
Deck 3: Matrix multiplication: preasymptotic estimation
Math 7870: Topics in Randomized Numerical Linear Algebra

Spring 2026

Akil Narayan

Rand Matmat Math 7870, Spring 2026 – UofU 1



Recall: matmat

We proposed a randomized algorithm for approximating AB using uniform sampling.

The basic idea was to write AB as a sum of rank-1 outer products, and form an (unbiased)
estimator by uniformly at random summing N of the rank-1 matrices.

We identified, in principle, the type of distribution that the estimator has: by the CLT, a normal
centered random variable with a total variance scaling like 1{N.

What needs to be done: guarantees, and pre-asymptotic estimation.
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A simplification of matmat

It’ll be convenient for us to get the crux of the ideas by simplifying the problem:

Given vectors a;b P k , let’s approximate xb; ay “ aTb using the same idea as before.

The goal is to not sample the entire set of entries of both vectors.

The procedure now is a little more transparent:

aTb “
ÿ

jPrks
ajbj ùñ pXpkajbjq “ 1

k
;

so that,

X “
ÿ

jPrks
pXpkajbjqkajbj “

ÿ

jPrks
ajbj “ aTb
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Concentration for inner products
We can explicitly compute,

VarX “ X2 ´ p Xq2 “ k
ÿ

jPrks
pajbjq2 ´

¨

˝
ÿ

jPrks
ajbj

˛

‚
2

:

Therefore, if Xn
iid„ X, then by the LLN + CLT,

lim
NÒ8

1

N

ÿ

nPrNs
Xn “ aTb;

?
N

¨

˝ 1

N

ÿ

nPrNs
Xn ´ aTb

˛

‚NÒ8„ N p0;VarpXqq:

This is, again, only asymptotic.

However, we do have a preasymptotic quantitative understanding: Var 1N
!

nPrNs Xn “ 1
NVarX.

We can compute this variance. Define a vector c as,
c “ a d b P k ; cj “ ajbj ; X “ 1T c :

Then we have,

VarX “ k}c}22 ´
ˇ̌
ˇ1T c

ˇ̌
ˇ
2
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Best- and worst-case variance

c “ a d b; VarX “ k}c}22 ´
ˇ̌
ˇ1T c

ˇ̌
ˇ
2

Good algorithmic performance: VarX is small, relative to the (squared) oracle value.
What kinds of vectors c maximize/minimize the variance?

1
ˇ̌
1T c

ˇ̌2VarX “ k
ˇ̌
1T pc

ˇ̌2 ; pc :“ c

}c}2
:

The best case: pc “ 1?
k
1. Then VarX “ 0.

(I.e., each Xj takes a single value, equal to aTb, with probability 1.)

The worst case: c K 1, i.e., c has positive and negative components of approximately the same
mass. Then VarX “ k}c}22
(I.e.,

!
n Xn sums positive and negative components with similar “mass”.)

A near-worst case: pc “ e j , so that VarX “ pk ´ 1q}c}22.
(I.e., aTb has a bunch of zero summands, which we randomly sample with nonzero probability....)

Rand Matmat Math 7870, Spring 2026 – UofU 5



Best- and worst-case variance

c “ a d b; VarX “ k}c}22 ´
ˇ̌
ˇ1T c

ˇ̌
ˇ
2

Good algorithmic performance: VarX is small, relative to the (squared) oracle value.
What kinds of vectors c maximize/minimize the variance?

1
ˇ̌
1T c

ˇ̌2VarX “ k
ˇ̌
1T pc

ˇ̌2 ; pc :“ c

}c}2
:

The best case: pc “ 1?
k
1. Then VarX “ 0.

(I.e., each Xj takes a single value, equal to aTb, with probability 1.)

The worst case: c K 1, i.e., c has positive and negative components of approximately the same
mass. Then VarX “ k}c}22
(I.e.,

!
n Xn sums positive and negative components with similar “mass”.)

