'

l 
  H ′ l=

Φ t( )

Φ t( ) QiBi τ υ, , t( )∑ 0≡=

Qi

Bi τ υ, , t( ){ }

τ υ F ′

G ′ H ′



35

can be written in the form of B-spline curves. In [65], Morken describes a technique for

the multiplication of B-spline curves to obtain the analytical formation of . However,

this a very expensive operation, O(n4). As an alternative, it is possible to have

uniquely interpolate a zero spline, which will also force the coefficients,  to be zero

thus insuring tangent plane continuity. This alternative is less complex and is easier to im-

plement, which is especially important when maintaining smoothness across multiple

boundaries.

All that remains is to determine the formulation of  to use and where to eval-

uate. For this, we return to the original formulation of the tangent plane condition given in

equation (3.2) and apply it to the two B-spline surfaces. This equation allows complete

evaluation of the three tangents at different locations along the common boundary. How-

ever, in order for a B-spline curve to uniquely interpolate the zero spline it must met the

Schoenberg-Whitney condition, [26]. This condition states that for a B-spline curve to

uniquely interpolate a series of data points then  must be evaluated at values spaced

“synchronously” along the knots. Thus, there is a very important relationship between the

knot vector and the interpolation locations. One such set of “synchronous” locations are

the node values of , which are easily calculated given the knot vector [26].

Although we are going to evaluate each of the three tangents at the nodes, they are

not the nodes of the two surfaces but the node values of the triple curve, . Assuming

that the tangents have been derived from surfaces in form of B-spline curves we can obtain

the node values for  once the order and knot vector for  has been determined.

When multiplying B-spline curves together as would be done if we were to analytically

form , there are several characteristics of B-splines dictate the properties of the re-

sulting curve [65]. First, the multiplication of B-spline curves together results in another
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Qi

Φ t( )
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B-spline curve on the order of one more than the sum of the degree of each curve, equation

(3.6).

, (3.6)

where  is the degree of each curve being multiplied and  is the order of the

new curve. Second, the continuity of the resulting curve can not be any greater than that of

any of the original curves. Third, to guarantee the continuity, the new domain must have

the same parametric range as the original domains and each knot value in the original knot

vector must be included, perhaps multiple times, in the new knot vector. It is necessary to

have the same parametric range as the original domain since the triple curve is never di-

rectly formed but is a triple product of the evaluation of the original boundary tangent

curves.

Determining the order of the new curve is straightforward, since it is dictated by

the characteristics above. However, we require the original surfaces to have a minimum of

C(2) continuity which forces the cross boundary tangent curves,  and , to also have

C(2) continuity while the boundary tangent curve, , will have C(1) continuity. This in-

sures that the triple curve, , will have a minimum of C(1) continuity. The knot vector

is formed using the original knot vector along the boundary, H, while maintaining open

end conditions. To form the knot vector, while maintaining the correct continuity, we de-

rived equation (3.7) to determine the multiplicity of each knot value in the triple curve.

, (3.7)

where  is the order of the triple curve from equation (3.6), and  is the order of
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the boundary curve H which we assume to be the B-spline curve with the lowest continu-

ity as defined by the knot value multiplicity, mH. Without a loss in generality, assume the

surfaces have same order, that is  and the same knot vectors

along the boundary with knot value multiplicity, m. This reduces equation (3.6) and equa-

tion (3.7) to:

(3.8)

and

, (3.9)

respectively.

For example, assume the mutual boundaries of two bi-quintic, n = 6, surfaces are

being smoothed, where both have knot vectors containing one internal knot value of multi-

plicity, m = 3 (C(2) continuity),

<0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.5, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 >. (3.10)

Using equation (3.8), the triple curve has order, , while using equation

(3.9) the single internal knot value has multiplicity, . This results in a triple

curve having C(1) continuity whose knot vector is,

<0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0>. (3.11)

Having computed the knot vector for the triple curve, , and its subsequent

n n= F ′ nG ′ nH ′ 1+= =
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nodes allows us to evaluate the triple curve at these nodes values. However, as previously

mentioned, forming an analytical version of the triple curve was not practical, so we eval-

uate the original tangent and cross tangent curves at the node locations of the triple curve

and take the triple product of these values according to equation (3.2). It is the values of

the triple curve that must be zero at each of its node locations to form a unique interpolant

and must be zero to insure tangent plane continuity.

At this point we diverge slightly and look at the effect of internal knots on the over-

all freedom of the system. Two surfaces of order n with no internal knots that share a com-

mon boundary have 9n degrees-of-freedom (n control points along the boundary2 and n

control points on each side of the boundary each having three degrees-of-freedom). This

results in 3(n-1) nodes in the triple curve which must be evaluated to guarantee continuity.

Thus, there are approximately three times more degrees-of-freedom than equations. Using

equation (3.8) and equation (3.9), when an internal knot value has multiplicity of one and

is added to the original boundary there will be 2n - 1 internal knots added to the knot vec-

tor of the triple curve. This translates into an additional 2n - 1 node locations for each in-

ternal knot. However, each internal knot adds only nine degrees-of-freedom. Thus, when

the knot value multiplicity of the triple curve is greater than the degrees-of-freedom add-

ed, freedom is lost. As such, it is beneficial not to add internal knots when the order is

greater than five. However, if internal knots are needed it is best to add a single knot with

multiplicity, m, rather than m knots with multiplicity one, since it is necessary to replicate

each internal knot value from the original knot vector in the knot vector of the triple curve.

2.  In some cases the boundary was held constant which although reducing the amount of freedom allowed
the optimization process to work much faster and still give acceptable results.
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3.2.2  Constrained Optimization

Having developed the necessary and sufficient conditions for tangent plane conti-

nuity a technique for enforcing these conditions is needed. The tangent plane continuity

conditions are really a set of constraints that must be met. If we couple these constraints

with an objective function we wish to minimize, we have the classic constrained optimiza-

tion problem [5, 14]. For our, problem we have chosen to use Lagrange multipliers cou-

pled with the Quasi-Newton Method developed by Davidon, Fetcher, and Powell [30].

There is a considerable amount of literature on this subject, as such, we give no details on

the implementation used, instead the reader is referred to the literature [5, 14].

Before setting up the optimization, other constraints had to be placed on the sys-

tem. For instance, for our application we will have the initial surface description is in the

form of the template models (which may or may not be deformed) as described in Section

3.3. As such, we need to insure the tangent plane continuity without changing the overall

shape of the model. This leads to another set of constraints, «change as little as possible

but meet the tangent plane continuity». These constraints are easily setup as a series of dis-

tance measurements between the original location of the control points and their final lo-

cation. Thus, the penalty for not meeting the constraint is increased as the distance the

points are moved increases.

The last step is to determine an objective function which can be minimized. The

typical function when working with surfaces is to minimize the surface curvature or the

change in change in curvature [64]. However, because we wish to change the model as lit-

tle as possible (especially after the deformation process) we have elected not to use any

objective function since we found have that it is possible for the minimization of objective

function to overshadow the constraint satisfaction when using Lagrange multipliers. It
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should also be noted that the calculation of curvature is extremely time expensive. In pre-

liminary tests, we found that a single iteration could be reduced approximately 2 orders of

magnitudes when the change in curvature calculation was removed from the optimization.

This also led to our decision not to use an explicit objective function.

3.3  Template Models

As previously discussed, one of the drawbacks of the current deformable models is

the inability to represent objects with different topologies. For instance, the vascular sys-

tem has multiple branches which cannot be modeled with only cylinders without a loss in

smoothness. Furthermore, a branching network that is interconnected, such as the vascular

system cannot be modeled using a closed form such as a sphere. With the ability to use B-

spline surfaces, and finite elements, and to smoothly join multiple surfaces together it is

possible to overcome this drawback. All that remains is to choose a series of template

models that can be used for the actual shape recovery.

Two distinct topologies can be identified in our application to the vascular system,

the vessel bifurcation (junction points) and the vessel body (points between junction

points and end points). To represent the two topologies, two template models were devel-

oped. These templates not only represent the topology but also approximate the desired fi-

nal shape. It is reasonable to have the templates approximate the final shape since in many

shape recovery operations the general shape of the object is already known to some de-

gree. For instance, if the object being recovered is the outline of the kidney, the model can

easily be spherical.

The vessel bifurcation and body topologies can be formed using a variety of repre-

sentations. However, some of these representation can lead to unsatisfactory results such
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as an uncontrollable loss in continuity or are too cumbersome to work with in a deforma-

tion process. For instance, The simplest technique for modeling a bifurcation is to join two

generalized cylinders together (Figure 3.3). However, this leads to several problems, a

cusp is formed between the two cylinders and the there is a section defined by both cylin-

ders. In addition, it is not possible to topologically differentiate between a bifurcation and

the vessel body.

3.3.1  Representation of Cylinders and Bifurcations

Another aspect of this research was to develop a parametric representation for var-

ious anatomical structures. Of particular interest was representing the vascular system to

aid in the development and analysis of vascular images and vascular anomalies. There

were two aspects to this research: the first is a representation of the vessel body and the

second is the representation of the vessel bifurcation. A parametric representation of the

vessel body is trivial since generalized cylinders are an acceptable solution. Two major is-

sues have dictated the bifurcation template modeling: the surface smoothness and shape fi-

delity. Surface smoothness is very important since many surfaces must be joined together.

Figure 3.3. Creating a bifurcation with two cylinders.
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However, shape fidelity is also very important. Shape fidelity is a very subjective term but

can be simply stated as a measure of how well behaved the surface is. This measure is typ-

ically reflected in the surface curvature or the change in surface curvature, [64]. For in-

stance, two surfaces may join with the appropriate smoothness but in order to do this the

surfaces may contain many undulations. These undulations may not be desirable if the ob-

ject being modeled should be relatively flat.

3.3.2  Partitioning Issues

Partitioning a cylinder is simple and has been successfully done as a single surface

in the form a generalized cylinder. Partitioning a bifurcation (a.k.a. branching surface) has

also been done successfully using four-, five- and six-sided surfaces known as s-patches

which are generalizations of biquadratic and bicubic surfaces [56], but not with four sided

NURBs surfaces alone. Further, standard four-sided NURBs surfaces have been used

widely by many researchers and their properties are well known [77] whereas other varia-

tions including the s-patches are not a well understood nor easy to manipulate. There are

many ways to partition a bifurcation using four-sided NURBs surfaces which we may

wish to consider, three very different to partition a bifurcation are shown in Figure 3.4. We

Figure 3.4. Alternate partitioning of a bifurcation.
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explored these and other ways to partition a bifurcation into a series of four sided NURBs

surfaces. The final partition configuration is shown in Figure 3.5. It was found that this tes-

sellation used the fewest number of surfaces had the ability to adapt to a variety of bifurca-

tion types as demonstrated in the results section. In addition, this partition formed a

natural set of isolines (Figure 3.6)

Figure 3.5. Partitioning of the bifurcation using three surfaces.

Figure 3.6. The isolines (white lines) and surface boundaries (black lines) of the
bifurcation.
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3.4  Summary

There are several surface representation that can be used to represent anatomical

shapes. However some suffer from a lack of flexibility and control. Tensor product B-

spline surfaces were chosen because of their ability to achieve a large data reduction while

representing a wide variety of shapes. It has been shown that two distinct topologies can

be represented using B-spline surfaces. The templates can be joined smoothly together to

form complex shapes that until recently could only be crudely approximated. Further it

has been demonstrated that G(1) continuity can be maintained between the surfaces while

maintaining the overall shape fidelity.
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CHAPTER 4

TOPOLOGY IDENTIFICATION

To select different template models for the deformation process, it must be possi-

ble to identify the topology of the object we wish to recover since each template model is

associated with a specific topology. As previously described, there are two main topolo-

gies found in the vascular system: bifurcations and bodies. By developing a technique that

identifies the topology we are also able to meet our goal of obtaining a first approximation

to the object’s shape. This first approximation is important since it greatly reduces the

amount of deformation required to obtain the object’s actual shape.

A three-step technique has been developed that allows the topology to be identi-

fied. These steps include segmentation, thinning, and graph labeling. Each step had several

requirements placed on it as outlined below.

The segmentation step requires that only a crude estimate be obtained. Expensive

techniques, although more accurate and precise, will not yield any added information that

can be used in the topology identification process. For the segmentation, we developed a

seeded region growing technique coupled with a local thresholding.

The thinning process has specific requirements that must be met if accurate results

are to be obtained. These requirements are: maintaining topology, maximal thinning, and

accurate centerline location. Several techniques have been reported in the literature which
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partially meet these requirements. For our method, we build upon those techniques that

meet some of the necessary criteria.

Finally, a graph labeling technique must be used to identify the topology. A simple

technique such as voxel by voxel tracking has been previously shown to produce accurate

results everywhere except at junction points. We extend this technique to correctly identify

junction points.

4.1  Seeded Region Growing with Adaptive Thresholding

To perform the segmentation for a single 3D MR image, we developed a seeded

region growing technique using an adaptive threshold. The threshold is based on local

gray scale statistics from voxels previously labeled as vessel. The comparison value incor-

porated not only the voxel being inspected but also several of its local neighbors. A similar

but more restrictive technique is described in [6] for single 2D images. The complete im-

plementation is described below using the assumption that the vessels of interest are

brighter than the surrounding background, (the complete implementation was such that the

segmentation could be performed on either bright or dark voxels).

The segmentation is done by dividing the N x N x N neighborhood surrounding an

unlabeled seed voxel into two sets: S1 contains those voxels already labeled as vessel; S2

contains the N/2 brightest voxels which are connected to the seed voxel but not labeled as

vessel (Figure 4.1). The neighborhood size, N is defined by the user and remains constant

during the segmentation. A threshold value of the mean minus M standard deviations is

calculated from the gray scale voxel values in S1, where M is a user defined number of

standard deviations typically ranging from 1.0 to 4.0. Only the mean gray scale value is

calculated for S2. A voxel is labeled as vessel if the mean value,  is greater than theS2
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threshold value, otherwise it is labeled as background, equation (4.1).

