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Outline

• Simple moment-based probabilities
(Markov and Chebyshev inequalities)

• Distribution function-based arguments
(Glivenko-Cantelli, Barry-Esseen)

• Moment generating function-based bounds
(Cherno! bound)

• Bounded and sub-Gaussian random variables
(Hoe!ding inequality)

• Martingale models
(Azuma inequality)

• Functions of bounded di!erences
(McDiarmid’s inequality)

• High-probability distribution bounds
(Dvoretsky-Kiefer-Wolfowitz)
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Motivation for concentration

Let X be a scalar (real) random variable. In practice we want to know things like:

PrpX ! tq; Prp|X ´ X| ! tq:

These probabilities are computable if we can analytically manipulate the distribution function:

PrpX ! tq “ 1 ´ FXpt´q; Prp|X ´ X| ! tq “ FXp X ´ tq ` 1 ´ FXp X ` t`q:

The problem is that we often don’t have access to the exact distribution.
(E.g., X is a finite iid sum.)

However, it generally is feasible to compute the first few moments of X.

The task of estimating probabilities from moments is the study of concentration (of X).
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Markov and Chebyshev inequalities

We’ve already seen one of the simplest examples of concentration inequalities, Markov’s
inequality :

X ! 0 wp1; t " 0 ùñ PrpX ! tq # X

t
or PrpX ! t Xq # 1

t

This latter form is only useful if t " 1.

Applying Markov’s inequality to Y “ pX ´ Xq2 ! 0 yields Chebyshev’s inequality :

PrpY ! t2q # Y

t2
“ VarX

t2
ùñ Prp|X ´ X| ! tq # VarX

t2
or Prp|X ´ X| ! t!q # 1

t2

where ! “ StDevpXq, and again the latter form is useful only when t " 1.

These are the simplest bounds for estimating probabilities for moments.
(They’re also the most general: almost nothing is assumed about X.)
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Sharpness of Markov and Chebyshev inequalities
Without any further assumptions, the Markov and Chebyshev inequalities cannot be improved.
Example 1 (Markov inequality sharpness). Let Xs be a random variable parameterized by any
s " 0, with mass function pXs p0q “ 1 ´ 1{s, and pXs psq “ 1{s.
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Sometimes we expect better
If Xi , i P  are centered and iid, then Zn :“ 1

n

ÿ

iPrns
Xi should approach 1?

n
N p0;VarXq.

What we expect, is that with !2 “ VarX, then if Z „ N p0;!2q, we have,

PrpZn ! t!q“ « ”Pr
ˆ

1?
n
Z ! t!

˙
“ PrpZ ! t!

?
nq “ 1 ´ FZpt!?

nq

« 1

2
´ 1

2
erf

ˆ
t
?
n?
2

˙

n"1« 1

4
e´nt2{2

By comparison, Chebyshev’s inequality yields,

PrpZn ! t!q # Prp|Zn| ! t!q # VarZn

!2t2
“ 1

nt2
:

The point: e´nt2 ! 1
nt2 when n and/or t are large.

Scalar concentration Math 7870, Spring 2026 – UofU 6



Sometimes we expect better
If Xi , i P are centered and iid, then Zn :“ 1

n

ÿ

iPrns
Xi should approach 1?

n
N p0;VarXq.

What we expect, is that with !2 “ VarX, then if Z „ N p0;!2q, we have,

PrpZn ! t!q“ « ”Pr
ˆ

1?
n
Z ! t!

˙
“ PrpZ ! t!

?
nq “ 1 ´ FZpt!?

nq

« 1

2
´ 1

2
erf

ˆ
t
?
n?
2

˙

n"1« 1

4
e´nt2{2

By comparison, Chebyshev’s inequality yields,

PrpZn ! t!q # Prp|Zn| ! t!q # VarZn

!2t2
“ 1

nt2
:

The point: e´nt2 ! 1
nt2 when n and/or t are large.

