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Outline

= Simple moment-based probabilities
(Markov and Chebyshev inequalities)

= Distribution function-based arguments
(Glivenko-Cantelli, Barry-Esseen)

= Moment generating function-based bounds
(Chernoff bound)

= Bounded and sub-Gaussian random variables
(Hoeffding inequality)

= Martingale models
(Azuma inequality)

= Functions of bounded differences
(McDiarmid’s inequality)

= High-probability distribution bounds
(Dvoretsky-Kiefer-Wolfowitz)
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Motivation for concentration

Let X be a scalar (real) random variable. In practice we want to know things like:

Pr(X > t), Pr(|IX —EX| > t).

E.g’- X =1l #8- = X; I

1¢ 0]
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Motivation for concentration

Let X be a scalar (real) random variable. In practice we want to know things like:
Pr(X > t), Pr(|IX —EX| > t).
These probabilities are computable if we can analytically manipulate the distribution function:
Pr(X>1t)=1- Fx(t), Pr((IX —EX|>t) = Fx(EX —t) + 1 — Fx(EX + t*).

The problem is that we often don't have access to the exact distribution.
(E.g., X is a finite iid sum.)

Fx(é): /)r()(ﬁt)
[- Felt)= Py (X7$)
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Motivation for concentration

Let X be a scalar (real) random variable. In practice we want to know things like:
Pr(X > t), Pr(|IX —EX| > t).
These probabilities are computable if we can analytically manipulate the distribution function:
Pr(X>1t)=1- Fx(t), Pr((IX —EX|>t) = Fx(EX —t) + 1 — Fx(EX + t*).

The problem is that we often don't have access to the exact distribution.
(E.g., X is a finite iid sum.)

However, it generally is feasible to compute the first few moments of X.

The task of estimating probabilities from moments is the study of concentration (of X).
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Markov and Chebyshev inequalities

We've already seen one of the simplest examples of concentration inequalities, Markov's
inequality:

EX 1
X=>20wpl,t>0 = Pr(X>t)<T or Pr(X}tIEX)<?

This latter form is only useful if t > 1.

Mar by i’”‘élW)/')y i< Zw'rf ety :
PrHY’IE)(I?‘L,)g? Mgl

L
Pr(l)/'"f)"?t)'—' Pf{,y’/z,:)({z.? +2) £ E,XPQ/EUZ: Vor(X)
Y
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Markov and Chebyshev inequalities

We've already seen one of the simplest examples of concentration inequalities, Markov's
inequality:

X=20wpl,t>0 =— Pr(X>t)<— or Pr(X>tEX)<

EX 1
t t

This latter form is only useful if t > 1.

Applying Markov's inequality to Y = (X — EX)? > 0 yields Chebyshev's inequality:

EY  VarX VarX 1
5= — Pr(|X —EX|>1t) < 3 or Pr(\X—EX]>t0)<t—2

Pr(Y > t?) <

where o = StDev(X), and again the latter form is useful only when t > 1.

These are the simplest bounds for estimating probabilities for moments.
(They're also the most general: almost nothing is assumed about X.)
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Sharpness of Markov and Chebyshev inequalities
Without any further assumptions, the Markov and Chebyshev inequalities cannot be improved.

Example 1 (Markov inequality sharpness). Let Xs be a random variable parameterized by any
s > 0, with mass function px,(0) =1 —1/s, and px (s) = 1/s.

ll:)/‘: 0 (/"'k)a-sf's = 1

PiLIL 120 S Hut a RV S 1. /%.r/wx /'4/7(/4//7,
1§ Jlm,o for Hipr t )
$=¢
Plx,24)=
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Sometimes we expect better

If X;, i € N are centered and iid, then Z,, := % Z X; should approach %N(O,VarX).

ie[n]