(4.1)

Each voxel is subjected to the thresholding beginning with a seed voxel selected

by the user. The region growing is done by placing the seed voxel’s 26 nearest neighbors

into a priority queue. The voxel with the highest gray scale value is retrieved from the

queue and acts as the seed voxel for the next iteration. Similarly, if that voxel is labeled as

vessel its 26 nearest neighbors not already in the queue or labeled as vessel are added to

the queue. The region growing is repeated until the queue is empty.

A similar region growing technique is implemented for segmenting a 2D X-ray

image. The only difference is that a 2D region consisting of the eight nearest neighbors is

used.

Un-evaluated Voxels

Seed Voxel

Figure 4.1. Search neighbor (N=7) for one voxel.

S1 Voxels N=7

S2 Voxels N/2 voxels

S

S

S1 M σ1×–

Label Vessel S2 S1 M σ1×–≥→

Background Otherwise→
=
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4.1.1  Multimodality Image Segmentation

In many applications image information from multiple sources is available. For in-

stance, in this research, angiographic data are available not only from 3D MR images but

also from 2D X-ray images. To combine the two modalities all of the images had to be

registered and placed into a world coordinate system. Further, the world coordinate system

is required to have a resolution greater than all of the images. This requirement ensured

that no MR voxels or X-ray pixels were skipped during the region growing process due to

having different scaling factors within each image. The registration and establishment of

the world coordinate system are based on the worked by Vandermeulen, et al. [97]. The

complete details of this implementation and the difficulties of it are outside the scope of

this dissertation and are partly discussed in [96] and [97]. However, it is sufficient to say

that registration is very difficult and the results are typically not satisfactory.

By establishing a world coordinate system which related each modality, simulta-

neous segmentation is possible. The segmentation is accomplished by conducting the re-

gion growing in the world coordinate system and projecting only the seed voxel into each

of the 2D or 3D images. This allowed the region growing technique to capture the local

gray scale characteristics in all of the images using the local image resolution. The same

thresholding criterion is used in the simultaneous segmentation as with an individual im-

age, with the exception that either the MR or X-ray image could be used to determine

whether a voxel would be labeled as vessel or background.

A restriction had to be placed on the X-ray images to prevent the segmentation

from growing into ambiguous vessel segments that could arise from the backprojection of

multiple X-ray images. This restriction required each of the pixels in X-ray images had be

labeled as vessel before the corresponding backprojected voxel in world coordinates could
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be labeled as vessel. For instance, with two X-ray images it is possible to choose a point

that when projected into one image is vessel but when projected into the other image is

background. This case would be considered to be a failure. However, failing that criterion,

it is still possible to have the voxel labeled as vessel depending on the outcome of the MR

thresholding.

To ensure that the region growing process would continue independent of which

modality is used to label the voxel as vessel it is necessary to modify the gray scale values

of those voxels or pixels labeled as background in one modality but labeled as vessel in the

other. For instance, if a voxel in the MRA image is labeled as background by its threshold-

ing criteria but labeled as vessel by the X-ray images then the MRA voxel would assume

the same gray scale value as its parent voxel. Since the parent voxel had to have been pre-

viously labeled as vessel it is presumed that if the current voxel had the same value, that it

too, would have been labeled as vessel. This modification caused vessels to grow into ar-

eas that if segmented using a single modality would have been labeled as background and

the region growing process would have stopped prematurely (Figure 4.2 and Figure 4.3).

This growing process insures that when unexamined voxels are evaluated they have a

neighborhood containing at least one voxel labeled as vessel that can be used in the thresh-

olding process.

4.2  The Central Axis

In [95], Tsao and Fu present an algorithm for 3D thinning using local transforms

to first find the medial surface, which is then thinned into a skeleton. In [44], Hafford and

Preston note that Tsao and Fu’s algorithm can be simplified by using eight subfields rather

the six primary directions (north, south, east, west, and up, down) as subfields along with
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three checking planes (north-south, east-west, and up-down) (Figure 4.4). By changing the

number of subfields from six to eight the thinning can be based on 26 neighbor or six

neighbor connectivity. The subfields are labeled in such a manner that no two neighboring

subfields have the same label. This change allows for each subfield to be thinned indepen-

dently of it neighbors and in theory, a parallel implementation.

Only those voxels on the boundary are candidates for thinning. The boundary is

defined as those voxels which are six-connected (for the 3D case, or four-connected for

the 2D case) to both the foreground and the background. All other voxels are considered to

be interior voxels and are not considered for thinning. This is not to say that interior fore-

ground voxels will never be thinned. After each of the eight subfields have been examined

CP

Current Voxel

Parent Voxel

Background Voxels Figure 4.2. Results of single modality vessel
segmentation. Note large portion of vessel is not
examined because of lack of connecting voxels.

C

P

Examined Voxels -
dark border.

Figure 4.3. Results of multiple modality vessel
segmentation. Note: the center portion of the vessel has
been filled in using the gray scale value of the parent voxel
and all voxels have been examined.

Unexamined Voxels -
fuzzy border.

CP

Voxels considered back-
ground in one modality but
vessel in the other modality.
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and the possible boundary voxels thinned a new boundary is determined which will con-

tain some of the voxels previously labeled as interior voxels.

The local transform used by Tsao and Fu to determine whether a voxel may be

thinned is described in [54]. This transform checks the surface connectivity before and af-

ter the possible removal of a voxel. If the connectivity remains the same then the voxel is

removed. However, this is a necessary but not sufficient condition and was first discussed

in [94]. To determine which points may be thinned two rules must be followed:

The surface connectivity of the object and the background must be maintained.

The number of connected components must be maintained (object connectivity).

Thus, we have found it necessary to also implement a check of the object connectivity be-

fore removing a voxel, since it is possible to preserve the surface connectivity while divid-

ing the object into two parts (Figure 4.5).

Figure 4.4. Original subfields surrounding a voxel, X, (left). The three checking planes
would be in the east-west, north-south, and up-down directions. A simplification using
eight subfields, (right).
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4.3  Graph Labeling

As previously discussed, three different labels are used to identify points in the

skeleton: end, normal, junction. At a bifurcation, it is possible to have up to three points

each having three neighbors to be labeled as a junction (Figure 4.6). However, since it is

necessary to have a one-to-one correspondence, a decision must be made as to which point

is the “true” junction. This can be solved using one of two methods. First, it is possible to

move the junction points so that after being relabeled only one point will have three neigh-

bors and be labeled as a junction (Figure 4.7 and Figure 4.8). However, this technique re-

quires having a look up table for 216 combinations for the 4x4 2D case and 264

combinations for 4x4x4 3D case! Although there are many symmetric cases which greatly

reduce these numbers it is still impractical to implement.

Figure 4.5. Incorrectly thinning of the central voxel from a 26 connected solid object
using only the surface connectivity (object has been split into two parts).

Figure 4.6. Junction with
each point having three
neighbors.

Figure 4.7. One of three
points can be moved
without breaking continuity.

Figure 4.8. After moving
the central point, only one
point is labeled as a
junction.
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We devised a much simpler method which is based on weighting the faces, edges,

and vertices of each junction voxel. For example, if a voxel shares a common face with an-

other voxel then a weighting factor of five is assigned. Similarly, voxels with a common

edge are given a weight of three, while those sharing a common vertex are given a weight

of one. The weightings are set so that at least two or three edges or vertex voxels would be

needed to outweigh a face or edge voxel, respectfully. (Other combination are possible but

at least three or more voxels are needed). By summing the weights from each shared face,

edge, and vertex together a total weight is obtained. The greater the weight, the more

strongly connected the voxel is to the other voxels. The voxel with the greatest weight is

considered to be the “true” junction whereas the others are defined as mutual points (Fig-

ure 4.9). This calculation is done using a lookup table with 26 different entries (six faces,

twelve edges, and eight vertexes).

4.3.1  Graph Search

Once the voxels are labeled, the next step is to form branches from them which be-

come the basis of a graph. A branch is composed of either two end voxels, or two junction

voxels, or a combination of both. These voxels are defined as the nodes in the graph. Be-

B

C

A

Figure 4.9. Weighting the junction voxels based on connectivity results in voxel B being
the “true” junction with voxels A and C being mutual junctions.

Weightings:

Face - 5

Edge - 3

Vertex - 1

Voxel A:

Edge - 3

Vertex - 1

Vertex - 1

Total - 5

Voxel C:

Edge - 3

Vertex - 1

Vertex - 1

Total - 5

Voxel B:

Edge - 3

Edge - 3

Vertex - 1

Total - 7
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tween these two voxels is a set of normal and/or mutual voxels, which are defined to be the

arcs in the graph. If a branch is terminated by a junction voxel then it is defined as a parent

branch with two children. The branches are constructed as part of a depth-first search (or

level-order-search) of the skeleton as defined below:

Step 1: Select a root voxel and make it the first node in a queue.

Step 2: Get the next node in the queue make it the current node and voxel.

Step 3: Get the next voxel connected to the current voxel and make it the current voxel.

Step 4: Determine if the current voxel is part of the arc, a new node, or completes a cycle.

 MIDDLE VOXEL or MUTUAL VOXEL (arc):

1. Add the voxel to the current arc.

2. Return to Step 3.

 UNEXAMINED JUNCTION VOXEL or END VOXEL (new node/end of arc):

1. Create a new child node from the current voxel.

2. Add the new child to the node queue.

3. Create an arc between the parent and child node.

4. Return to Step 2.

 EXAMINED JUNCTION VOXEL (cycle/end of arc):

1. Find the child node that leads into the junction node.

2. Update the arc between the parent and children nodes.

3. Return to Step 2.

The search begins when the user selects an end voxel as the root node. In many ap-

plication there may be one or two voxels which can be considered to be the root node. In

the particular case of a branching structure such as the vascular system there is typically

only one source vessel which in turn supplies other vessels.1

1.  This is not completely true for the cerebral vascular system. This system is a balanced system with four
supplying vessels and several communicating vessels. Communicating vessels interconnect the four supply-
ing vessels in such a manner that the circulation can be maintain in the absence of one or more of the supply-
ing vessels. The most prominent vascular feature displaying the communicating vessels is the Circle of
Willis. Topologically speaking, the Circle of Willis is a cycle.
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4.4  Summary

A three stage technique has been described that allows for the determination of the

topology of a given object. In the first stage, segmentation, a new technique using a seeded

region growing with an adaptive thresholding is developed. The user is expected to have

some knowledge for the quality (signal to noise ratio and contrast to noise ratio) of the

data in order to select the appropriate region growing size and the threshold variance.

During the second stage, skeletonization, several new improvements to previously

developed thinning algorithms are implemented. The improvements reduce the complexi-

ty of the thinning process into an iterative eight-stage process. There is no need for user in-

teraction once the process begins. The user may have to slightly modify the data to remove

holes or other minor artifacts to obtain accurate results.

Finally, in the third stage, graph formation, a technique to label the voxels accord-

ing to the number of neighbors coupled with a tree traverse in the form of a level-order-

search has been implemented. The results of this process are a graph and the identification

to the object’s topology. It is this topology that is used to select the template models in the

surface recovery process.
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CHAPTER 5

DEFORMABLE SURFACES

At this point in the shape recovery process the topology and the gross shape of the

complete object can be identified and described. All that remains is to modify the surfaces

so that they accurately represent the objects. Previously, in Section 3.1 we described a hi-

erarchical technique to convert B-spline surfaces into finite element meshes. These meshes

are then deformed using finite element techniques.

In this chapter the basic description of finite elements is given along with the sev-

eral numerical techniques that are used to solve for the deformations. This is not the first

time finite elements have been used to deform a surface. However, this is first time the no-

tion of using finite elements coupled with B-splines has been presented. In the course of

this research we made several modification to the finite element method (FEM). These

modifications, as described below, were made to reduce the complexity of solving for the

displacements.

5.1  Model Elements

A finite element mesh is typically composed of elements each having mass, damp-

ing, and stiffness. Although during the shape recovery process, the masses, damping coef-

ficients, and stiffness constants used do not have any physical correlation, the system was



57

developed so that it would resemble a “true” FEM mesh as close as possible. A basic re-

view of the components of the FEM is given.

For each element in the mesh, the equation of motion can be written as:

, (5.1)

where f is the external force vector (i.e., the image potentials or other forces), m, the ele-

ment mass matrix, c the element damping matrix, k the element stiffness matrix, and q, the

element displacement vector with its respective first and second derivatives (velocity and

acceleration vectors). This equation represents a second order differential equation of mo-

tion for the element. It is in matrix form because there is an equation of motion for each

degree-of-freedom in the element. For this application, each element was limited to three

degrees-of-freedom. The equation of motion describes the relationship between one ele-

ment and each of its neighbors. Each element has three, four, or six neighbors depending

on whether it is an external boundary, inside, or internal boundary element, respectively.

5.1.1  The Stiffness Element

In many FEM applications the stiffness of each member is modeled as a spring or

bar element. Initially a combination of both spring and bar elements were tried. On the

long axis between two nodes the member behaves like a spring having minimal stiffness,

whereas in the other two axial directions the member has a much greater stiffness. This el-

ement can be thought of as a telescoping pole that can easily lengthened or shortened, but

is very difficult to bend. This element was initially chosen because it allows for the trans-

fer of moments (coupled forces) from one member to another. However, it was found that

f ext m q̇̇ cq̇ kq+ +=
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the particular deformation forces we initially chose were difficult to use. In the end, a tra-

ditional spring element having no stiffness in the cross axis was chosen. Using this ele-

ment greatly simplified calculating each of the spring force components when the member

was arbitrarily oriented since it was necessary to calculate only one axis.

5.1.2  The Damping Element

For most applications objects do not move as if they are in a vacuum. There is al-

most always a force that resists their movement. When an object is moving slowly, this re-

sistive force is linearly proportional to the velocity of the object in the form of damping.1

Without damping, an object, once moving, would never come to rest unless an “equaliz-

ing” force is applied. Since it is not possible to include such forces, we must rely upon

damping to stop the object.

A spring-dash pot system is a simple 1D system with damping. Normally, the node

movement is only along the principal axis (Figure 5.1). As such, the damping is also along

the principal axis. However, during our deformation process, the nodes are not restricted

in their movement, each node is free to move in any direction. This unrestricted movement

requires each node to be uniformly damped in all directions. Having uniform damping has

1.  Technically, the resistive force has two terms, the first term is proportional to the velocity, while the sec-
ond term is proportional to the velocity squared. The first term is related to the viscosity of the fluid in which
the object is moving. The second is related to the turbulence generated by the object. At low speeds the vis-
cous term dominates the turbulent and as such it is ignored. For simplicity, we assume low speeds.