Scalar concentration Math 7870, Spring 2026 – UofU 6



Can the CLT help?
The only sketchy “«” we employed is

PrpZn ! t!q“ « ”Pr
ˆ

1?
n
Z ! t!

˙
;

which appeals to the CLT argument that
?
nZn is an n-asymptotic normal random variable Z.

We hope that a “quantitative” CLT can make this precise.

The question about the value of PrpZn ! tq is equivalent to understanding how well the
distribution functions converge:

Fnptq :“ PrpZn # tq F ptq :“ Pr
ˆ

Z?
n

# t

˙

Theorem (Glivenko-Cantelli). With the above setup, then with probability 1:

lim
nÑ8 }F ´ Fn}L8p q “ lim

nÑ8 sup
tP

|F ptq ´ Fnptq| “ 0:

We therefore expect our idea about working through distribution functions is possible.
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Glivenko-Cantelli, visualized
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More precise convergence
Something stronger than Glivenko-Cantelli is true.

Theorem (Barry-Esseen inequality). Let X have finite second and third moments, and let
tXiuiP be centered and iid with X1 „ X, and VarpX1q “ !2 " 0. Let

Zn “ 1

n

ÿ

iPrns
Xi ;

and let Z „ N p0; 1q. Then:
ˇ̌
ˇF?

n Zn{!pxq ´ FZpxq
ˇ̌
ˇ # C?

n

|X1|3
!3

The constant C is absolute.

It turns out this is bad for us: This rate of convergence is in general sharp.
If we can only replace F?

n Zn{! with FZ with a 1{?
n mistake, then this will reflect in probability

estimates. (1{?
n " e´n)
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Higher order moments
We seem to have concluded that for general X, a deviation-from-mean probability for 1

n

!
iPrns Xi

can’t be derived, at least not using the arguments we’ve explored.

Goal: If Xi „ X for i P  are iid, we seek to bound Pr pZn ! tq.
(As before: Zn “ 1

n

!
iPrns Xi .)

We can try to see if this is possible in a simpler case going back to Markov’s inequality:
Let’s assume X is centered: X “ 0. Using the same idea as for Chebyshev’s inequality, for any
integer k P :

Prp|Zn| ! tq “ Prp|Zn|2k ! t2kq # |Zn|2k
t2k

:

Using the multinomial theorem:

Prp|Zn| ! tq # 1

t2k

»

–
ÿ

jP 2n
0 ;|j |“2k

ˆ
2k
j

˙ n"

‘“1

—j‘

fi

fl ; —j “ X j :

The point: for all k , Prp|Z| ! tq À t´2kgp—2; : : : ; —2kq for some function g .
This achieves t´2k ! t´1 for large t.
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Using moment generating functions

The problem: Not only is the previous expression unwieldly, it would essentially require
estimation/computation of high-order moments.

However, the general idea here is valuable: higher-order moments can give us better estimation.
We’d like to more elegantly build them into an estimate.

For simplicity, we’ll also assume X is centered: X “ 0, so that a $ 0 $ b.

Our Markov inequality strategies have revolved around using the monotone functions x %Ñ xp

(e.g., p “ 2; 2k).

Through Markov’s inequality, we compute Xp, which results in pth-order moments.
Ideally, we’d use information from all moments.

Given a random variable X, its moment generating function MXpsq :“ esX encodes all moments
of X. (E.g., Mpnq

X p0q “ Xn.)
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Using MGF’s

With all of the above, the following strategy is fairly generic:

Let’s use Markov’s inequality in the same way as before, but instead of the function x %Ñ x2 with
image on r0;8q, we’ll use x %Ñ ex .

x %Ñ ex monotone increasing, and ex ! 0 @ x P  ùñ PrpZn ! tq s!0“ PrpsZn ! stq
“ PrpesZn ! estq
# e´st esZn :

The last inequality is Markov’s inequality.