What we expect, is that with 02 = VarX, then if Z ~ N'(0, 02), we have,

1
Pr(Z, > to)" ~"Pr <TZ > ta) = Pr(Z = to+/n) =1 — Fz(to/n)
n
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Sometimes we expect better

If X;, i € N are centered and iid, then Z,, := % Z X; should approach %N(O,VarX).
ie[n]

What we expect, is that with 02 = VarX, then if Z ~ N'(0, 02), we have,

PHZy > to)" ~ 7 (% ta) _ Pr(Z > tor/n) = 1 — Fy(tor/n)

By comparison, Chebyshev's inequality yields,

VarZ, 1
o2t2  pt2’

Pr(Z, > to) < Pr(|Z,] = to) <

The point: e " « ? when n and/or t are large.
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Can the CLT help?

The only sketchy “~" we employed is

1
Pr(Zn 2 tO’) “ ”Pr (%Z > tO') ,

which appeals to the CLT argument that 4/nZ, is an n-asymptotic normal random variable Z.

We hope that a “quantitative” CLT can make this precise.
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Can the CLT help?

The only sketchy “~" we employed is

1
Pr(Zn 2 tO’) “ ”Pr (%Z > tO') ,

which appeals to the CLT argument that 4/nZ, is an n-asymptotic normal random variable Z.
We hope that a “quantitative” CLT can make this precise.

The question about the value of Pr(Z, > t) is equivalent to understanding how well the
distribution functions converge:

Fo(t) :==Pr(Z, < t) F(t) := Pr (% < t)

Theorem (Glivenko-Cantelli). With the above setup, then with probability 1:

nILmOO |F — Falltow) = nImeigEE |F(t) — Fo(t)| = 0.

We therefore expect our idea about working through distribution functions is possible.
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Glivenko-Cantelli, visualized

1 %
— True CDF F(x)
--- Fs(x) :
0.8 | - - - ----
— F15([L’) !
— F50(£l’,‘)
0.6 | ---
m 1
D |
o .
0.4 | :
0.2 |
0 : : : : ! >
0 0.5 0.6 0.7 0.8 0.9

xr
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More precise convergence

Something stronger than Glivenko-Cantelli is true.

Theorem (Barry-Esseen inequality). Let X have finite second and third moments, and let
{Xi}ien be centered and iid with X1 ~ X, and Var(X1) = 0® > 0. Let

and let Z ~ N(0,1). Then:

The constant C is absolute.
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More precise convergence

Something stronger than Glivenko-Cantelli is true.

Theorem (Barry-Esseen inequality). Let X have finite second and third moments, and let
{Xi}ien be centered and iid with X1 ~ X, and Var(X1) = 0® > 0. Let

and let Z ~ N(0,1). Then:

The constant C is absolute.

It turns out this is bad for us: This rate of convergence is in general sharp.
If we can only replace F /7 /, with Fz with a 1/4/n mistake, then this will reflect in probability

estimates. (1/4/n > e™")
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Higher order moments
We seem to have concluded that for general X, a deviation-from-mean probability for %Zie[n] Xi
can't be derived, at least not using the arguments we've explored.

Goal: If Xj ~ X for i € N are iid, we seek to bound Pr(Z, > t).
(AS before: Zn = %ZIE[H] X,)

[Pmbabln \ A centered)
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Higher order moments

We seem to have concluded that for general X, a deviation-from-mean probability for %Zie[n] Xi
can't be derived, at least not using the arguments we've explored.

Goal: If Xj ~ X for i € N are iid, we seek to bound Pr(Z, > t).
(AS before: Zn = %ZIE[H] X,)

We can try to see if this is possible in a simpler case going back to Markov's inequality:

Let's assume X is centered: [EX = 0. Using the same idea as for Chebyshev's inequality, for any
integer k € IN:

Pr(|Z,] = t) = Pr(|Z,]?F = %) < E'i’;{‘zk_
Qe _ o B
[E(Zn] [E Zh :Egz X'.)2k

16 (7
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Higher order moments

We seem to have concluded that for general X, a deviation-from-mean probability for %Zie[n] Xi
can't be derived, at least not using the arguments we've explored.