Figure 5.1. Simple 1D spring-dash pot system.

spring dash-pot
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two advantages over a system that is not uniformly damped. First, the damping becomes

time-invariant, which is very important when solving for the surface displacements since it

does need to be recalculated at each iteration. Second, the damping matrix is very close to

being a circulant matrix and has some unique properties which we can take advantage of,

and is discussed in Section 5.5.

5.1.3  The Mass Element

Every object is assumed to have mass, that when accelerated, creates an inertial

force. This inertial force, similarly to the damping forces, is not always necessary for the

calculation of displacements. At first this seems to be contradictory, how can something

exist without any mass? Something that is neutrally buoyant is one such example. It has no

apparent mass, it can have a force applied to it, and the movement may be damped. Thus,

it is possible to create a system with or without a mass.

A massless system may take longer to move towards its final destination but it is

less apt to overshoot it than a system containing mass. The primary system implemented

in this dissertation was massless but the system was designed so that masses could be used

for comparative studies.

5.2  Assembly of the Global Matrices

For each element in the mesh, equation (5.1) describes the motion of one element

as it relates to another element. To solve for the displacement of each element in the mesh,

the equations from each element must be combined into a single global equation. This

process is known as superposition, equation (5.2). For example, each element stiffness

matrix would be expanded to the total order of the total stiffness matrix (N = nodal ele-
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ments * degrees-of-freedom) and superimposed into one matrix.

, (5.2)

where represents a local matrix such as the stiffness matrix between two elements.

Note: The summation sign does not mean simple summation but that the local matrices are

combined using the principle of superpositioning.

Superposition results in the following equation of motion:

. (5.3)

Although equation (5.1) and equation (5.3) look the same, the underlying matrices

are different in size (2 * degrees-of-freedom vs. nodal elements * degrees-of-freedom) and

equation (5.1) represents the equation of motion for one element while equation (5.3) rep-

resents the complete system.

5.3  Solving for the Displacements

In traditional finite element analysis, every node in the mesh contains a mass. This

mass creates an inertial force that typically causes the nodes (displacements) to oscillate.

How this oscillation takes place is a function of the spring constants and the damping as

well as the mass. For instance, if the node is not damped, it will oscillate forever. If the

node is underdamped it will oscillate many times before coming to rest. Likewise, over

damping the node will never allow it to oscillate but also may take a long time for it to

come to rest. Finally, a critically damped system will not oscillate and will come to rest in

G g e( )

e 1=

N

∑=

g e( )

Fext Mq̇̇ Cq̇ Kq+ +=
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a reasonable time. It would seem that the natural course of action would be to find the crit-

ical damping for the system. This is rather easy for a single-degree-of-freedom system but

not so for a multiple-degree-of-freedom system such as a surface containing many nodes.

Since each surface being deformed is different, the mass, stiffness and damping coeffi-

cients and deformation potentials are normalized to be approximately one. By normalizing

it is easier to understand the effects of the coefficients and potentials.

Since perfect damping of a mass system can be hard to achieve, an alternative to a

massless system was explored. A massless system does not contain inertial forces and, as

such, when the force is removed the node stops moving. The obvious advantage of this

system besides removing the need for finding damping coefficients, is that the solution is

far easier to determine.

Since we are simulating a dynamic process, the system is time-varying, equation

(5.3) represents a set of N coupled second order differential equations, numerical integra-

tion techniques are needed to solve for the displacements. Although M and C are time-in-

variant, K and F are time-varying and must be updated at each time step. Many numerical

integration techniques can be used to solve equation (5.3). For the purposes of this re-

search, three distinct methods have been chosen for comparison, Euler, Runge-Kutta, and

Central Differences. Three methods, a first-order and a fourth-order Runge-Kutta and

Central Differences are used with mass systems, while a simple first order Euler Method is

used for a massless system. Details of each system are briefly described below, for com-

plete details see [25].
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5.3.1  Massless System via Euler Method

The simplest solution for the displacements is to assume a massless system and

solve using a first-order Euler method. By assuming a massless system, equation (5.3) can

be rewritten as

. (5.4)

The velocity is estimated in terms of the difference in the displacements over one time

step:

(5.5)

or in matrix notation

. (5.6)

Rewriting equation (5.4) using equation (5.6) the following is obtained

. (5.7)

The displacements  are then solved for using equation (5.7) with the results of each

iteration being used as the basis for the next iteration.

The implementation is straightforward, but is very unstable due the velocity esti-

mation. There are also other concerns. For instance, inverting the damping matrix C can be

computationally very expensive since inversion is O(n3). Fortunately this matrix is time-

invariant and needs to be inverted only once during the deformation process.

Fext Cq̇ Kq+=

q̇t

qt ∆t+ qt–

∆t
------------------------≈

q̇t
1
∆t
----- qt ∆t+ qt–( )≈

qt ∆t+ qt ∆t C 1– Fext Kq–( )⋅+≈

qt ∆t+
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5.3.2  Mass System via First-Order Runge-Kutta

The Runge-Kutta method relies upon using state variables for the system of equa-

tions. For instance, both the node displacement vector, q, and node velocity vector, , are

considered to be unknowns and can be written as a single state variable x:

. (5.8)

Rewriting equation (5.3) in terms of the acceleration:

. (5.9)

Using the identity for , equation (5.8) can be rewritten as:

, (5.10)

where O is a null matrix, I is the identity matrix.

The Runge-Kutta method assumes that the approximate solution to  can be

found from  using a Taylor series expansion. All that needs to be done is to decide on

how many terms in the expansion are needed. By using a first order solution (i.e., the first

two terms of the Taylor series are kept) the following is arrived at

. (5.11)

In a similar fashion to equation (5.7), equation (5.11) can be solved to obtain not only the

displacements but also the velocities at  with the previous solution being used the

q̇

x q
q̇

=

q̇̇ M 1– Kq M 1– Cq̇– M 1– Fext+–=

q̇

ẋ q̇
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O I

M 1–– K[ ] M 1–– C[ ]
q
q̇

O

M 1– Fext

+= =
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xt
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basis for the next iteration.

Using a Runge-Kutta method has several advantages. The method is self-starting;

does not need any additional values other than the initial values given, which is not the

case for Central Differences described in Section 5.3.4. Further, although a matrix inver-

sion is necessary, it is trivial since the mass matrix only has values along the main diago-

nal. It main disadvantage is its stability.

5.3.3  Mass System via Fourth-Order Runge-Kutta

The first-order solutions are just that, first-order, and their accuracy leaves a lot to

be desired in many circumstances. As such, we also developed a fourth-order Runge-Kutta

solution. However, we do not have easy access to the high-order derivatives needed so we

use the following the approximation from [25], so that the solution can be written in terms

of first derivatives:

,

,

,

,

, (5.12)
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where kn represents the n-th derivative and can be thought of as taking four intermediate

steps in order to get the final step. The unfortunate part of using a fourth-order solution in

terms of the first derivative is that we must evaluate the equation of motion four times to

obtain the solution at each iteration. This is computationally very expensive.

5.3.4  Mass System via Central Differences

Another approach is to use a central difference predictor. Similarly to the case for

the massless system, the velocity and acceleration can written in terms of the displace-

ments:

, (5.13)

(5.14)

or in matrix terms:

, (5.15)

. (5.16)

Substituting equation (5.15) and equation (5.16) into equation (5.3) the following is ob-

tained:

. (5.17)
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In a similar fashion to equation (5.7), equation (5.17) can be solved to obtain the displace-

ments at  with the previous two solutions being used the basis for the next iteration.

Unlike the previous two numerical approaches, equation (5.17) uses the solution at

 as well as the solution at . This requires that a starting procedure be used since the

initial values are only at . Since the first order Runge-Kutta is self-starting it is used

to start this procedure.

One complication with equation (5.17), is that a matrix composed of not only

damping terms but also the mass terms must be inverted in order to find a solution. Fortu-

nately though, this matrix is time-invariant and must be inverted only once during the de-

formation process.

5.3.5  Summary

The implementation of each of these numerical integration techniques is straight-

forward. However, with each method, a large matrix must inverted in order to solve for the

displacements. The inverse of this matrix is typically O(n3). (In the case of Runge-Kutta

the inversion of mass matrix is trivial since it contains terms only along the main diago-

nal). Although it is possible to use special cases for inverting the matrices and reduce it to

under O(n3), this inversion can become the limiting factor when hundreds of nodes are

present.

5.4  Element by Element Solution

Careful examination of the mass, damping, and stiffness matrices shows that each

of these matrices are very sparse (typically they are heavily diagonalized). Because these

matrices are very sparse many of the multiplications and additions associated with the ma-

t ∆t+

t t ∆t–

t 0=
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trix multiplication are unnecessary since their result is zero. Rather than assembling each

of the matrices it is possible to obtain the displacement solutions on an element by element

(EBE) basis, [48]. This greatly reduces the computational requirements while also reduc-

ing the amount of memory required to store the assembled matrices without any loss in ac-

curacy since the results are exactly the same as if the matrices were assembled. In [61],

they briefly discuss using this technique; however no details are given as to how to per-

form the inversion of damping matrix on an element-by-element method.

5.4.1  Massless System via Euler Method with EBE

In equation (5.7), the stiffness matrix K is assembled and a matrix multiplication

with the current displacements q is performed. This is a O(n2) operation and is very waste-

ful operation considering the stiffness matrix is sparse. Instead, the individual element

stiffness matrices can be multiplied by the displacements that are associated with that ele-

ment and then assembled into a vector. This can essentially be thought of as calculating an

internal force vector, with each component in the vector being from a different spring con-

nection equation (5.18) and equation (5.19).

(5.18)

(5.19)

5.4.2  Mass System via Runge-Kutta with EBE

A similar approach was taken for applying the EBE method to equation (5.10)

Fint kq e( )

e 1=

N

∑–=

qt ∆t+ qt ∆t C 1– Fext Fint+( )⋅+=
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which is used for both the first fourth order solutions except that not only was the stiffness

matrix done on an EBE basis but also the multiplication of the damping matrix C and the

current velocity vector . Thus the internal force is composed of not only the spring force

but is also damped equation (5.20) and equation (5.21).

(5.20)

(5.21)

5.4.3  Mass System via Central Differences with EBE

When using central differences the “internal” force becomes more complicated

equation (5.22) and equation (5.23) and can not be explained in simple physical term.

(5.22)

(5.23)

5.4.4  Summary

In performing the EBE method it was obvious that some savings could be gained

since a large matrix multiplication could be replaced by many small matrix multiplica-

tions. But what is the savings and is it always practical? Examining the savings from just

the stiffness matrix multiplication for the massless system equation (5.18), each element
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stiffness matrix is 6x6 (2 elements, 3 degrees-of-freedom) and each element has 4 neigh-

bors the multiplication becomes O(n * 4/2 * 62) (since each neighbor was counted twice

the result must be divided by 2). Since the multiplication of the assembled matrices was an

O(n2) operation when there are more than 24 elements each having 3 degrees-of-freedom,

it was computationally less expensive to use the EBE method.

5.5  Approximating the Damping Matrix

Using the EBE method, a large savings can be gained during each iteration. How-

ever, this savings is greatly overshadowed by the O(n3) matrix inversion operation. Thus,

in order to save a significant amount of computational expense, the complexity of the ma-

trix inversion must reduced. In this section, we explore the possibility of approximating

the matrix so that less complex techniques may be used.

The damping matrix used in equation (5.7) for an n x n cylindrical surface contain-

ing nodes each having 1 degree-of-freedom would be:
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. (5.24)

A similar matrix is formed when the nodes have 2 or 3 degrees-of-freedom. Close

examination of this matrix shows that it has a band-diagonal structure and is close to being

a circulant matrix. If the terms in bold, 0, -1, and 3 instead were -1, 0, and 4, respectively,

then the damping matrix would be a circulant matrix. (Interestingly enough, for a 2D peri-

odic curve the damping matrix is circulant.)

5.5.1  Circulant Matrices

Circulant matrices have some unique properties that can be taken advantage of

when performing matrix operations, which we discuss below. More rigorous and concise

details may be found in [83].

A circulant matrix is defined as a matrix with constant main, upper and lower diag-

onal terms. In addition, the off diagonal terms are periodic, that is, the upper diagonal
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terms wrap around to become terms in the lower diagonal as shown in equation (5.25).

(5.25)

A circulant matrix can be represented as a vector in the following form:

, (5.26)

where each component in the vector represents one of the diagonal terms in the circulant

matrix. It has been shown in [83], that multiplying a circulant matrix C and a vector q is

the same as convolving the vector c and q, equation (5.27).

. (5.27)

Since convolution can also be done using Fourier transforms, we can multiply the Fourier

transform of c by the Fourier transform of q, and take the inverse Fourier transform to ob-

tain the same result. Thus, the matrix multiplication can be reduced to a series of Fourier

transforms, equation (5.28)

. (5.28)

However, in equation (5.7) it is not the damping matrix that is being multiplied but

its inverse. Fortunately, since the inverse of a circulant matrix is also circulant and we can

C
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write the following:

, (5.29)

where c-1 is a vector composed of the diagonal terms from the matrix C-1. However, using

Fourier transforms it is possible to divide on an element-by-element basis the Fourier

transform of the vector q, by the Fourier transform of the vector c, equation (5.30) (Note:

this division does not take place if  is singular, instead the result is set to zero)

, (5.30)

where  is the i-th component of the forward Fourier transform of the vector x. Thus,

the inverse of the damping matrix C, is not needed. Instead, a series of Fourier transforms

can be used.

It should be noted that since the matrix is also symmetric, the discrete Fourier

transform of the vector c, results in only real components, i.e., the imaginary component is

always zero. This makes the division much simpler. Although typically computational

more efficient, the fast Fourier transform, (FFT), can not be used because zero padding

can destroy the matrix symmetry, which would result in a nonzero imaginary component.

Thus, we are restricted to using a Discrete Fourier Transform.