The free parameter s " 0 (the location where we evaluate the MGF), can be tuned to achieve
optimal results.
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Cherno! bounds

Since Xi are iid, then esZn “
`

esX{n˘n. So we have concluded:

PrpZn ! tq “ e´st
´

esX{n
¯n

“ e´st
´
MX

´ s

n

¯¯n
:

The remaining question is how to estimate the MGF MXps{nq.
This generic strategy of bounding this tail probability through an MGF is called a Cherno! bound.

There are a few ways to estimate the MGF.
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Cherno! for Rademacher
Suppose X has a Rademacher distribution:

pXp`1q “ pXp´1q “ 1

2
:

Estimating the MGF is straightforward:
esX “ cosh s

Recall that the MGF behavior around 0 is important, so we want a tight MGF bound there.

cosh s “ 1 ` s2

2
` s4

24
` : : : ` s2n

p2nq! ` : : :

# 1 ` s2

2
` 1

2!

ˆ
s2

2

˙2

` : : : ` 1

n!

ˆ
s2

2

˙n

` : : :

“ es
2{2

Therefore: MXpsq # es
2{2, so that resuming our iid sum Cherno! bound:

PrpZn ! tq “ e´st
´
MX

´ s

n

¯¯n
“ exp

ˆ
´st ` s2

4n

˙
:

The next step could be to optimize s. Before doing that, let’s generalize beyond Rademacher.
Scalar concentration Math 7870, Spring 2026 – UofU 14



Cherno! for Rademacher
Suppose X has a Rademacher distribution:

pXp`1q “ pXp´1q “ 1

2
:

Estimating the MGF is straightforward:
esX “ cosh s

Recall that the MGF behavior around 0 is important, so we want a tight MGF bound there.

cosh s “ 1 ` s2

2
` s4

24
` : : : ` s2n

p2nq! ` : : :

# 1 ` s2

2
` 1

2!

ˆ
s2

2

˙2

` : : : ` 1

n!

ˆ
s2

2

˙n

` : : :

“ es
2{2

Therefore: MXpsq # es
2{2, so that resuming our iid sum Cherno! bound:

PrpZn ! tq “ e´st
´
MX

´ s

n

¯¯n
“ exp

ˆ
´st ` s2

4n

˙
:

The next step could be to optimize s. Before doing that, let’s generalize beyond Rademacher.
Scalar concentration Math 7870, Spring 2026 – UofU 14



Cherno! for Rademacher
Suppose X has a Rademacher distribution:

pXp`1q “ pXp´1q “ 1

2
:

Estimating the MGF is straightforward:
esX “ cosh s

Recall that the MGF behavior around 0 is important, so we want a tight MGF bound there.

cosh s “ 1 ` s2

2
` s4

24
` : : : ` s2n

p2nq! ` : : :

# 1 ` s2

2
` 1

2!

ˆ
s2

2

˙2

` : : : ` 1

n!

ˆ
s2

2

˙n

` : : :

“ es
2{2

Therefore: MXpsq # es
2{2, so that resuming our iid sum Cherno! bound:

PrpZn ! tq “ e´st
´
MX

´ s

n

¯¯n
“ exp

ˆ
´st ` s2

4n

˙
:

The next step could be to optimize s. Before doing that, let’s generalize beyond Rademacher.
Scalar concentration Math 7870, Spring 2026 – UofU 14



Hoe!ding’s Lemma
Here’s another, more general way to estimate an MGF:
Suppose now that X is a bounded (nontrivial) random variable: X P ra; bs wp1.
Lemma (Hoe!ding’s Lemma). Suppose Y P ra; bs is a centered random variable. Then
esY # e

1
8 s

2pb´aq2 for any s P .
Proof sketch:

• x %Ñ ex is convex. Therefore,

esx # b ´ x

b ´ a
esa ` x ´ a

b ´ a
esb

• This implies

esY # 1

b ´ a

´
besa ´ aesb

¯
:

• Define "pzq as,
1

b ´ a

´
besa ´ aesb

¯
“ e"pspb´aqq

• Taylor series estimation: "pzq # Cz2, with C “ 1{8.