Goal: If Xj ~ X for i € N are iid, we seek to bound Pr(Z, > t).
(AS before: Zn = %ZIE[I‘I] X,)

We can try to see if this is possible in a simpler case going back to Markov's inequality:
Let's assume X is centered: [EX = 0. Using the same idea as for Chebyshev's inequality, for any
integer k € IN:
E|Z ‘2/(
2k 2k
Pr(|Zn] = t) = Pr(|Z,]7" = t7°) < t2—7<

Using the multinomial theorem:

2k \ T :
W 2!2 ( j )H“je ' pj = EX.
=1

_[G]N2" lj|=2k

Pr(|Z,] > t) <

The point: for all k, Pr(|Z| > t) < t=?)g(ua, ..., uok) for some function g.
This achieves t=2k « t~! for large t.
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Using moment generating functions

The problem: Not only is the previous expression unwieldly, it would essentially require
estimation /computation of high-order moments.

However, the general idea here is valuable: higher-order moments can give us better estimation.
We'd like to more elegantly build them into an estimate.

For simplicity, we'll also assume X is centered: [EX = 0, sothata <0< b .
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Using moment generating functions

The problem: Not only is the previous expression unwieldly, it would essentially require
estimation /computation of high-order moments.

However, the general idea here is valuable: higher-order moments can give us better estimation.
We'd like to more elegantly build them into an estimate.

For simplicity, we'll also assume X is centered: [EX = 0, so that a < 0 < b.

Our Markov inequality strategies have revolved around using the monotone functions x — xP
(e.g., p = 2,2k).

Through Markov's inequality, we compute [EXP, which results in pth-order moments.
Ideally, we'd use information from all moments.

Given a random variable X, its moment generating function Mx(s) := FEeSX encodes all moments
of X. (E.g., MY (0) = EX")
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Using MGF’s

With all of the above, the following strategy is fairly generic:

Let's use Markov's inequality in the same way as before, but instead of the function x — x? with
image on [0, o), we'll use x — e*.

Pelkze) = Pr(e¥zot)
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Using MGF’s

With all of the above, the following strategy is fairly generic:

Let's use Markov's inequality in the same way as before, but instead of the function x — x? with
image on [0, o), we'll use x — e*.

x — €% monotone increasing, and e* >0 V xe R = Pr(Z,>t) °z0 Pr(sZ, > st)
Pr(e®4n > e5t)

< e_StIEeSZ”.

The last inequality is Markov's inequality.

The free parameter s > 0 (the location where we evaluate the MGF), can be tuned to achieve
optimal results.
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Chernoff bounds

(X1 X))
ZpT 02 X; Be '™ =(/Ewey/)(/a?ex&)
Ie[,,j
Since X; are iid, then Ees%n = (EesX/")". So we have concluded:
ce X; are iid, then Ee ( 2 )". So we z:eco clude . Mx(g): Egsx
Pr(Z, > t)/é e °t (]Eesx/”> = e °t (MX <B)) .

The remaining question is how to estimate the MGF Mx (s/n).

This generic strategy of bounding this tail probability through an MGF is called a Chernoff bound.

There are a few ways to estimate the MGF.
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Chernoff for Rademacher
Suppose X has a Rademacher distribution:

N | =

() =px(-D =5 B L g7 Ly

Estimating the MGF is straightforward:
EesX = coshs

Recall that the MGF behavior around 0 is important, so we want a tight MGF bound there.
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Chernoff for Rademacher
Suppose X has a Rademacher distribution:

1
px(+1) = px(=1) = 3.
Estimating the MGF is straightforward:

EesX = coshs

Recall that the MGF behavior around 0 is important, so we want a tight MGF bound there.