Using Fourier transforms makes the matrix multiplication easier but at the added

expense of needing two Fourier transforms at each iteration, the matrix C is time-invariant

so the Fourier transform of the vector c needs to be calculated only once. The discrete

Fourier transform (DFT) is O(N2), so for N degrees-of-freedom, 2 N2 operations are need-

ed. But, the matrix multiplication is also O(N2), so not much is gained. However, the com-
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putational savings lies, not at each iteration, but in not having to take the initial inverse,

which was O(N3). Instead, it has been replaced by a Fourier transform of O(N2).

Unfortunately, using Fourier transforms is not always the fastest method if more

than N iterations are needed for N degrees-of-freedom. This can be shown by comparing

the number of operations required for performing the matrix inversion and the matrix mul-

tiplication for M iterations, , with the number of operations to perform an initial

Fourier transform and two additional transforms for M iterations, . When M =

N, it takes N2 more operations to use the Fourier transforms.

5.5.2  Approximation of the Damping Matrix with a Circulant Matrix

As previously shown in equation (5.24), the damping matrix for a cylindrical sur-

face is almost, but not quite, a circulant matrix. Upon first examination, it would seem rea-

sonable to just approximate the damping matrix with a circulant matrix. However, this

results in unacceptable behavior at the nodes where corresponding approximations have

been made on the boundary of the surface. All of the interior nodes behave correctly since

no approximations are made to their behavior. This difference can be directly related to the

fact that the interior nodes have four neighbors while the border nodes have three neigh-

bors.

In experiments we performed, it was found that if only the interior nodes are used

then the above approximation is indeed a reasonable approximation. However, since the

boundary nodes are needed in the shape recovery process, it is not feasible to ignore them.

Instead, nodes are added to the boundary that are not needed in the shape recovery pro-

cess, but are used in the matrix operations. These nodes are referred to as phantom nodes

and are symbolically shown in Figure 5.2. Two types of phantom nodes are used. The first

3 MN 2+

2 M2N 2+
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type of node relies upon the periodic nature of the mesh as would be found with a cylindri-

cal mesh and duplicate other nodes. The second type of node, are on the boundary of the

mesh and are used for padding.

The use of phantoms nodes is well established in other disciplines [26]. The addi-

tion of phantom nodes can be thought of as the unwrapping of the cylinder in much the

same way periodic B-splines can be changed into floating B-splines by adding knots and

duplicating points in the control mesh. The extra knots and control points can effectively

thought of as being phantom nodes. Another example, is in the field of data fitting, where

one might fit a cubic curve to four points. Very often only the middle section interpolated

by the curve is kept since the outer sections tend to be unstable. In this case, we can think

of the outer points as being phantom nodes.

The use of phantom nodes results in the damping matrix being changed from:

Figure 5.2. Original mesh with normal nodes, N (left) and mesh with phantom nodes, P
(right).
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(5.31)

to:

. (5.32)
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Although difficult to see, the matrices are different. The latter matrix has (N+2)2

elements while the former had N2. Also, two types of nodes are now present, the original

N2 nodes plus an additional 4(N+1) phantom nodes. With the addition of phantom nodes

all of the original nodes are now interior nodes and have the exact same circulant form.

This leaves only the damping of the phantom nodes to be approximated (those values

shown in bold are the values that will be changed).

In addition, the net force vector  must be modified to

reflect the additional phantom nodes in the damping matrix. This modified vector contains

(N+2)2 values each representing a net force. If the mesh is column periodic, the phantom

node forces on the left hand side of the mesh assume the same value as the nodes on the

right hand side of the original mesh. The opposite is done for the phantom nodes on the

right hand side of the mesh and similarly for the nodes on the top and bottom if the mesh

is row periodic (Figure 5.3). This is similar to the duplication of control points when

changing a period B-spline into a floating B-spline. If the mesh is not row or column peri-

odic, the phantom node forces that remain along the boundary are assigned a value of ze-

ro. This is similar to zero-padding a common technique used when working with Fourier

Fnet{ } Fext{ } Fint{ }+=

N N N N

N N N N

N N N N

N N N N

P P P P P

P P P P P P

P

P

P

P

P

P

P

P

P

Figure 5.3. Period relationship of the phantom nodes to the original nodes.
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transforms. The corners of the phantom mesh are always assigned a value of zero. The

completed vector is given in equation (5.33).

(5.33)

The displacements can be found using the circulant part of equation (5.32) and

equation (5.33) in combination with a series of Fourier transforms.

5.5.3  Summary

The use of a circulant matrix reduces the computational operations by a factor of

N. However, the use of a circulant matrix does require the approximation of the damping

mesh. A direct substitution leads to unacceptable errors. However, with the addition of

phantom nodes along the border of the damping matrix and the resulting force vector a

substitution is possible since all of the interior nodes remain stable even though the phan-

tom nodes are not. This stable technique is further demonstrated in Chapter 7.

5.6  Summary

The approximation of the pseudo-physical deformation process of a surface is a

critical step. This research uses a standard finite element based system. It does, however,

use several approximations to the reduce the computational expense. The approximation

comes in with the introduction of using a circulant matrix which is presented for the first

time with the finite element method. Through the use of the EBE method the computation-
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al expense is reduced to O(N) while the circulant matrix inversion is reduced to O(N2).

The combination of these two factors makes the deformation process computationally re-

alistic for many applications.
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CHAPTER 6

DEFORMATION OPERATORS

In Chapter 5 all of the forces that act upon the deformable surfaces were discussed

in detail except for the external forces. A surface can deform in response to a variety of ex-

ternal forces. For instance, a surface could deform when the user introduces an external

force, or from a force based on the image potentials. Since the focus of this research is on

surfaces that are based on physical properties, the deformation operators should also be

based on physical properties. One such deformation operator is a spring force, F=kx,

where F is the force, k is the spring constant and x is the differential length vector from the

spring’s resting position. The main difficulty in using this type of operator is deciding how

and where to attach the spring to the surface.

The parameters for different deformation operators can be divided into two catego-

ries, those specified by the user and those from external data. Those forces specified by ex-

ternal data may originate from many sources, such as range data, monocular images,

surface data, and image data. In this particular case, the ability to create forces from high

contrast 2D and 3D medical images was of interest.
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6.1  Boundary Detection

The first step in determining the image potentials is to determine the strength of the

surface’s boundary. The surface boundary is defined as those points whose gradient is

maximal at the surface normal. Several approaches can be used for determining the sur-

face boundary. Most use gradient information and are in the form of edge operators [2].

An edge operator will not determine the boundary exactly but will give statistical mea-

sures indicating the probability of a particular point being on the boundary. After thresh-

olding to remove the weaker indicators, a boundary will remain that is possibly several

voxels thick. This technique, however, does not guarantee that a continuous boundary will

be found. Previous researchers have used many different types of edge operators, each of

which has advantages and disadvantages. In general, these operators can be placed into

one of three general classes, mathematical gradient operators, such as the Sobel or Lapla-

cian operators, template matching operators as the Kirsh or Nevatia-Babu templates, and

parametric edge models were one attempts to fit a function to the data. The merits of each

of these operators will not be discussed although detail descriptions of each can be found

in [2] and [79].

Experiments on vascular image data using both gradient and template operators

showed that an ideal step edge operator such as the Nevatia-Babu [68] worked very well

on 2D vascular data (Figure 6.1). The edges are well defined when compared to the back-

ground with very little response in other areas of the image. Although the optimum re-

sponse of this operator occurs with linear features it also works remarkably well with

curved features. This is because when curved features are examined on a pixel level, they

are really composed of a series of linear features.

The 2D Nevatia-Babu operator is a set of twelve 5 x 5 masks corresponding to an
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ideal edge and can be implemented to match edges at almost any angle (Figure 6.2).1 Each

of 12 masks are convolved with the image slice, with the mask giving the largest response

at each pixel being recorded in the edge data. However, it is preferable to use a 3D filter

rather than a 2D filter since the image data are 3D. We extend the 2D Nevatia-Babu filter

into a 5 x 5 x 5 3D filter by duplicating 2D mask in the Z=-2, -1, +1, +2 planes (Figure

6.2). This mask was then rotated about the Z and X axis to form a total of 64 masks, each

representing the ideal step surface. Each mask has a maximal response to an ideal step sur-

face (i.e., the response is maximal for flat surfaces). The response from the 3D filter was

greater than the 2D filter and produced fewer edges than the 2D filter (Figure 6.1).

6.2  Image Potentials

Once the strength of the boundaries have been determined there are two issues that

must be investigated. One is converting the boundary strength into a force. The other is de-

1.  The number of angles the filter is able to distinguish is limited due to round off error, in this particular
case twelve masks representing lines at 0o, 30o, 60o, 90o,..., and 330o were used.

Figure 6.1. A “typical” image slice (left) and response to a 2D Nevatia-Babu Filter (right).
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termining how the force will effect the surface. For instance in the first case, the force can

be proportional to strength of the boundary. As such, all that remains is to find the correct

proportionality coefficient. This technique has been widely used in several other surface

recovery techniques using deformable surfaces [23, 75, 87]. Determining how the image

Figure 6.2. 2D Nevatia-Babu edge masks in six directions.
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Figure 6.3. 3D Nevatia-Babu edge mask for a 0o-0o surface.
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potentials affect the surface is a much more difficult problem to solve. These issues are in-

dependent.

As previously discussed, image potentials are discrete measurements of image data

which are used to deform the surfaces. The discrete measurements are the result of using

boundary detection operators on the image which returned the likelihood that a particular

point lies on a boundary. The stronger the likelihood, the stronger the measurement and

the greater chance for the surface to deform towards or around that particular point.

One of the first types of potential explored was one that could impede the motion

of a deforming surface. The surface was deformed similarly to a balloon in a jug being ex-

panded in the presence of an internal pressure. As the balloon expands and comes into

contact with the walls its motion is stopped. In the case of a surface and image potentials,

the surface would expand until it came into contact with an image potential that could stop

it. Since a single potential would rarely stop the deformation, multiple image potentials

were combined until their sum formed a large enough potential to stop the motion. This is

similar to the idea of shoveling snow along a sidewalk, at first it is easy to move the snow

Figure 6.4. The response from a 2D Nevatia-Babu Filter (left) and a 3D Nevatia-Babu
Filter (right) for the same slice.



84

but with time more snow accumulates and it becomes harder to move the snow.

Although conceptually easy to understand, implementation became impractical.

For instance, each potential had to be treated as an individual object so that a surface/point

intersection could be detected. Further, at each intersection, a resultant force had to be cal-

culated and in the case of multiple intersections, multiple reactant forces. This became an

exercise in calculating multibody collisions and their reactions. Although certainly reason-

able, a simple image contains thousands of image potentials, each of which would have

been an independent body. Because of the large number of image potentials, this idea was

soon abandoned.

As previously discussed, the current deformable surfaces use the image potentials

as an attractive force to deform the surfaces. We explored similar techniques for our image

potentials. However, a different method for “attaching” the potentials to the surface was

developed as well as different force relationships since previously reported “attachments”

had problems with objects that were symmetric.

The first question that must be asked is what the correspondence between the sur-

face and the image data should be. The correspondence can be one-to-many, i.e., each im-

age potential would act as a force field in a way similar to that of a gravitational field. The

force would be proportional to the boundary likelihood and inversely proportional to the

distance between the surface and the point. The beauty of this approach is that it allows the

attractive forces to act in all directions. Further, the influence of each image point is not

limited to only one location on the surface, but would influence a more global area. Al-

though accurate, this would require relating each image potential to many locations on the

surface, a process which is computationally expensive. This approach is described in [87].

The disadvantage of such a system is that if the image potentials are equally spaced



85

around the surface (i.e., symmetric), the surface may not deform completely and typically

requires user intervention [23].

As previously discussed in [75], the force is projected on to the surface and then

distributed among the closest nodes since the projection of the force rarely lies on a node.

However, this method suffers from being restricted to simple objects (no concavities) and

the original surface must be oriented to within 15 degrees of its final position [75]. In our

evaluations of this technique we found that in certain circumstances distributing the forces

can cause the surface to deform past the boundaries. This unexpected result was due to the

imbalance among the equivalent forces at the nodes (Figure 6.5). In this example, the cen-

ter node gets an unneeded vertical component which will move it beyond the boundary

during the deformation process.

To increase the computational efficiency and to address the above problems with

the image potentials we require each potential to affect only one point on the surface, but

allow one point on the surface to be affected by multiple image potentials. The location on

the surface which is affected by the image potential was determined to be the surface node

located closest to the image potential. This simple technique has no physical analogue (al-

Figure 6.5. Calculation of the resultant force R for the center node using a distributed
force technique. Where R = R1 + R2 and R1 = 3.5 * D1 and R2 = 3 * D2 and D1 > D2.
The center assumes a force that moves it beyond the boundary, marked with +’s.

R

D1 D2R1

R2

+ + +

+ +
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though one could think of each potential as being an creature with one arm that reaches

out and grabs the node closest to it). As will be demonstrated in the results, this technique

solves both the symmetry problem, and the distributed force problem.

The last step is determining how to calculate the image potential force. We devel-

oped two methods. The force is proportional to the boundary strength but inversely pro-

portional to the distance squared r2, i.e., gravity, equation (6.1). The second method makes

the force proportional to the boundary strength and the distance r, i.e., a spring, equation

(6.2).

(6.1)

(6.2)

where  is the Nevatia-Babu operator applied to the image, I. Similar forces have

been described before for spring type potential in equation (6.2) but not for the gravity po-

tential where an r-2 term is usually used. We chose to use a function such as  because

it would not magnify the potential strength when r < 1.0. In addition, the function falls off

very rapidly as the distance, r, increases. For simplicity, these potentials are call direction-

al potentials (as opposed to radial potentials). Thus direct-gravity-potentials and direct-

spring-potentials are being introduced and explored.

6.3  Summary

Various techniques currently exist for establishing a relationship between the im-
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age potentials and the surface. Many of these techniques fail when the object is symmetric

or has a concave shape. However, by deviating from a system where each image potential

affects every node on the surface, and instead allowing each potential to affect a single

node, these problems have been overcome while decreasing the computational expense

and increasing the accuracy.