Scalar concentration Math 7870, Spring 2026 – UofU 15



Hoe!ding’s Lemma
Here’s another, more general way to estimate an MGF:
Suppose now that X is a bounded (nontrivial) random variable: X P ra; bs wp1.
Lemma (Hoe!ding’s Lemma). Suppose Y P ra; bs is a centered random variable. Then
esY # e

1
8 s

2pb´aq2 for any s P .
Proof sketch:

• x %Ñ ex is convex. Therefore,

esx # b ´ x

b ´ a
esa ` x ´ a

b ´ a
esb

• This implies

esY # 1

b ´ a

´
besa ´ aesb

¯
:

• Define "pzq as,
1

b ´ a

´
besa ´ aesb

¯
“ e"pspb´aqq

• Taylor series estimation: "pzq # Cz2, with C “ 1{8.

Scalar concentration Math 7870, Spring 2026 – UofU 15



Hoe!ding’s Lemma
Here’s another, more general way to estimate an MGF:
Suppose now that X is a bounded (nontrivial) random variable: X P ra; bs wp1.
Lemma (Hoe!ding’s Lemma). Suppose Y P ra; bs is a centered random variable. Then
esY # e

1
8 s

2pb´aq2 for any s P .
Proof sketch:

• x %Ñ ex is convex. Therefore,

esx # b ´ x

b ´ a
esa ` x ´ a

b ´ a
esb

• This implies

esY # 1

b ´ a

´
besa ´ aesb

¯
:

• Define "pzq as,
1

b ´ a

´
besa ´ aesb

¯
“ e"pspb´aqq

• Taylor series estimation: "pzq # Cz2, with C “ 1{8.

Scalar concentration Math 7870, Spring 2026 – UofU 15



Hoe!ding’s Lemma
Here’s another, more general way to estimate an MGF:
Suppose now that X is a bounded (nontrivial) random variable: X P ra; bs wp1.
Lemma (Hoe!ding’s Lemma). Suppose Y P ra; bs is a centered random variable. Then
esY # e

1
8 s

2pb´aq2 for any s P .
Proof sketch:

• x %Ñ ex is convex. Therefore,

esx # b ´ x

b ´ a
esa ` x ´ a

b ´ a
esb

• This implies

esY # 1

b ´ a

´
besa ´ aesb

¯
:

• Define "pzq as,
1

b ´ a

´
besa ´ aesb

¯
“ e"pspb´aqq

• Taylor series estimation: "pzq # Cz2, with C “ 1{8.

Scalar concentration Math 7870, Spring 2026 – UofU 15



Hoe!ding’s Lemma
Here’s another, more general way to estimate an MGF:
Suppose now that X is a bounded (nontrivial) random variable: X P ra; bs wp1.
Lemma (Hoe!ding’s Lemma). Suppose Y P ra; bs is a centered random variable. Then
esY # e

1
8 s

2pb´aq2 for any s P .
Proof sketch:

• x %Ñ ex is convex. Therefore,

esx # b ´ x

b ´ a
esa ` x ´ a

b ´ a
esb

• This implies

esY # 1

b ´ a

´
besa ´ aesb

¯
:

• Define "pzq as,
1

b ´ a

´
besa ´ aesb

¯
“ e"pspb´aqq

• Taylor series estimation: "pzq # Cz2, with C “ 1{8.