) 52 54 S2n
=14+ —4+ — 4+ ...
cosh s —|—2+24+ +(2n)!+
<1+52+1 522+ ;2 s n+
h 2 21\ 2 a2
:es2/2
R l T — ~

ol n! G,y T 2202 i)
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Chernoff for Rademacher
Suppose X has a Rademacher distribution:
1
px(+1) = px(=1) = 3.
Estimating the MGF is straightforward:
Ee*X = cosh s

Recall that the MGF behavior around 0 is important, so we want a tight MGF bound there.

) 52 54 S2n
=14+ =4+ =
cosh s —|—2+24+ +(2n)!+
1+52+1 s 2+ +1 s n+
2 21\ 2 a2
2652/2

Therefore: Mx(s) < es°/2, so that resuming our iid sum Chernoff bound:

Pr(Zn > t) = e (Mx (2 ) =ew <_5t +/?'27>

The next step could be to optimize s. Before doing that, let's generallze beyond Rademacher.
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Hoeffding’s Lemma
Here's another, more general way to estimate an MGF:
Suppose now that X is a bounded (nontrivial) random variable: X € [a, b] wpl.

Lemma (Hoeffding's Lemma). Suppose Y € |a, b| is a centered random variable. Then

Ee®Y < ess’(b=a) £ any s € R. [ - 4
, £ ldl’ fly] dy
pi: Ra de ma, e =2 a==| L=+

= /MT[() £ f}'c,“’ - g'rz
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Hoeffding’s Lemma
Here's another, more general way to estimate an MGF:
Suppose now that X is a bounded (nontrivial) random variable: X € [a, b] wpl.
Lemma (Hoeffding's Lemma). Suppose Y € |a, b| is a centered random variable. Then
BesY < 55 (b= for any s € R.
Proof sketch:

= x — X is convex. Therefore,
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Hoeffding’s Lemma
Here's another, more general way to estimate an MGF:
Suppose now that X is a bounded (nontrivial) random variable: X € [a, b] wpl.
Lemma (Hoeffding's Lemma). Suppose Y € |a, b| is a centered random variable. Then
BesY < 55 (b= for any s € R.
Proof sketch:

= x — X is convex. Therefore,

= This implies
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Hoeffding’s Lemma
Here's another, more general way to estimate an MGF:
Suppose now that X is a bounded (nontrivial) random variable: X € [a, b] wpl.
Lemma (Hoeffding's Lemma). Suppose Y € |a, b| is a centered random variable. Then
BesY < 55 (b= for any s € R.
Proof sketch:

= x — X is convex. Therefore,

= This implies

= Define ¢(z) as,

Scalar concentration Math 7870, Spring 2026 — UofU

15



Hoeffding’s Lemma

Here's another, more general way to estimate an MGF:

Suppose now that X is a bounded (nontrivial) random variable: X € [a, b] wpl.
Lemma (Hoeffding's Lemma). Suppose Y € |a, b| is a centered random variable. Then
BesY < 55 (b= for any s € R.

Proof sketch:
= x — X is convex. Therefore,

This implies

| Cp[ ) b—a
Defme/q%%) as,
1 (besa B aesb) _ oPs(b—2))
—a

b
Taylor series estimation: ¢(z) < Cz?, with C = 1/8.
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Sewing it together

By positivity and monotonicity of x — e*, Markov's inequality yields:
n
Pr(Z, > t) = et <IE)eSX/”>

By Hoeffding's Lemma:

<EesX/n)n < (exp (; ZZ (b— 3)2))n = exp <%§(b - a)2>
Pr(Zy > t) < exp (—st A 3)2)
Mmime, =S¢t Sf[?/:') : % ﬁlwﬂﬂln@ £

/”
€0

Therefore:

lfn-%
S(bfn] 9§ e
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Sewing it together

By positivity and monotonicity of x — e*, Markov's inequality yields:
n
Pr(Z, > t) = et <IEJeSX/”>
By Hoeffding's Lemma:

<EesX/n)n < (exp (%Z_Z(b - a)2>>n — exp (%%(b - a)2)

Therefore:

Pr(Z,>t) <exp <—5t +

Now we can choose s to minimize this probability:

s%(b —
3

Sy = arg min exp (—st +

s>0 — 3)2

NB: this behaves exactly like e~ " that we “expect” from the CLT!
The (b — a)? factor is “essentially” VarX.
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Hoeffding’s inequality
A particular Chernoff bound for concentration is the Hoeffding inequality, which bounds the MGF
of X using Hoeffding's Lemma for bounded random variables.

The result has slightly more generality than we've presented:

= The X; need not be centered: IEX; # 0 is ok.
= The X; must be independent, but not identically distributed. We do require boundedness:

X; € [aj, bi] wpl for all i.
I — I
Z,° 7 3;_ X: /M?n ()= E ey'a(g'ﬁ ‘25(;')

@—

= ]}, [EC)(IO (J-{%‘y1)
N ’))TM)(; (S/n ) £ FXp {:?f’z;j[é;'”;)z)
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Hoeffding’s inequality
A particular Chernoff bound for concentration is the Hoeffding inequality, which bounds the MGF
of X using Hoeffding's Lemma for bounded random variables.

The result has slightly more generality than we've presented:
= The X; need not be centered: IEX; # 0 is ok.
= The X; must be independent, but not identically distributed. We do require boundedness:

X; € [aj, bi] wpl for all i.
[A)

Theorem (Hoeffding's inequality). Suppose {X,-},-ey is a sequence of independent random

variables, with X; € [aj, b;j] wpl for all i € X. Then:
)

22
Pr(|S, —ES,|>1t) <2exp | — , Sni= > Xi.
> (b — &)’ ie[n]

i€[n]

R 2Varlk)

Math 7870, Spring 2026 — UofU 17
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Observations about Hoeffding’s inequality

Pr(|S, —ES,| >1t) <2exp | — , S, = Z X;.
> (b — &)’ ie[n]

= [ES, can depend on n.
= We've shown the S,, — ES,, > t bound proof. The other direction, S, — IES, < t is a minor

variant. (\"IOV‘IZ L,f‘% Pr‘{‘fu z '))
= This above is a two-sided bound: |S, —ES,| = t. The price paid is a multiplicative 2, from a
union bound.

= When X; ~ X are iid, with X € [a, b], and b; — a; = %(b — a), this reduces to

2
Pr<15,,—EX| > t) < 2exp (- 2nt )
n

(b—a)?
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Another Chenoff bound

One can derive various Chernoff-type bounds from the basic idea of a Chernoff bound.

E.g., if X; ~ Bernoulli(p;) are independent, then the following is a popular “multiplicative” form
of a Chernoff bound:

5 Ko
e
Pr(S,=>(14+9)un) < [(1+5)1+6] , 6 >0, w, =1ES,
This is derived:
= Using a generic Chernoff bound strategy: Pr(S, e st H EesXi,
i€[n]

= Use t = (1 +6)ES,, compute EeSXi expficitly, and bound the result.

T
Pril,2¢) 4 MlL e 1I(!tn M)(/S’
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How general is Hoeffding’s inequality?
The iid sum version of Hoeffding's inequality required X; € [a, b|, are bounded with probability 1.

Recall:
1 2nt?
Pr{-S5,—EX;1>t] < ———> |
(; =) <en (57 5p)
i.e., |al, |b| < . (E.g., without this we can't use Hoeffding's lemma.)
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How general is Hoeffding’s inequality?
The iid sum version of Hoeffding's inequality required X; € [a, b|, are bounded with probability 1.

Recall:
1 2nt?
Prl -S,—EX;i>t]| < -],
( : ) ex"( <b—a>2)

i.e., |al, |b| < . (E.g., without this we can't use Hoeffding's lemma.)