An interesting issue not explored is the use of image potentials derived from multi-

ple data sources. For instance, in collecting image data from multiple views, a point could

be seen in multiple views thus allowing for multiple samples for that point. Rather than

excluding the duplicate data, it could be used to enhance the deformation process using a

weighted average of each data point. This process has been successfully used in many im-

age reconstruction techniques where the projection has been multiply defined [49].
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CHAPTER 7

RESULTS

In this chapter the results of the shape recovery process are presented. The process

consists of three main areas, the topology identification, modeling seeding, and the defor-

mation process.

All of the techniques were applied to both real and synthetic data. The synthetic

data provided a test bed for evaluating each technique. The synthetic data consisted of a

3D image (1283) of three orthogonal interlocking rings as would be generated by magnetic

resonance and four 2D images (2562) which would be created by digital x-ray techniques

(Figure 7.1). The four digital x-ray views were generated at 0, 30, 80, and 145 degrees

about the y axis using a summed divergent projection. (  is normal to the XY

plane). For both images, a small amount of Gaussian noise was added to each image (sig-

nal-to-noise ratio of 20:1). To simulate image degradation, signal losses were introduced

every 45 degrees along each ring. These losses were offset by 22.5 degrees for each mo-

dality so that there would be over lap in signal in each image (i.e., for MR the signal losses

were at 0, 45, 90, etc., whereas for the X-ray the signal losses were at 22.5, 67.5, 112.5,

etc.) These images are similar in projection angles and in signal losses to real MR and X-

ray angiograms but were not meant to be a true representation of actual images since we

only wanted them for test theoretical aspects of the topology identification.

Θ 0=
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Other synthetic images were created for testing the deformation process. These

images were typically 643 and consisted of various shapes such as a potato shape with var-

ious signal-to-noise levels.

The patient data sets presented are from 3D Magnetic Resonance Angiograms

(MRA) and from 2D Digitally Subtracted Angiograms (DSA). They were obtained from a

General Electric 1.5T MRI scanner and a General Electric Advantex Bi-Plane Digital X-

ray System, respectively [41]. Different vascular imaging protocols were used to obtain as

wide of variety of data as possible. These protocols included the MOTSA [71] and 3D

Time of Flight [29] for the 3D MR angiograms whereas the X-ray angiograms were ob-

tained using a standard angiographic bi-plane technique including the injection of a angio-

graphic contrast medium [70]. The data were obtained from healthy volunteers as well as

x
128 by 128 orthogonal Maximum Intensity Projections (MIP) MR images

in the XY, XZ, and YZ planes respectively.

256 by 256 summed divergent X-ray images at 0, 30, 80, 145 degree respectively.

Figure 7.1. Wire-frame of the three interlocking rings and simulated MR and X-ray
images.

y

z
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from patient volunteers with suspected vascular abnormalities.

7.1  Topology Identification

As previously described, the topology identification consisted of a three step pro-

cess, segmentation, thinning, and graph labeling. Each of these processes relied upon the

results of the previous process. As such, it is critical that the result of the previous process

be acceptable before continuing with the next. For instance, after the segmentation step it

is possible to have holes in an otherwise solid binary object. If these holes are not elimi-

nated, then the thinning process would be confused into thinning what should have been a

solid object into a series of hollow objects. This would lead the graph labeling process to

misidentify the topology. Thus, the user has to insure the results of each process before

continuing to the next. This was done by initiating the next process and reviewing the re-

sults. If the results were unacceptable then the previous step would be reviewed for correc-

tions. This loop process was iterated upon until the results were acceptable. Usually only a

few iterations were needed.

7.1.1  Segmentation

The seeded region growing technique was first applied to synthetic data before be-

ing applied to several 3D MRA data sets. The synthetic data provided a test bed for evalu-

ating the region growing technique and the segmention of multimodality images. The only

parameters used by the region growing technique to determine vessel labels were the num-

ber of standard deviations, M, below the local gray scale mean value, , equation (4.1)

and the size of the search neighborhood, N (Figure 4.1). By adjusting these values it is

possible to fine tune the segmenting process. Typically two or three standard deviations

S1
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and a neighborhood size of seven or nine were needed to obtain satisfactory results. The

results of using various neighborhood sizes and different standard deviations on the syn-

thetic 3D MRA data are shown in Figure 7.2. In almost all of the cases the region growing

was not able to span any of the gaps between the rings.

Although in these examples, the region growing failed to fully segment the rings

the following observations were made for the first 1000 iterations. Increasing the number

of standard deviations, M, for a given neighborhood size decreased local mean gray scale

value, , and increased the standard deviation, . Whereas the current point’s mean

gray scale value, , decreased. In most cases, none of the these values changed dramati-

cally. Overall increasing the number of standard deviations decreased the threshold value

thus increasing the number of points labeled as vessel (Table 7.1). These results were ex-

pected, except that the effect was most dramatic for the smaller neighborhood sizes.

Neighborhood size of five, sev-

en, nine, and 11 with two stan-

dard deviations.

Neighborhood size of five, sev-

en, nine, and 11 with three stan-

dard deviations.

Neighborhood size of five, sev-

en, nine, and 11 with four stan-

dard deviations.

Figure 7.2. Orthogonal MIP images using the region growing on the 1283 MR image as a
function of neighborhood size and standard deviations.

S1 σ1

S2
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Varying the neighborhood size, N, had several interesting effects. Increasing the

neighborhood size caused both the local mean gray scale value, , and its standard devi-

ation, , to increase. The increase in standard deviation was directly related to having a

greater number of samples to chose from, which were typically less uniform in their gray

scale values. At the same time, increasing the neighborhood size decreased the mean gray

scale value of the current voxel. This was due to having the larger neighborhood incorpo-

rating more dark points. Overall increasing the neighborhood size resulted in the region

growing process being more conservative, thus reducing the number of points labeled as

vessel (Table 7.1). This was not strictly true for every case as a large number of points

were labeled as vessel for a neighborhood size of seven with the threshold being set at four

Table 7.1. Number of segmented point versus threshold standard deviation and
neighborhood size.

neighborhood standard segmented standard neighborhood segmented
size deviation points deviation size points

5 2 1101 2 5 1101

5 3 1120 2 7 1081

5 4 5916 2 9 1084

2 11 965

7 2 1081

7 3 2050 3 5 1120

7 4 10172 3 7 2050

3 9 1115

9 2 1084 3 11 1114

9 3 1115

9 4 1129 4 5 5916

4 7 10172

11 2 965 4 9 1129

11 3 1114 4 11 1131

11 4 1131

(a) (b)

S1

σ1
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standard deviations below the local mean gray scale value. In addition, decreasing the

neighborhood size increased the number of gaps between vessel segments. This was due

to having a combination of a high local mean gray scale value, , and a low current mean

gray scale value, .

In summary, a more conservative threshold meant that more seed points were

needed to obtain a complete segmentation. While a liberal threshold ran the risk of the re-

gion growing leaking out into the background or as described below, the jumping of the

region growing between two objects.

The initial segmentation of four registered simulated digital x-ray images using a

neighborhood of seven with two standard deviations is shown in Figure 7.3. The region

growing was able to segment approximately one-half of the image using a single seed

point. However, not only have the rings been segmented but a large plane in the interior

has been segmented as well. Also several small spurious rings have been formed. These

artifacts demonstrate the classic problem of backprojecting with a limited number of

views [49]. The large plane was due to the ring in the XZ plane being horizontal in every

view, thus it was not possible to differentiate a solid plate from a ring structure. Similarly

for the spurious rings, there are several places where the rings from the XY and YZ planes

cannot be differentiated from each other in the original images, thus the artifact.

S1

S2

Figure 7.3. Orthogonal MIP s from the 2563 reconstruction x-ray image.
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By combining the MR and X-ray images during the segmentation process we are

able to overcome the problem of segmenting only part of the ring structure since each im-

age is able to contribute to the labeling decision (i.e., if the MR failed then the X-ray was

used). Further, the MR image was used to guide the region growing and allowed it to grow

only into valid regions in the MR image. This was done by placing a global background

threshold on the image. This threshold excluded any points with low values from being

considered in the region growing.

The results of the region growing using a single seed and examining approximately

200,000 points yielded a complete segmentation of all three rings with no artifacts (Figure

7.4). The 3D image generated was 2563 in size, twice the original resolution of the MR

image. Thus, by combining the two data sets we have been able to take advantage of the

best information in each data set, the MR providing low resolution 3D information, and

the X-ray images providing high resolution 2D information. This has allowed the genera-

tion of a high resolution 3D image which was not possible using either modality alone.

Also during this process, the original images were modified, the gaps that occurred due to

signal loss have been filled in using the region growing information from the other modal-

ity. This has allowed the region growing to continue without having to reseed different re-

gions.

This technique can be fully appreciated when segmenting real images. For in-

stance, the MRA image obtained on one particular patient contained several regions of

signal loss (Figure 7.5). Segmenting the MR image alone yielded very little structure (Fig-

ure 7.6). However, similar X-ray images were complete but were not segmented because

of the many ambiguities that would arise (Figure 7.7). By combining the angiographic im-

ages from both X-ray and MR modalities we are able to segment the major portions of the
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Figure 7.4. Results of the region growing on the MR data (top), X-ray data (middle),
and the combined high resolution image (bottom).

Figure 7.5. Orthogonal MIP views of a patient MRA data set. The arrows points the areas
of signal loss.
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cerebral artery (Figure 7.8)

In another example that used a single seed point, part of the vertebral/basilar/poste-

rior arterial system located in the central portion of a 3D MRA image was segmented (Fig-

ure 7.9). Much of the vasculature was not segmented due to having considerable signal

loss in the data. This signal loss was a known characteristic of the imaging technique and

does not reflect poor segmentation ability.

Figure 7.6. Orthogonal views of the MR image after using a single seed point for
segmentation.

Figure 7.7. Bi-plane X-ray angiograms of the patient in Figure 7.5.
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Figure 7.8. Orthogonal views of the MR image after segmentation with the both bi-plane
X-ray angiograms.

Figure 7.9. Results of vessel segmentation for the central portion of the image using a
single seed point.
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One of the most difficult problems encountered with the segmentation of real data

was the balancing of the region growing to segment noisy regions and the jumping of the

region growing between two unrelated high intensity objects. For instance, the segmenta-

tion of the cerebral arterial system using a single seed point was stopped after examining

20,000 voxels (Figure 7.10). The segmentation includes not only the arterial system but

also part of the venus return. Although there are cases when shunts (connections between

two vessels) occur between the two systems this is not the case. In this example, the two

seemingly unrelated vessels are in close enough proximity to each other so that one vessel

influences the segmentation of the other (Figure 7.11). Upon inspection, it was found that

the distance between the two vessels was one to two voxels thick. This caused the segmen-

tation to rely upon the bright voxels in the vein as well as the background voxels near the

artery to determine the current mean gray scale value,  (Figure 7.12). As a result,

brighter current mean gray values for , were obtained for background voxels. This

caused the dim background voxels to be treated as though they were small local regions of

signal loss surrounded by high intensity signal, and as such, they were falsely labeled as

Figure 7.10. Segmentation of the artery showing the jump into the venous return. Note:
most of the artery is hidden behind the vein due the maximum intensity projection.
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vessel. Had the other vessel not been in close proximity, then only dim background voxels

would have been in  and the region growing would not have grown into the background

and into another vessel.

The final segmentation demonstrates the region growing on a MRA carotid data set

(Figure 7.13). In this case, only the right common carotid artery and it subsequent vessels

have been segmented. Using additional seeds it would be possible to extract the remaining

portion of the vasculature.

Although not part of this dissertation, one of the side affects of segmenting the data

Figure 7.11. Sequence of 12 axial images pre- and post segmentation showing an artery
passing close enough to the vein so that the segmentation jumps to the vein. Note the
closeness of the artery to the vein in image 6 where the segmentation jumps.
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was the ability to more easily view the vasculature without overlying vessels or the back-

ground present. This technique was especially useful for segmenting “black blood imag-

es” where the vessels of interest were dark, surrounded by light background tissue, which

was in turn surrounded by dark background air. These images are very difficult to view us-

ing traditional volume rendering techniques such as minimum intensity projections.

Current

Voxel

S1 Voxels

N=7

S2 Voxels

N/2 voxels

Un-evaluated

Voxels

C

C

igure 7.12. The growing of one object into an unrelated object due to local proximity.

Figure 7.13. Segmentation of the right common carotid artery using a single seed point.
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7.1.2  Thinning

The improved thinning operator has been implemented and applied to both syn-

thetic and real data. Using previously segmented synthetic data we have used the thinning

operator to reduce the data into a series of central axis (Figure 7.14). This central axis rep-

resents the approximate centerlines of the original object. The results from thinning two

different patient data sets are presented (Figure 7.15 and Figure 7.16).   Examining the

thinned data closely reveals that the algorithm properly thinned the binary data into one

Figure 7.14. Three orthogonal views of the thinned synthetic data.

Figure 7.15. Thinned vasculature from the segmented (binary) Figure 7.13 containing
three “twigs” as shown with the arrows.
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voxel thick centerlines. However, not all cases were as easy. Many times it was necessary

to apply a morphological operator such as dilation and/or hole operator before thinning.

These prethinning operators were necessary to ensure that the vessels were indeed solid

objects that could be thinned into meaningful centerlines. The dilation operators had to be

applied very judiciously because it was possible to grow two vessels together which could

result in false cycles being identified during the graph labeling procedure. Several holes

and cavities in the segmentation of the common carotid artery of Figure 7.13 were filled

before thinning. However, the resulting thinned data were still not perfect as described be-

low. Another problem that arose when thinning noisy data was the tendency to produce

many spurious centerlines (“twigs”) which complicated the graph formation process.

These twigs contain one to five points that did not represent a true vessel centerline but

were caused by the segmented data being noisy, i.e., containing irregular boundaries. The

process of removing twigs and unwanted centerlines was known as “pruning.” The prun-

ning was accomplished by starting at the end point of a particular branch, deleting it and

subsequent points until the parent bifurcation was found. After pruning, the remaining

Figure 7.16. Results of thinning the previously segmented (binary) data in Figure 7.9

Branch to

be pruned.
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data was rethinned so as to ensure that the centerlines were still one voxel thick.