Scalar concentration Math 7870, Spring 2026 – UofU 15



Sewing it together
By positivity and monotonicity of x %Ñ ex , Markov’s inequality yields:

PrpZn ! tq “ e´st
´

esX{n
¯n

By Hoe!ding’s Lemma:
´

esX{n
¯n

#
ˆ
exp

ˆ
1

8

s2

n2
pb ´ aq2

˙˙n

“ exp
ˆ
1

8

s2

n
pb ´ aq2

˙

Therefore:

PrpZn ! tq # exp
ˆ

´st ` s2pb ´ aq2
8n

˙

Now we can choose s to minimize this probability:

s˚ “ argmin
s!0

exp

ˆ
´st ` s2pb ´ aq2

8n

˙
“ 4nt

pb ´ aq2 ùñ PrpZn ! tq # exp
`
´2nt2{pb ´ aq2

˘
:

NB: this behaves exactly like e´nt2 that we “expect” from the CLT!
The pb ´ aq2 factor is “essentially” VarX.
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Hoe!ding’s inequality
A particular Cherno! bound for concentration is the Hoe!ding inequality, which bounds the MGF
of X using Hoe!ding’s Lemma for bounded random variables.

The result has slightly more generality than we’ve presented:
• The Xi need not be centered: Xi ‰ 0 is ok.
• The Xi must be independent, but not identically distributed. We do require boundedness:

Xi P rai ; bi s wp1 for all i .

Theorem (Hoe!ding’s inequality). Suppose tXiuiP is a sequence of independent random
variables, with Xi P rai ; bi s wp1 for all i P . Then:

Pr p|Sn ´ Sn| ! tq # 2 exp

¨

˚̊
˚̋´ 2t2ÿ

iPrns
pbi ´ ai q2

˛

‹‹‹‚; Sn :“
ÿ

iPrns
Xi :
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Observations about Hoe!ding’s inequality

Pr p|Sn ´ Sn| ! tq # 2 exp

¨

˚̊
˚̋´ 2t2ÿ

iPrns
pbi ´ ai q2

˛

‹‹‹‚; Sn :“
ÿ

iPrns
Xi :

• Sn can depend on n.
• We’ve shown the Sn ´ Sn ! t bound proof. The other direction, Sn ´ Sn # t is a minor

variant.
• This above is a two-sided bound: |Sn ´ Sn| ! t. The price paid is a multiplicative 2, from a

union bound.
• When Xi „ X are iid, with X P ra; bs, and bi ´ ai “ 1

n pb ´ aq, this reduces to

Pr

ˆˇ̌
ˇ̌1
n
Sn ´ X

ˇ̌
ˇ̌ ! t

˙
# 2 exp

ˆ
´ 2nt2

pb ´ aq2
˙
:
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Another Cheno! bound

One can derive various Cherno!-type bounds from the basic idea of a Cherno! bound.

E.g., if Xi „ Bernoullippi q are independent, then the following is a popular “multiplicative” form
of a Cherno! bound:

Pr pSn ! p1 ` ‹q—nq #
„

e‹

p1 ` ‹q1`‹

#—n

; ‹ " 0; —n :“ Sn

This is derived:
• Using a generic Cherno! bound strategy: PrpSn ! tq # e´st

"

iPrns
esXi .

• Use t “ p1 ` ‹q Sn, compute esXi explicitly, and bound the result.
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How general is Hoe!ding’s inequality?
The iid sum version of Hoe!ding’s inequality required Xi P ra; bs, are bounded with probability 1.
Recall:

Pr

ˆ
1

n
Sn ´ X1 ! t

˙
# exp

ˆ
´ 2nt2

pb ´ aq2
˙
;

i.e., |a|; |b| $ 8. (E.g., without this we can’t use Hoe!ding’s lemma.)

However, we expect that this result should hold for at least some unbounded random variables as
well. E.g., if Xi

iid„ N p0; 1q, then:
1

n
Sn „ N

ˆ
0;

1

n

˙
ùñ Pr

ˆ
1

n
Sn ! t

˙
# exp

`
´2nt2

˘
:

This estimate for unbounded random variables behaves in the Hoe!ding-type way, but we don’t
have a way to analyze the corresponding MGF’s.