However, we expect that this result should hold for at least some unbounded random variables as

well. E.g., if X; S N7(0, 1), then:
1 1

1S,, ~N (O, —) = Pr (—Sn > t) < exp (—2nt2) :
n

n n
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How general is Hoeffding’s inequality?
The iid sum version of Hoeffding's inequality required X; € [a, b|, are bounded with probability 1.

Recall:
1 2nt?
P _Sn_EX >t < - '
( : ) ex"( <b—a>2)

i.e., |al, |b| < . (E.g., without this we can't use Hoeffding's lemma.)

However, we expect that this result should hold for at least some unbounded random variables as
well. E.g., if X; S A7(0, 1), then:

1 1 1 5

=S, ~N (0, = — Pr|{-5,>t <exp(—2nt).

n

n n

This estimate for unbounded random variables behaves in the Hoeffding-type way, but we don't
have a way to analyze the corresponding MGF's. 2
v to analy Ponding expl4s%)

In particular, if Y ~ N(0,02), then My (s) = exp(s2 ), and this ~ exp(s®) MGF behavior is
exactly what we needed for the Hoeffding-type Chernoff bound.

What kinds of random variables have MGF's behaving like exp(s?)?
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Random variables dominated by Gaussians

The following is a common class of random variables in probability theory.

Definition 1 (Sub-Gaussian random variables). A random variable X is called sub-Gaussian if
there is a ¢ = 0 and a centered normal random variable Y such that for all t > O:

Pr(|X| > t) < cPr(|Y]| = t).
This is equivalent to requiring that there exists a C > 0 such that,
Pr(|X| = t) < 2exp(—t*/C?)
2 Marmy |
X~ Subtpe ian

X
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Random variables dominated by Gaussians

The following is a common class of random variables in probability theory.

Definition 1 (Sub-Gaussian random variables). A random variable X is called sub-Gaussian if
there is a ¢ = 0 and a centered normal random variable Y such that for all t > 0:

Pr(|X| > t) < cPr(|Y]| = t).
This is equivalent to requiring that there exists a C > 0 such that,

Pr(|X|>1t) < 2exp(—t2/C2)

There are lots of non-sub-Gaussian random variables. E.g., Cauchy distributions, Poisson
distributions, exponential distributions, ....
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Equivalent definitions of sub-Gaussians

There are several well-known equivalent definitions of a sub-Gaussian random variable. Here are a
few of relevance.

Theorem (Equivalent sub-Gaussian distribution definitions). Let X be a centered random
variable. The following statements are equivalent:

= There is a positive C1 such that, Pr(|X]| > t) < 2exp(—t?/C?).
= There is a positive Cy such that E|X|P < C5pP/2.

22
= There is a positive C3 such that Mx(s) < exp (C?’; )
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Equivalent definitions of sub-Gaussians

There are several well-known equivalent definitions of a sub-Gaussian random variable. Here are a
few of relevance.

Theorem (Equivalent sub-Gaussian distribution definitions). Let X be a centered random
variable. The following statements are equivalent:

= There is a positive C1 such that, Pr(|X]| = t) < 2exp(—t?/C?).
= There is a positive Cy such that E|X|P < C5pP/?.

22
= There is a positive C3 such that Mx(s) < exp (C325 )

Therefore, sub-Gaussian random variables are precisely those random variables whose MGF's
behave in a Hoeffding-lemma-type way.

The connection is actually stronger than suggested above: The (smallest) constant C% above is
called the variance proxy of X, and often properties involving the variance o2 of a Gaussian
random variable hold for sub-Gaussian ones by replacing o2 with the variance proxy.
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General Hoeffding inequality

With a fairly good understanding of MGF's that behave like es’, we can state a quite general form
of Hoeffding's inequality.