Although difficult to differentiate, the thinned vasculature in Figure 7.15 suffers

from having three “twigs.” These twigs were automatically removed since all three con-

sisted of just an end point which was not considered to be a “true” branch. Other vascula-

ture does not demonstrate this problem (Figure 7.16). However, it suffered from a related

problem of having a small branch that was not possible to process since a definition for a

trifurcation had not been developed and had to be removed. This was accomplished using

the same pruning technique described for the spurious twigs.

7.1.3  Graph Labeling

The results of the graph labeling process produced a symbolic representation of

branching tree like structures. Cycles were identified as were all other parent-child rela-

tionships. It should be noted that only junctions in a 3x3x3 region were originally identi-

fied. This was because the junction labeling routine was based on the assumption that only

bifurcations would be found. This was a reasonable assumption since most vascular

branches are bifurcations, although as previously shown, there are instances of tri- and

quad-furcations. A second, more elaborate, junction labeling routine was implemented for

higher level branching since their junctions were in a region larger than 3x3x3. (One rea-

son the branch in Figure 7.16 was pruned was because it was part of a trifurcation which

the current modeling system was not able to handle.)

Applying the original junction labeling technique to the previously thinned data in

Figure 7.16 resulted in four junction nodes (Figure 7.17). Examination of the four junc-

tions yielded only one junction containing mutual junctions. For this case, two of the

points had the same weightings, as such one of the two was chosen arbitrarily as the junc-
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Type X Y Z Weight

main junction 149 103 103

exit point 149 102 102
exit point 149 105 104
exit point 149 103 105

junction point 149 103 103 13
junction point 149 104 103 11
junction point 149 103 104 13

main junction 129 123 121

exit point 130 123 121
exit point 128 124 122
exit point 128 124 120

junction point 129 123 121 7

main junction 135 131 145

exit point 134 131 145
exit point 136 131 146
exit point 136 132 144

junction point 135 131 145 9

main junction 151 132 152

exit point 152 132 153
exit point 151 131 151
exit point 150 133 153

junction point 151 132 152 7

Figure 7.17. Examination of the four junctions from Figure 7.16 using the original
junction labeling technique. Only one junction, (node 2) contains mutual junctions;
points with more than three neighbors. (Weightings: Face-5, Edge-3, Corner-1).

junction

mutual

middle
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tion. This information along with the other point labeling was used to create a symbolic

representation that allowed one to traverse the tree starting at the root node (0) and con-

tinuing to any of the subsequent junction nodes (1, 2, 3, and 7) and six end nodes (4, 5, 6,

8, and 9) (Figure 7.18).

The second junction labeling routine implemented used a simple region growing

technique to identify a junction. If a point had three or more neighbors, it was placed in a

queue. Points in this queue had each of their foreground neighbors examined. If the neigh-

bor had three or more neighbors it was also placed into the queue since it was a possible

junction point. Otherwise, if the neighbor has two or less neighbors, it was considered to

be a part of a branch exiting from the bifurcation and was counted as such. When all of the

points in the queue were examined, the point that had the greatest neighbor weight was

chosen as the main junction point (if there were multiple points with the greatest weight,

the point closest to the junction centroid was chosen as the main junction point) (Figure

7.19).

Applying the new labeling operator to the data in Figure 7.16, again resulted in

four junction nodes. However this time, the extra branch was not pruned, thus the third

junction in Figure 7.17 now had five possible junction points and four exit points instead

of one junction point and three exit points (Figure 7.20). Also, the new junction was la-

beled according to its neighbor weighting.

The result of the new junction labeling routine is demonstrated on the synthetic da-

ta. These data consisted of six junctions all containing a trifurcation (Figure 7.21). . Each

of the junctions contained at least three or more points which could have served as the

main junction because of their maximal weighting. Since multiple points existed, the junc-

tion point was selected to be the point closest to the junction centroid. Combining this in-
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Type X Y Z Level Node

Node 118 99 96 0 0
Child 129 123 121 1 1

Node 129 123 121 1 1
Parent 118 99 96 0 0
Child 149 103 103 2 2
Child 135 131 145 2 3

Node 149 103 103 2 0
Parent 129 123 121 1 1
Child 151 099 098 3 4
Child 164 101 110 3 5

Node 135 131 145 2 3
Parent 129 123 121 1 1
Child 109 115 147 3 6
Child 151 132 152 3 7

Node 151 99 98 3 4
Parent 149 103 103 2 2

Node 164 101 110 3 5
Parent 149 103 103 2 2

Node 109 115 147 3 6
Parent 135 131 145 2 3

Node 151 132 152 3 7
Parent 135 131 145 2 3
Child 158 121 151 4 8
Child 153 126 147 4 9

Node 158 121 151 4 8
Parent 151 132 152 3 7

Node 153 126 147 4 9
Parent 151 132 152 3 7

0

1
5

4

836
9

2

7

Figure 7.18. Symbolic representation of the vascular tree shown. The tree was labeled
according to the output of the level-order-search. Node 0 in the image was the root node.
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formation with the rest of the point labeling allowed for the construction of a graph of the

synthetic data (Figure 7.22). In this example, it is now possible to see the effects of having

cycles. Several of the nodes have multiple parents. The presence of multiple parents indi-

cated cycles in the graph. No attempt was made to identify the exact nature of the cycles,

only that at least one cycle was present per multiple parent. For Figure 7.22, there were

seven multiple parents, but eight cycles were present.

Figure 7.19. Two junctions where (a) contains a single best connected point whereas
(b) contains two, thus the junction was the point closest to the centroid.

13
13

11
11
13

11
junction

mutual

middle(a) (b)

Figure 7.20. Reexamination the third junction from Figure 7.16 using the new junction
labeling technique which allows for junctions larger than 3x3x3 region.

Type X Y Z Weight

main junction 136 131 145

exit point 135 133 143
exit point 138 133 145
exit point 134 131 145
exit point 137 132 147

junction point 136 132 144 08
junction point 136 131 145 16
junction point 137 132 145 10
junction point 135 131 145 14
junction point 136 131 146 10
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Figure 7.21. Results of the junction labelling for the synthetic data. The six main
junctions each contain four exit points, and four to six points with three or more
neighbors (mutual junction points).

 Type X Y Z Weight

main junction 129 128 33

exit point 129 126 33
exit point 131 129 33
exit point 126 129 33
exit point 129 131 33

junction point 129 127 33 13
junction point 129 128 33 13
junction point 130 128 33 11
junction point 128 129 33 13
junction point 127 129 33 13
junction point 128 130 33 11

main junction 129 33 128

exit point 129 3 3126
exit point 131 33 129
exit point 126 33 129
exit point 129 33 131

junction point 129 33 127 13
junction point 129 33 128 13
junction point 130 33 128 11
junction point 128 33 129 13
junction point 127 33 129 13
junction point 128 33 130 11

main junction 33 129 128

exit point 33 129 126
exit point 33 131 129
exit point 33 126 129
exit point 33 129 131

junction point 33 129 127 13
junction point 33 129 128 13
junction point 33 130 128 11
junction point 33 128 129 13
junction point 33 127 129 13
junction point 33 128 130 11

Type X Y Z Weight

main junction 129 223 128

exit point 129 223 126
exit point 131 223 129
exit point 126 223 129
exit point 129 223 131

junction point 129 223 127 13
junction point 129 223 128 13
junction point 130 223 128 11
junction point 128 223 129 13
junction point 127 223 129 13
junction point 128 223 130 11

main junction 223 129 129

exit point 223 127 129
exit point 223 129 127
exit point 223 131 129
exit point 223 129 131

junction point 223 128 128 09
junction point 223 129 129 13
junction point 223 130 129 13
junction point 223 129 130 13

main junction 129 129 223

exit point 127 129 223
exit point 129 127 223
exit point 131 129 223
exit point 129 131 223

junction point 128 128 223 09
junction point 129 129 223 13
junction point 130 129 223 13
junction point 129 130 223 13
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Figure 7.22. Graph labeling of the synthetic data. Cycles are present due to several
nodes having multiple parents.

Type X Y Z Level Node

Node 129 128 33 0 0
Child 223 129 129 1 1
Child 129 33 128 1 2
Child 33 129 128 1 3
Child 129 223 128 1 4

Node 223 129 129 1 1
Parent 129 128 33 0 0
Child 129 33 128 1 2
Child 129 223 128 1 4
Child 129 129 223 2 5

Node 129 33 128 1 2
Parent 129 128 33 0 0
Parent 223 129 129 1 1
Child 33 129 128 1 3
Child 129 129 223 2 5

Node 33 129 128 1 3
Parent 129 128 33 0 0
Parent 129 33 128 1 2
Child 129 223 128 1 4
Child 129 129 223 2 5

Node 129 223 128 1 4
Parent 129 128 33 0 0
Parent 223 129 129 1 1
Parent 33 129 128 1 3
Child 129 129 223 2 5

Node 129 129 223 2 5
Parent 223 129 129 1 1
Parent 129 33 128 1 2
Parent 33 129 128 1 3
Parent 129 223 128 1 4

5

4
1 3

0

2
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7.1.4  Topology Identification Discussion

The seeded region growing technique coupled with an adaptive thresholding was

able to accomplish the needed goals, segment strongly connected regions while being able

to adapt to a varying gray scale. The adaptive thresholding is a simple and computationally

inexpensive technique. The ability to vary the neighborhood size and/or number of stan-

dard deviations from the local mean gave enough flexibility to obtain usable results under

a variety of conditions. However, the conditions did vary enough that it was rarely possible

to segment the complete vasculature without using multiple seeds or having to use some

user interaction or morphological operators to insure that solid objects were segmented.

The main problems with the segmentation were the jumping of the region growing

between two distinct objects and the leaking of the segmentation into the background. Re-

quiring the region growing to be more conservative typically would prematurely stop the

segmentation, forcing the user to enter more seeds points.

Before beginning the skeletonization process one must decide on what results are

needed. If the goal is to have a representation that can be used to reconstruct the object

then a medial axis is needed. Conversely, if the goal is to determine the local topology then

a less restrictive central axis can be used. We have chosen the latter and have made im-

provements to an existing 3D thinning algorithm which provided such results. These im-

provements greatly reduce the complexity of the thinning process by employing eight

subfields instead of the original six subfields and three “checking planes.” In addition, the

algorithm is complete in that both the connectivity and number of connected components

are used to determine whether a voxel can be thinned. The algorithm was able to thin the

data into a one voxel thick central axis. The exception to this are the bifurcations where

multiple thick regions were encountered.
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The graph formation technique developed relies on the assumption that the thinned

image was no more than one voxel thick. The graph search used a simple depth-first-

search (or level-order-search) by iteratively tracking each voxel until a junction or end

voxel was found. The junction labeling relied on a region growing technique to identify all

of the points locally contained in the junction. Implicit in the labeling and graph search

was the identification of the object’s topology. Although not all of this information is cur-

rently being fully utilized (the ability to traverse the tree given any node), it does serve as

the basis for selecting the template models during the surface recovery stage.

7.2  Model Seeding

Having identified the topology of each object we are then able to select from our

“tool box” the proper template models to use. As previously described there are two prin-

cipal templates devised for this application, a vessel bifurcation and a vessel body (Figure

7.23). These surfaces, as well as all other vessel body surfaces were bi-quintic B-spline

surfaces with and without internal knots. The vessel body is composed of two individual

surfaces, whereas the bifurcation is composed of six surfaces.

Figure 7.23. Initial (predeformation) surfaces for the vessel body (composed of two
surfaces) and vessel bifurcation (composed of six surfaces).
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7.2.1  Single Template

The simplest use of the templates was for a single vessel (Figure 7.24). In this case,

the topology identification process identified a single vessel body. Using this information

we are able to produce a B-spline surfaces for it (Figure 7.25).

7.2.2  Multiple Templates

Using the results of the topogology identification from Figure 7.18 which con-

tained both vessel bodies and vessel bifurcations we are able to automatically generate the

complete vessel structure using the two templates (Figure 7.26). For each of the bifurca-

Figure 7.24. Real data (left), results of a 3D segmentation (center), and thinning/graph
labeling (right) of a section of the vertebral artery.

Figure 7.25. Results of the model seeding for a single template showing a control mesh
(left) and a rendered image (right).
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tions, the same template model was used and was able to adapt to the geometry of the dif-

ferent bifurcations. The success of this template was due to the modeling code developed

which, as previously discussed, replied on six parameters, the vessel diameter and direc-

tion vector for each vessel. Knowing only this information we are able to deduce an ap-

proximation that was acceptable for almost every case.

An other example of the model seeding is from Figure 7.15 where there are six bi-

furcations and thirteen vessel bodies (Figure 7.27). (Note: all of the vessels were given the

same diameter for easier visualization). Many times it is difficult for a physician to visual-

ize the vascular structure when viewing a single image. This example clearly shows one of

the benefits of the model seeding as it is much easier to visualize the vasculature structure

in the right image than the left image of Figure 7.27. Knowing the exact vascular structure

is very important during medical procedures where a catheter may be introduced, wrongly

Figure 7.26. Results of the model seeding for a vessel structure containing four
bifurcations and nine vessel bodies, along with two close-ups of the bifurcations.
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placing a catheter not only wastes time but can endanger the patient.

7.2.3  Modeling Seeding Discussion

In this section we have sucessfully demonstrated the ability of the model seeding.

A total of nine very different bifurcations have been successfully modeled using a single

template. The vessel bodies have been used both alone and inconjuction with the vessel bi-

furcations for form two complete models. These models can be used as a first approxima-

tion for visualizing the vascular structure or as will be demonstrated latter, in the

deformation process.

7.2.4  Tangent Plane Continuity

Originally, we proposed to combine the deformation process and the tangent plane

continuity into one process, unfortunately, both processes are computationally very expen-

sive when working with large numbers of control points and many boundaries. Instead, we

maintain the tangent plane continuity in one of two stages, after the model seeding but be-

Figure 7.27. Results of the model seeding for a complicated vascular image (right),
based upon the segmented image (left).
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fore the deformation process or after the deformation process.