In particular, if Y „ N p0;!2q, then MY psq “ expps2{p2!2qq, and this „ expps2q MGF behavior is
exactly what we needed for the Hoe!ding-type Cherno! bound.

What kinds of random variables have MGF’s behaving like expps2q?
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Random variables dominated by Gaussians

The following is a common class of random variables in probability theory.

Definition 1 (Sub-Gaussian random variables). A random variable X is called sub-Gaussian if
there is a c ! 0 and a centered normal random variable Y such that for all t " 0:

Prp|X| ! tq # c Prp|Y | ! tq:

This is equivalent to requiring that there exists a C " 0 such that,

Pr p|X| ! tq # 2 expp´t2{C2q

There are lots of non-sub-Gaussian random variables. E.g., Cauchy distributions, Poisson
distributions, exponential distributions, ....
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Equivalent definitions of sub-Gaussians

There are several well-known equivalent definitions of a sub-Gaussian random variable. Here are a
few of relevance.

Theorem (Equivalent sub-Gaussian distribution definitions). Let X be a centered random
variable. The following statements are equivalent:

• There is a positive C1 such that, Pr p|X| ! tq # 2 expp´t2{C2
1q.

• There is a positive C2 such that |X|p À Cp
2p

p{2.
• There is a positive C3 such that MXpsq # exp

´
C2
3s

2

2

¯
.

Therefore, sub-Gaussian random variables are precisely those random variables whose MGF’s
behave in a Hoe!ding-lemma-type way.

The connection is actually stronger than suggested above: The (smallest) constant C2
3 above is

called the variance proxy of X, and often properties involving the variance !2 of a Gaussian
random variable hold for sub-Gaussian ones by replacing !2 with the variance proxy.
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General Hoe!ding inequality

With a fairly good understanding of MGF’s that behave like es
2 , we can state a quite general form

of Hoe!ding’s inequality.

Theorem 1 (Sub-Gaussian Hoe!ding inequality). Let tXiuiP be independent sub-Gaussian
random variables, and let !2

i be the variance proxy of Xi . Then:

Pr p|Sn ´ Sn| ! tq # 2 exp

¨

˚̊
˚̋

t2

2
ÿ

iPrns
!2
i

˛

‹‹‹‚:
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Beyond Cherno! bounds

Several concentration results use Cherno!-like ideas to construct bounds. The payo! is that one
can move beyond strictly independent sums. For example: if Xi is a sequence of centered
independent random variables, we have,

rSn`1 | S0; S1; : : : ; Sns “ rXn`1 ` Sn | S0; S1; : : : ; Sns “ Sn; Sn “
ÿ

iPrns
Xi

This is perhaps the simplest example of a martingale: a sequence whose expectation conditioned
on some history equals the most recent value in that history.

The Cherno!-like bounds we’ve derived can be generalized to general martingales beyond the
simple example above.
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The Azuma-Hoe!ding inequality
For completeness, we’ll state a more general version of the inequality. The general version
operates on a supermartingale, which is a sequence tXiui satisfying,

“
Xn`1

ˇ̌
X0; : : : ; Xn

‰
# Xn:

For supermartingales, the conditional expectation is non-increasing relative to the provided
history.
Theorem 2 (Azuma-Hoe!ding inequality). Let tXiuiP 0 be a supermartingale, and assume that
the increments are bounded:

Ai`1 # Xi`1 ´ Xi # Bi`1; Bi`1 ´ Ai`1 # ci`1 P p0;8q;
for a deterministic sequence ci . Then for every t " 0:

Pr pXn ´ X0 ! tq # exp

˜
´ 2t2!

iPrns c
2
i

¸
:

where
NB: For submartingales (non-decreasing conditional expectation), a bound on the deviation below
X0 can be derived.
For martingales, a two-sided bound can be derived.
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Azuma-Hoe!ding proof idea
The sketch of the proof is as follows:

• (Doob decomposition) Decompose the supermartingale Xi into Yi ` Zi , where Yi is a
martingale, and Zi is decreasing wp1.