L.
Theorem 1 (Sub-Gaussian Hoeffding inequality). Let {X;}ie %e independent sub-Gaussian
random variables, and let 0,-2 be the variance proxy of X;. Then:

- 12

220,-2

ie[n]

Pr(|S, —ES,| >t) <2exp
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Beyond Chernoff bounds

Several concentration results use Chernoff-like ideas to construct bounds. The payoff is that one
can move beyond strictly independent sums. For example: if X; is a sequence of centered
independent random variables, we have,

E[Sni1] S0.S1,---.Sn] = E[Xns1+ Sn | So.S1,....54] = S, Sn= > X
i€e[n]

This is perhaps the simplest example of a martingale: a sequence whose expectation conditioned
on some history equals the most recent value in that history.

The Chernoff-like bounds we've derived can be generalized to general martingales beyond the
simple example above.
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The Azuma-Hoeffding inequality
For completeness, we'll state a more general version of the inequality. The general version
operates on a supermartingale, which is a sequence {X;}; satisfying,

E[Xn+1 ’Xo,...,Xn] < X,.

For supermartingales, the conditional expectation is non-increasing relative to the provided
history.

Scalar concentration Math 7870, Spring 2026 — UofU
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The Azuma-Hoeffding inequality
For completeness, we'll state a more general version of the inequality. The general version
operates on a supermartingale, which is a sequence {X;}; satisfying,

E [Xn+1 ’ Xo, ... ,Xn] < X,.
For supermartingales, the conditional expectation is non-increasing relative to the provided
history.
Theorem 2 (Azuma-Hoeffding inequality). Let {X;}ien, be a supermartingale, and assume that
the increments are bounded:

Aiv1 < Xip1 — Xi < Biya, Bit1 — Ait1 < ¢iy1 € (0, 00),

for a deterministic sequence c;. Then for every t > Q:

Pr (Xp — Xo > t) < 2t
r(Xn—Xo >t) <exp —m :

where

NB: For submartingales (non-decreasing conditional expectation), a bound on the deviation below
Xo can be derived.
For martingales, a two-sided bound can be derived.
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Azuma-Hoeffding proof idea

The sketch of the proof is as follows:

= (Doob decomposition) Decompose the supermartingale X; into Y; + Z;, where Y] is a
martingale, and Z; is decreasing wpl.

= Since Z; is decreasing, then the event X, — Xg > t implies the event Y11 — Yy > t.
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Azuma-Hoeffding proof idea

The sketch of the proof is as follows:

= (Doob decomposition) Decompose the supermartingale X; into Y; + Z;, where Y] is a
martingale, and Z; is decreasing wpl.

= Since Z; is decreasing, then the event X, — Xg > t implies the event Y11 — Yy > t.
= Write Y, — Y = > (Yi — Yi_1).

i€[n]

= Write a Chernoff bound for Y,, — Yy, and compute the MGF of Y,,.
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Azuma-Hoeffding proof idea

The sketch of the proof is as follows:

= (Doob decomposition) Decompose the supermartingale X; into Y; + Z;, where Y] is a
martingale, and Z; is decreasing wpl.

= Since Z; is decreasing, then the event X, — Xg > t implies the event Y11 — Yy > t.
= Write Y, — Y = > (Yi — Yi_1).

i€[n]

= Write a Chernoff bound for Y,, — Yy, and compute the MGF of Y,,.

= Bound each term in the telescoping sum of the MGF via the tower property:

Eexp [s Y (Yi—Yi_1) |=E|exp|s > (Yi=Yi_1) |E(s(Yo— Y1) | Yo...., Y1)
i€[n] i€[n—1]

» Use X1 — Xn < Bhi1 — Api1 < ¢cpe1 to bound the conditional difference of Y11 — Y.
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Azuma-Hoeffding proof idea

The sketch of the proof is as follows:

= (Doob decomposition) Decompose the supermartingale X; into Y; + Z;, where Y] is a
martingale, and Z; is decreasing wpl.