For a single bifurcation and its associated parent/children vessels, tangent plane

continuity was enforced after the model seeding because the initial description of the sur-

faces in bifurcation template were not tangent plane continuous (Figure 7.28). This was by

far the easiest case, since enforcement only had to occur along six boundaries since the

other 15 boundaries were already tangent plane continuous. Unfortunately, because all of

the boundaries are dependent on each other we had to consider all of the boundaries to-

gether not just those boundaries that were not tangent plane continuous. For a single bifur-

cation, this resulted in 436 different tangent plane constraints, 242 distance constraints for

the “move as little as possible” constraint, and 726 degrees-of-freedom. Solving this type

of constraint system quickly proved to be impractical.

As a result, the first experiment was to enforce the tangent plane continuity only

along those six boundaries of the 12 surfaces that needed it. This resulted in 134 different

tangent plane constraints, 52 distance constraints, and 156 degrees-of-freedom. The con-

strained optimization was run as single process even though it could have been split into

two parallel processes since none of the boundaries were independent of each other. This

Figure 7.28. Initial bifurcation before the enforcement of tangent plane continuity. The
arrows indicate the boundaries that are not tangent plane continuous.
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proved to provide satisfactory results as the other boundaries were only slightly effected

by the optimization process (Figure 7.29). However, it took 10,000 iterations and over four

days of CPU time on a Sun Ultra Sparc to achieve these results!

The second experiment was to make the problem “parallel” by tessellating the sur-

faces into smaller patches which were C(0) continuous. These patches contained the same

tangent plane discontinuities as before but their effects were much more local. In addition,

the boundaries were held constant, which although reducing number of degrees-of-free-

dom did not impact the ability to force tangent plane continuity since the initial solution

was very close to the final solution; however this was not always the case as was seen in

enforcing the constraints postdeformation process discussed below. This resulted in two

constraint processes, each having 45 tangent plane constraints, 22 distance constraints,

and 66 degrees-of-freedom. The constrained optimization was then run as two parallel

process for 10,000 iterations. Because we localized the tangent plane discontinuities the

optimization took approximately, 45 minutes to complete, and was able to give better re-

sults than single process (Figure 7.30 and Figure 7.31).

The second stage where tangent plane continuity was enforced was after the defor-

Figure 7.29. The bifurcation after 10,000 iterations to enforce tangent plane continuity
along 6 of 21 boundaries.
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mation process since the deformation process moved points without taking into account

the geometric constraints. Two different techniques were used to enforce the tangent plane

continuity, first the boundaries were held constant as done above and the second, where

the boundaries were allowed to float. Allowing the boundaries to float increased the num-

ber of degrees-of-freedom from 66 to 102. Not allowing the boundaries to float restricted

the optimization process such that tangent plane continuity could not be met thus giving

unacceptable results (Figure 7.32). Once the boundaries were allowed to float there was

enough freedom to obtain tangent plane continuity (Figure 7.33).

Figure 7.30. Parallel enforcement of the tangent plane continuity.

Figure 7.31. Secondary tessellation using 28 patches (the original consisted of 12 patches).
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7.3  Deformation Process

Several methods for performing the deformation process were explored in this re-

search. Previously, three different techniques were described along with their iterative so-

lutions for obtaining the displacements, a massless system using Euler’s Method, and two

mass systems using Runge-Kutta and Central Differences. Each of these systems are an

approximation to the actual solution and when implemented, had their own advantages

Figure 7.32. Enforcement of the tangent plane continuity holding the boundaries constant.

Figure 7.33. Enforcement of the tangent plane continuity after allowing the boundaries to
float.
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and disadvantages. For instance, Euler’s Method and Central Differences both required a

computationally expensive matrix inversion using a singular value decomposition (SVD).

Steps were taken to minimize this computation by approximating the matrix with a circu-

lant matrix and allowing it to be inverted using discrete Fourier transforms (DFT). This

approximation, coupled with Euler’s Method, as will be demonstrated, was able to give

satisfactory results. Unfortunately, the use of circulant matrix with Central Differences

was found to be highly unstable during all phases of this research, and was withdrawn as

potential solution. However, using an SVD matrix inversion, Central Differences was

found to give satisfactory results. Thus, we present results of the deformation process us-

ing five different solution techniques, Euler’s Method with a SVD, Euler’s Method with a

DFT, Central Difference with a SVD, and First and Fourth Order Runge-Kutta.

Also presented are comparisons between the two different types of deformation

potentials developed, direct-gravity and direct-springs. As previously described, the gravi-

tational potentials were inversely proportional to the distance between surface and poten-

tial (surface boundary) whereas the springs were directly proportional. The direct (or

directional) came from allowing each potential only to affect a single node on the surface.

To compare the results of the system, the three items were used as comparisons:

number of iterations, the accuracy, and the precision. For the later two, comparisons were

made against a human segmentation of the objects. These segmented images were consid-

ered to be “truth images.” The comparisons were done by converting the resulting FEM

mesh outlining the boundary of the object into a solid object. This allowed for a voxel-by-

voxel comparison between the hand segmented image and the deformed model. Those

voxels that were different in the two images were considered to be misses. This compari-

son technique was not without fault, as there were errors due to discretizing the mesh (i.e,
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truncation/round-off errors) and the segmentation was done only once by a single observer

which was also source for errors. Thus, the missed point counts can only be construed as a

“reasonable” measure of performance.

7.3.1  Circulant Matrices

The first experiments were to evaluate the usefulness of the circulant matrices,

which had some interesting results. For instance, we have performed the deformation pro-

cess using massless system with a circulant damping matrix in both instances on a noise-

less binary image of a right cylinder (Figure 7.34). However, one matrix had phantom

nodes introduced into it while the other a circulant matrix was used directly (Figure

7.34).1 Although not fully apparent in the figure, the addition of phantom nodes had a sig-

nificant impact when comparing the accuracy. Without phantoms nodes, of the 15,282

truth points, there were 3233 (20.4%) missed points whereas there were 2433 (15.4%)

missed points when phantom nodes were introduced. (For comparison, an SVD solution

had 2869 (18.1%) missed points.) Thus, for this example, the circulant matrix with phan-

1.  Phantom nodes are never needed for the 2D case since damping matrix is circulant, as such, the 2D re-
sults with the circulant matrix are discussed in the next section.

Figure 7.34. Top and side views of a cylinder comparing the deformation process using a
circulant matrix with (b and d) and without (a and c) phantoms nodes.

(a) (b) (c) (d)



121

tom nodes gave better results than the SVD solution. As will be demonstrated with other

examples this was the norm. The only drawback is that we must use more “nodes” which

increases the computational expense.

7.3.2  2D Deformations

The simplest example of shape recovery involved the recovery of the arterial lumen

in an MR angiogram from human subject (Figure 7.35).2 An initial comparison made was

against the results of the region growing segmentation with the hand segmented image

(Figure 7.36). It was found that for the right carotid artery there were seven missed points

out of 122 truth points (5.7%), whereas the left artery had nine missed points out of 158

2.  The images are presented in a standard medical presentation. This presentation requires that the observer
look from the patient’s feet towards the head. As such, the patient’s left is seen on the right side of the imag-
es, the converse is true of the patient’s right, it is seen on the left side of the image.

Figure 7.35. 2D slice of the carotid arteries from a MR angiogram (left) and its response
to a 2D Nevatia-Babu edge filter (right).

Figure 7.36. Results of the initial region growing segmentation (left) and the hand
segmentation (right).
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truth points (5.7%). Although the region growing was meant only for obtaining a crude

segmentation these results show that in some cases very accurate results are possible

Since 2D images were used, no attempt was made to use the automatic template

seeding process (although it was possible to use the results of the segmentation to obtain a

center of mass for each artery and an approximate radius). Instead, circles, approximated

by 12 points were used as the initial guess. The standard technique in the deformation pro-

cess involved using direct gravity potentials and solving for the displacements using a

massless system (Euler’s Method) inconjuction with a circulant matrix approximation

(DFT). The results of DFT deformation took 37 and 57 iterations for the right and left ar-

teries, respectively. The results for the right artery are shown as a time series in Figure

7.37. Using the hand segmented data as the standard, there were 20 and 33 missed points

out of possible 122 and 158 truth points, (16.4% and 20.9%) respectively. Although these

results, were not as good as the segmented results, they were deemed to be acceptable.

Figure 7.37. Results of the deformation process at iteration 0, 6, 12, 18, 24, 30, and 36
using a DFT solution.

0

18 24 30

6 12

36
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For the first set of experiments, a comparison was made between the effect of the

strength of the image potentials while solving for the displacements using the five differ-

ent methods. The results of the comparisons with the truth image and the number of itera-

tions are shown in Table 7.2. Several observations can be made from these results. First, a

comparison between using a matrix inverse (SVD) and a circulant matrix (DFT) was

made. Previously, it was noted that for the 2D case, the stiffness matrix was already circu-

lant and that either method would give acceptable results.3 This held true in all cases.

However, the number of iterations was where the true savings was found. In all cases, the

3.  It should be noted that the inversion of the stiffness matrix in its original form was always ill-conditioned.
As such it was necessary to use a Singular Value Deposition (SVD) and remove the singular values. For the
circulant matrix case, the eigen values resulting from the DFT that were approximately zero (singular) were
also removed. Thus, for both cases, the inverse was an approximation.

Table 7.2. Number of iterations and missed points using the direct gravity potentials.
(The image potential strength is noted in parenthesis).

Right Artery (10X) Left  Artery (10X)

Iterations Missed points Iterations Missed points

Euler Matrix Inversion (SVD) 49 18 58 29

Euler Circulant Matrix (DFT) 37 20 36 36

Central Differences 588 21 506 491

Runge-Kutta First Order 984 19 867 361

Runge-Kutta Fourth Order 573 20 527 35

Right Artery (1X) Left Artery (5X)

Iterations Missed points Iterations Missed points

Euler Matrix Inversion (SVD) 92 27  84 34

Euler Circulant Matrix (DFT) 71 27  54 34

Central Differences 600 32 635 35

Runge-Kutta First Order 775 23 646 32

Runge-Kutta Fourth-Order 598 32 640 36

1. Unacceptable results due to the boundary being attracted to spurious potentials causing
a self intersection in the boundary.
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number of iterations for the circulant matrix was approximately the same or less, on aver-

age, 20% less.

Another observation was that, as the strength of the image potentials increased the

accuracy of the shape recovery also increased. This would seem to be a natural result since

the potentials are better able to lock onto the boundary. However, this was not always the

case, as demonstrated with the left artery when using a mass system with potentials at 10x.

In this case, the boundary was incorrectly attracted to spurious potentials due to the large

potentials which caused the boundary to move from its initial position very fast. This re-

sulted in a large inertial force which in turn caused the boundary to over shoot the true

boundary, thus allowing it to be attracted to the spurious potentials. This ultimately caused

a self-intersection to occur when the boundary retracted into its final position (Figure

7.38). Thus, when using a mass system strong image potentials are not always advanta-

geous, and in fact, it is better to have neither weak nor strong potentials as the boundary

should deform in a smooth manner. (Extreme values on either side of the spectrum could

lead to instabilities.)

The next observation is between the first and fourth-order Runge-Kutta methods.

Each method gives comparable results for each of the four different cases. Although, the

self intersection

Figure 7.38. Comparison of weak (5X) and strong (10X) potentials with a mass system
using Central-Differences.



125

forth-order solution takes fewer iterations, it takes three more evaluations than a first-order

solution but the results are not consistently better. Thus, for four times the work the results

are typically no better than the first-order solution. As such, a first-order solution may be a

reasonable technique to use when using a mass system. This is especially true when com-

paring the first-order Runge-Kutta to Central-Differences which requires an expensive ma-

trix inversion.

In the next set of experiments, a comparison between the potential types was made.

Again the four different methods for solving for the displacement were used while varying

the potential type from gravity to spring (Table 7.3). From these cases, one can clearly see

that strong image potentials were needed for obtaining good results with the springs. Since

springs are weaker with smaller displacements the closer the boundary came to the true

boundary the less influence they had. Even with strong spring potentials the accuracy was

still less than the gravity potentials. This was due to the inability of the springs to lock on

Table 7.3. A comparison between the number of iterations and missed points using the
direct gravity and the direct spring potentials. (The image potential strength is noted in
parenthesis).

Gravity (10X) Spring (20X)

Iterations Missed points Iterations Missed points

Euler Matrix Inversion (SVD) 49 18 93 26

Euler Circulant Matrix (DFT) 37 20 95 26

Central Differences 588 21 777 19

Runge-Kutta First-Order 984 19 773 19

Runge-Kutta Fourth-Order 573 20 774 19

Gravity (1X) Spring (10X)

Iterations Missed points Iterations Missed points

Euler Matrix Inversion (SVD) 92 27 105 42

Euler Circulant Matrix (DFT) 71 27 69 38

Central Differences 600 32 448 49

Runge-Kutta First-Order 775 23 449 50

Runge-Kutta Fourth-Order 598 32 447 49
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to the boundary once it came close, instead the internal stiffness took over as the dominant

force causing the boundary to move away from its true position (Figure 7.39).

From these two sets of experiments, the following conclusions are made: a mass

system is able to give results with the same accuracy as the massless system but it typical-

ly took 8 to 26 times as many iterations. Thus, the mass systems were discarded from fur-

ther use and analysis. In a similar manner, the massless system using a circulant matrix

(DFT) typically took fewer iterations than the matrix inversion (SVD). However, as previ-

ously noted, circulant matrices were only a computational advantage when doing fewer it-

erations than degrees-of-freedom.4 Unfortunately, this was not the case for the 2D images

as there were 12 nodes each with two degrees-of-freedom whereas the smallest number of

iteration was 37. On the average, 25% more work was done with a circulant matrix than

with a matrix inversion, thus it would seem reasonable to use a matrix inverse with small

meshes.

Accuracy was only one of two performance measures taken. The second, preci-

sion, was conducted using the massless system with a circulant matrix (DFT) and varying

4.  When doing more iterations than degrees-of-freedom, the amount of extra work done is (A +1)N2 where
A is the number of iterations beyond the N degrees-of-freedom (i.e., previous iterations).

Figure 7.39. Comparison of the deformation process with a DFT solution using a gravity
(left) and spring (right) type force.
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the starting location and by varying the radius of the initial guess. For these experiments,

the number of iterations and accuracy were recorded (Table 7.4). In both test cases, the po-

sition and size standard deviation, 3.2 and 2.0, respectively, are small with respect to the

average number of missed points, 20.8 and 18.6, respectively. These results demonstrate

that the deformation process was fairly precise. That is, the final results are not significant-

ly affect by the initial position nor the initial shape. However, there are always the excep-

tions such as when the initial position was such that spurious potentials influenced the

final results.