• Since Zi is decreasing, then the event Xn ´ X0 ! t implies the event Yn`1 ´ Y0 ! t.
• Write Yn ´ Y0 “

ÿ

iPrns
pYi ´ Yi´1q.

• Write a Cherno! bound for Yn ´ Y0, and compute the MGF of Yn.
• Bound each term in the telescoping sum of the MGF via the tower property:

exp

¨

˝s
ÿ

iPrns
pYi ´ Yi´1q

˛

‚“ 

»

–exp

¨

˝s
ÿ

iPrn´1s
pYi ´ Yi´1q

˛

‚ `
spYn ´ Yn´1q

ˇ̌
Y0; : : : ; Yn´1

˘
fi

fl

• Use Xn`1 ´ Xn # Bn`1 ´ An`1 # cn`1 to bound the conditional di!erence of Yn`1 ´ Yn.
• Use Hoe!ding’s lemma on each telescoping term.

I.e.: Azuma’s inequality rests heavily on Cherno!/Hoe!ding arguments.
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Functions with bounded di!erences

Here’s a well-known application of Azuma’s inequality:

A function f : D1 ˆ D2 ˆ ¨ ¨ ¨ ˆ Dn Ñ  satisfies the bounded di!erence property if

sup
yiPDi

|f pxq ´ f px i ;yi q| # ci P p0;8q; i P rns; x i ;yi “ px1; : : : ; xi´1; yi ; xi`1; : : : ; xnq:

I.e., replacing the value in one coordinate has bounded impact on the function.

Now suppose that tXiuiPrns are independent random variables, Xi P Di wp1. Define:

Yi :“ 
“
f pXq

ˇ̌
X1; : : : ; Xi

‰
:

One can show that Yi is a martingale, and in particular that

|Yi ´ Yi´1| # ci :
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McDiarmid’s inequality

Hence, Azuma’s inequality yields the following result.

Theorem (McDiarmid’s Inequality). Suppose f : ˆiPrnsDi Ñ is a function satisfying the
bounded di!erences property with constants pci qiPrns. Let tXiuiPrns be a sequence of independent
random variables, with Xi P Di . Then for all t " 0:

Pr p|f pXq ´ f pXq| ! tq # exp

¨

˚̊
˚̋´ 2t2ÿ

iPrns
c2i

˛

‹‹‹‚:

Note that f can be a fairly general function.

There are generalizations to “sub-Gaussian di!erences”, or to di!erences that are bounded with
reasonably high probability.
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Distribution functions
Here’s a nice application of McDiarmid’s inequality:

Let X be a random variable, and let tXiuiP iid„ X.
Let X have distribution function F , and let Fn be the n-sample empirical distribution function:

Fnpzq :“ 1

n

ÿ

iPrns
pXi # zq

Now fix n and z , and define f : n Ñ  as:

fzpxq :“ 1

n

ÿ

iPrns
pxi # zq

Note that:

fzpXq “ 1

n

ÿ

iPrns
pXi # zq “ 1

n

ÿ

iPrns
FXpzq “ FXpzq:

Also note that fz is a function of bounded di!erences:

|fzpxq ´ fzpx i ;yi q| # 1

n
“ ci
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The Dvoretsky-Kiefer-Wolfowitz-Massart theorem

The previous analysis suggests that there is a concentration inequality for empirical distribution
functions.

Theorem (Dvoretsky-Kiefer-Wolfowitz-Massart). Let tXiuiP iid„ X. Let X have distribution
function FX , and let Fn be the empirical distribution function of tXiuiPrns. Then for every t " 0:

Pr
´

}FXp¨q ´ Fnp¨q}L8p q # t
¯

# 2 expp´2nt2q:

This ensures convergence of distribution functions in high probability.
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