= Since Z; is decreasing, then the event X, — Xg > t implies the event Y,;1 — Yy > t.
= Write Y, — Y = > (Yi — Yi_1).

i€[n]

= Write a Chernoff bound for Y,, — Yy, and compute the MGF of Y,,.

= Bound each term in the telescoping sum of the MGF via the tower property:
Eexp [s Y (Yi—Yi_1) |=E|exp|s > (Yi=Yi_1) |E(s(Yo— Y1) |Yo...., Y1)
i€[n] i€[n—1]

» Use X1 — Xn < Bhi1 — Apt1 < ¢cpe1 to bound the conditional difference of Y11 — Y.
= Use Hoeffding's lemma on each telescoping term.

l.e.: Azuma's inequality rests heavily on Chernoff/Hoeffding arguments.
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Functions with bounded differences

Here's a well-known application of Azuma'’s inequality:

A function f : D1 x Dy x --- x D, — IR satisfies the bounded difference property if

sup |f(x) — f(xiy)
yi€D;

|.e., replacing the value in one coordinate has bounded impact on the function.
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Functions with bounded differences

Here's a well-known application of Azuma'’s inequality:

A function f : D1 x Dy x --- x D, — IR satisfies the bounded difference property if

sup |f(x) — f(xiy)
yi€D;

|.e., replacing the value in one coordinate has bounded impact on the function.

Now suppose that {X,-},-E[,,] are independent random variables, X; € D; wpl. Define:
Y =E[f(X) | X1,.... Xi].
One can show that Y; is a martingale, and in particular that

Yi —Yi_1] < ¢
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McDiarmid’s inequality

Hence, Azuma'’s inequality yields the following result.

Theorem (McDiarmid's Inequality). Suppose f : x;c[qD; — R is a function satisfying the
bounded differences property with constants (c;)ic[n. Let {Xi}ic[n] be a sequence of independent
random variables, with X; € D;. Then for all t > O:

22

Pr(|f(X)—Ef(X)|>t)<exp| —

Note that f can be a fairly general function.

There are generalizations to “sub-Gaussian differences”, or to differences that are bounded with
reasonably high probability.
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Distribution functions

Here's a nice application of McDiarmid’s inequality:

Let X be a random variable, and let {X;}ien 4 x.

Let X have distribution function F, and let F,, be the n-sample empirical distribution function:

Fn(z) = 1 Z 1(X; < z)

N il
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Distribution functions
Here's a nice application of McDiarmid’s inequality:

Let X be a random variable, and let {X;}ien 4 x.

Let X have distribution function F, and let F,, be the n-sample empirical distribution function:

Fn(z) = 1 Z 1(X; < z)

N il

Now fix n and z, and define f : R" — IR as:

Note that:

e

Ef(X) = % Y BL(X;<z) = L Y Fx(2) = Fx(2).
i€[n]
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Distribution functions
Here's a nice application of McDiarmid’s inequality:

Let X be a random variable, and let {X;}ien 4 x.

Let X have distribution function F, and let F,, be the n-sample empirical distribution function:

Fn(z) = 1 Z 1(X; < z)

N il

Now fix n and z, and define f : R" — IR as:

Note that:
Ef(X) = 1 Y BL(X;<z) = L Y Fx(2) = Fx(2).
n n
i€[n] ie[n]

Also note that £, is a function of bounded differences:

[f2(x) = fz(xi )| <

1
— = Cj
n
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The Dvoretsky-Kiefer-Wolfowitz-Massart theorem

The previous analysis suggests that there is a concentration inequality for empirical distribution
functions.

Theorem (Dvoretsky-Kiefer-Wolfowitz-Massart). Let {Xi}ien "4 X. Let X have distribution

function Fx, and let F, be the empirical distribution function of {X;}ic[n. Then for every t > 0:

Pr (HFX(-) — Fa()l o) < t) < 2exp(—2nt?),

This ensures convergence of distribution functions in high probability.
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