A final observation to note was the overall accuracy of the system. Previously, it

was noted that the seeded region growing segmentation technique yielded inaccuracy of

Table 7.4. A comparison of the precision versus the mesh’s initial position and size using
a DFT solution with direct gravity potentials.

position Iterations Missed points Size Iterations Missed points

+0/+0 37 20 3 33 18

+1/+0 55 18 4 33 18

+0/+1 65 21 5 31 18

+1/+1 60 23 6 37 20

-1/+0 35 15 7 55 18

+0/-1 95 17 8 25 23

-1/-1 60 21 9 29 17

+0/+2 96 27 10 25 17

+2/+0 35 24 Average (std. dev.) 25.3 18.6 (2.0)

+1/+2* 120 37

+2/+1* 161 31

+2/+2* 78 42

+0/-2 30 23

-2/+0 53 20

-1/-2 48 21

-2/-1* 90 23

-2/-2* 94 32

Average (std. dev.) 55.8 20.8 (3.2)

*Unacceptable results due to the boundary being attracted to spurious potentials.
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5% to 6% whereas the deformation process was at best 15%. This was an area of great

concern especially since the segmentation was the very first step in the whole process and

was suppose to be only a crude approximation to the final results, yet they are better than

the final result. However, one must remember that the initial segmentation is able to as-

sume any shape whereas the current deformation is based on polygonal shapes with 12

sides. The final experiment done on the 2D data was to asses the effects of the fineness

(the number of sides used to approximate a circle) on the accuracy (Table 7.5).

These results demonstrate that as the fineness increased the accuracy increased

(with one exception, were the fineness equaled 33, where there was a slight loss in accura-

cy). These results were expected since with greater fineness comes a greater ability to as-

sume arbitrary shapes. Unfortunately, the greater fineness comes with a cost, greater

computational expense. For each additional 2D point there were two extra degrees-of-free-

dom. If one assumes that the deformation process is approximately an order N3 operation,

then each additional point caused an eight fold increase in the computational expense (for

Table 7.5. A comparison of the accuracy
versus fineness using a DFT solution
with direct gravity potentials.

Fineness Iterations Missed points

6 64 51

9 50 31

12 71 27

15 39 19

18 45 17

21 46 16

24 40 15

27 50 14

30 37 12

33 37 14

36 55 11
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a 3D point there was an 27-fold increase).5 Thus, although adding more points increased

the accuracy, it was overshadowed by the computational expense.

7.3.3  3D Deformations

Using the results of the 2D deformations it was decided that for the 3D deforma-

tions that only the massless system would be used. As such, only experiments on the accu-

racy of using a singular value decomposition (SVD) matrix inverse and an approximation

with a circulant matrix and discrete Fourier transforms (DFT) were done. The reason for

this was twofold; the 2D results showed that there was not a significant gain in accuracy

with a mass system and that a mass system required far more computational expense than

a massless system.

For the 3D experiments, both synthetic and real data were used. Unlike the 2D im-

age where it was not practical to use the template selection process, for the 3D images it

was used to obtain the initial meshes.

The synthetic data were a 64x64x64 noiseless image of a right cylinder (Figure

7.40). Using a massless system with 15,828 truth points, there were 2869 (18.1%) and

2433 (15.4%) missed points for the SVD and DFT solutions, respectively. (The difference

between the two methods was 436 points or a 16.5% difference.) Examining the difference

image reviewed that the majority of the missed points were along the boundary and were

approximately one voxel thick (Figure 7.41). This error can be contributed using a coarse

mesh (12 points defining a circle) and round off error trying to discretize the mesh.

Experiments on a second synthetic image were also performed. In this case a “po-

5.  This was true when number of iterations equalled the number of degrees-of-freedom. For these examples,
the average number of degrees-of-freedom was 41 with 48 iterations.
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Figure 7.40. Synthetic data showing the data with the original mesh (left) and deformed
mesh using a massless SVD (center) and DFT (right) solution. Note that the initial mesh
is both inside and outside the cylinder.

Figure 7.41. Difference image between the synthetic data and the DFT deformed model.
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tato” shaped object, with several bulges in it was used (Figure 7.42). Performing just a

DFT solution with 15945 truth points there were 2983 (18.7%) missed points. The majori-

ty of the error was in the top and bottom portions of the mesh, where the mesh was not

able to fully deform to all of the bulges due to using a coarse mesh. After refining the

mesh, visually the refined mesh appears to have recovered the shape of the potato better

than the unrefined mesh (Figure 7.42). However, the accuracy did not improve; there were

3347 missed points (21.0%). After close examination of the difference images, we con-

cluded that the technique used to convert the mesh into a solid object worked in favor of

the unrefined mesh by making large approximations when filling the ends of the mesh.

Had we made allowances to close the mesh this might not have been a problem.

A second set of experiments was done on the potato to assess the effects of noise

on the deformation process, or more accurately, the edges which were used in the defor-

mation process. For this experiment, four synthetic images of the potato were generated,

each having a signal-to-noise ratio of 1.0, 2.0, 4.0, and 8.0. Using the initial refined mesh,

the shape of the “potato” was recovered for each of the noisy images (Figure 7.43). Mea-

surement of the error produced surprising results. Normally when noise is present, one ex-

pects an increase in the number of errors. However, in this case, the edge detector is able

to produce strong edges even in the presence of noise as such the deformation process was

unaffected as demonstrated by the consistent number of missed points (Table 7.6).

For both sets of synthetic data, the initial mesh was open ended. These ends were

always open since other surfaces could be attached to them. Even though the ends were

open, in all cases the deformation process tried to closed the ends of the mesh to form a

complete solid.

Experiments on real data consisted of also using the SVD and DFT solutions on a
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Figure 7.42. Synthetic data showing the original mesh (left), deformed mesh (center), and
a deformed refined mesh (left). Both meshes were deformed using a massless DFT
solution.

Figure 7.43. Deformation process in the presence of increasing signal to noise (left to
right). MIP of the original images (top row), MIP of the response to the 3D edge detector
(middle row), MIP of the original image with the refined mesh after deformation (bottom
row).

S/N 1 S/N 2 S/N 4 S/N 8
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32x32x48 3D MRA of a vertebral artery. Again the template selection process was used

with no user interaction except for selecting the initial seed for the region growing. The re-

sults of the deformation process are shown in Figure 7.44.

The quantitative results of the deformation process were disappointing. For in-

stance, out of a possible 1462 “truth” points the SVD and DFT solutions had 730 (49.9%)

and 731 (50.0%) missed points respectively. However, upon close examination these re-

sults are misleading when viewing the actual missed points (Figure 7.45). This image il-

lustrates characteristics typical of many objects. First, the vessel being recovered is only a

few voxels thick (diameter of approximately five voxels). Second, the majority of the

missed points are one voxel thick except where the vessel is in a tight bend. The small ves-

sel diameter was not uncommon, but trying to discretize the mesh to fit this small diameter

accurately was difficult at best due to truncation error. Because of truncation error the

quantitative results for this example are not a valid comparison. Had the vessel been larger

as in the case of the synthetic data, the measure would have been better.

Table 7.6. A comparison of the shape recovery using a
DFT solution with direct gravity potentials as a function
of noise.

S/N Iterations Missed points Percent

1 344 3237 20.30

2 222 3212 20.14

4 138 3267 20.49

8 166 3266 20.48

Binary Image 113 3347 20.99
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Figure 7.44. The initial mesh (left) and the results of a massless SVD (center) and DFT
(right) deformation process after 183 and 161 iterations, respectively.

Figure 7.45. Difference image between the truth and deformed model on a slice by slice
basis for the image and model shown in Figure 7.44
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7.3.4  Multiple 3D Deformations

In the last phase, we used the template selection process to select the surfaces

needed and then allowed those surfaces to deform. We applied this to 1283 volume CT im-

age of a solid model of a bifurcating artery (Figure 7.47). For this data set, a single vessel

bifurcation and three vessel bodies were used. Combined, this resulted in a total of 12 dif-

ferent surfaces, six being used for the bifurcation and two each for the three bodies. These

12 surfaces were combined into a single finite element mesh containing 388 nodes. To de-

form the mesh we chose to use the SVD solution. If one recalls, when less iterations than

degrees-of-freedom are done using the DFT solution is faster, which is the case here, since

there are almost 1200 degrees-of-freedom.   However, approximating the damping matrix

with a circulant matrix was not practical when using multiple surfaces since some points

had anywhere from three to six neighbors. Thus, phantom nodes would need to be added

to some nodes while reduced on others. Also, we were not able to find a numbering

scheme that would initially produce a matrix that was almost circulant. Our final result is

the complete deformation and recovery of the bifurcation (Figure 7.46).

7.3.5  Residual Forces

The analysis previously presented shows that “in general” the deformation is accu-

rate and precise. However, when recovering the shape of objects, it often useful to the pro-

vide the user the some measure of the performance of the system. Since the previous

analysis relies on having truth data, it is not a practical analysis technique. Instead, we

have developed a technique that uses the resulting potential force at each node. If the

boundary has been found accurately then all of the potential forces should be balanced

with the exception of a small amount of force used to overcome the internal forces due to
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the spring attachments between the nodes. When these external forces are not zero then

the surface has a potential to deform and is an area of questionable accuracy. This infor-

mation is most easily shown in the form of a texture mapping the on the surface (Figure

7.48). In this example, there is one area that has a large amount of residual force on it. This

instability is also observable in the comparison between the “truth” image and the de-

formed model from Figure 7.45. In this figure, slices 29 through 35 contain a region of

“missed points” that are two voxels wide. Another example of the residual forces is shown

in Figure 7.49. In this example, the deformation process was stopped before completion to

Figure 7.46. Results of the deformation process on the mesh (left) and a rendered image
of the mesh as B-spline surfaces before (center) and after (right) enforcement of the
tangent plant continuity.

Figure 7.47. CT image of a bifurcation model (left), the initial template seeding (center),
and a rendered version (right).
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Figure 7.48. A texture mapping of the residual forces from the deformed mesh in Figure
7.44. The bright areas show large residual forces.

Figure 7.49. A side (top row) and front view (bottom row) of a deformed mesh (left
column) and a texture mapping of the residual forces (right column). Note the large
residual forces due the mesh misalignment for the large vessel above the bifurcation.
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observe the residual forces, which are clearly seen in the texture mapping images due to

the mesh miss alignment.

7.4  Summary

In this chapter we have demonstrated the complete shape recovery process, topolo-

gy identification, model seeding and the deformation process. Each of these processes can

be an end into themselves, that is, each process can supply information that can be used,

not only for the next process, but for other purposes. For instance, the model seeding can

be used without the topology identification to generate a vascular network of any topology

if supplied with a series of centerlines and radii. Similarly, one may wish to visualize the

original data without the background, thus only the segmentation needs to be performed.

However, the greatest benefit is to use all of the processes together.

We have also included a preliminary analysis of our system using a known stan-

dard. Included in this analysis is not only analysis of the accuracy and precision of the sys-

tem but of also an analysis of the relative speeds using different approximation schemes

such as the use of a circulant matrix approximation and various numerical integration

schemes. More importantly, we have provided a mechanism in which it is possible for the

user to view residual forces during the deformation process on all types of shape recovery.

This is information can be vital in determining whether the results are stable enough to be

used.
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CHAPTER 8

CONCLUSION

Shape recovery is an important part of computer vision and computer graphics.

Recovering individual voxels from image data is important, but provides limited utility ex-

cept for viewing purposes. Being able to recover the shape and represent it in a parametric

form provides greater utility. A parametric representation can approximate the shape and

still have the flexibility for other processing. Other researchers have shown it is possible to

recover shape using nonparametric representations, but these representations fall short be-

cause of their complexity, data storage and/or postprocessing requirements.

The research conducted developed application specific deformable models using a

B-spline representation, more specifically, NURBS, for shape recovery in 2D and 3D im-

ages. The research explored use of topologically different template models and the ability

to combine different template models to recover the shape without a loss in smoothness.

For this, we developed two distinct topologies, a generalized cylinder and a bifurcation.

Further, we have introduced a technique to maintain the tangent plane continuity using

only tensor-product NURBS with a constrained optimization process.

The key part of using topologically different template models was the ability to au-

tomatically identify the object’s topology and then select the proper template. For this, we

have developed a three-stage process, segmentation, thinning, and graph labeling. This
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process identifies the object’s topology while supplying basic geometric information such

as the radii and axis length for cylindrical objects which was our primary interest. In addi-

tion, we have developed new set of deformation operators to deform the surfaces using im-

age data. Finally, we have introduced the notion of using phantom nodes during the

deformation process. These phantom nodes have allowed us to use Fourier transforms in

solving for the displacements in several methods, thus gaining a substantial computational

saving in many cases.

Our major application of this research has been with medical images, more specif-

ically to 2D and 3D angiograms of the human cerebral vascular system. Our research has

shown that we are able to recover the shape of a vascular system with a reasonable degree

of accuracy. However, the vascular system is complex enough that in order to obtain a suf-

ficient level of detail in the deformation process a large body of compute resources must

be available. From a clinical viewpoint, physicians who are seeking to obtain information

from the images have found our results to be of great interest. We have succeeded in devel-

oping a technique that not only recovers the general shape of the vascular system, i.e., typ-

ically approximated by circular cross-section, but also recovers the true shape of the vessel

lumen wall using a deforming parametric representation. This may be of significant clini-

cal importance because the disease process nearly always results in noncircular vessel

cross-sections. Further, this shape information can now be used to study the hydrodynamic

characteristics of the blood using the true vessel shape information which has not been

possible before. Still further, another application is to use the shape information to obtain

geometric characteristics such as the surface curvature which may also yield information

about the disease process.

In conclusion, this research provides the theory so researchers and physicians can
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recover the shape of the major anatomical structures in the vascular and other organ sys-

tems. This recovery and display process can act as an aid for visualization, surgical plan-

ning, and theoretical modeling. Furthermore, this approach lays the basic foundation for

other shape recovery processes using topologically different deformable B-spline surfaces.
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