A near-worst case: pc “ e j , so that VarX “ pk ´ 1q}c}22.
(I.e., aTb has a bunch of zero summands, which we randomly sample with nonzero probability....)

Rand Matmat Math 7870, Spring 2026 – UofU 5



Best- and worst-case variance

c “ a d b; VarX “ k}c}22 ´
ˇ̌
ˇ1T c

ˇ̌
ˇ
2

Good algorithmic performance: VarX is small, relative to the (squared) oracle value.
What kinds of vectors c maximize/minimize the variance?

1
ˇ̌
1T c

ˇ̌2VarX “ k
ˇ̌
1T pc

ˇ̌2 ; pc :“ c

}c}2
:

The best case: pc “ 1?
k
1. Then VarX “ 0.

(I.e., each Xj takes a single value, equal to aTb, with probability 1.)

The worst case: c K 1, i.e., c has positive and negative components of approximately the same
mass. Then VarX “ k}c}22
(I.e.,

!
n Xn sums positive and negative components with similar “mass”.)

A near-worst case: pc “ e j , so that VarX “ pk ´ 1q}c}22.
(I.e., aTb has a bunch of zero summands, which we randomly sample with nonzero probability....)

Rand Matmat Math 7870, Spring 2026 – UofU 5



Best- and worst-case variance

c “ a d b; VarX “ k}c}22 ´
ˇ̌
ˇ1T c

ˇ̌
ˇ
2

Good algorithmic performance: VarX is small, relative to the (squared) oracle value.
What kinds of vectors c maximize/minimize the variance?

1
ˇ̌
1T c

ˇ̌2VarX “ k
ˇ̌
1T pc

ˇ̌2 ; pc :“ c

}c}2
:

The best case: pc “ 1?
k
1. Then VarX “ 0.

(I.e., each Xj takes a single value, equal to aTb, with probability 1.)

The worst case: c K 1, i.e., c has positive and negative components of approximately the same
mass. Then VarX “ k}c}22
(I.e.,

!
n Xn sums positive and negative components with similar “mass”.)

A near-worst case: pc “ e j , so that VarX “ pk ´ 1q}c}22.
(I.e., aTb has a bunch of zero summands, which we randomly sample with nonzero probability....)

Rand Matmat Math 7870, Spring 2026 – UofU 5



Best- and worst-case variance

c “ a d b; VarX “ k}c}22 ´
ˇ̌
ˇ1T c

ˇ̌
ˇ
2

Good algorithmic performance: VarX is small, relative to the (squared) oracle value.
What kinds of vectors c maximize/minimize the variance?

1
ˇ̌
1T c

ˇ̌2VarX “ k
ˇ̌
1T pc

ˇ̌2 ; pc :“ c

}c}2
:

The best case: pc “ 1?
k
1. Then VarX “ 0.

(I.e., each Xj takes a single value, equal to aTb, with probability 1.)

The worst case: c K 1, i.e., c has positive and negative components of approximately the same
mass. Then VarX “ k}c}22
(I.e.,

!
n Xn sums positive and negative components with similar “mass”.)

A near-worst case: pc “ e j , so that VarX “ pk ´ 1q}c}22.
(I.e., aTb has a bunch of zero summands, which we randomly sample with nonzero probability....)

Rand Matmat Math 7870, Spring 2026 – UofU 5



Importance sampling, I
The near-worst case reveals a qualitative issue: sampling entries uniformly can provide suboptimal
results.

An alternative: sampling based on knowledge of entries of a;b.

In particular, we can generalize our random variable to have a di!erent mass function:

pX

ˆ
1

pj
ajbj

˙
“ pj with

ÿ

jPrks
pj “ 1 ùñ X “ aTb:

We can craft the pj values to improve performance. E.g., by minimizing variance.

Through a similar computation as before, we have,

VarX “ X2 ´ p Xq2 “
ÿ

jPrks

1

pj
pajbjq2 ´

¨

˝
ÿ

jPrks
ajbj

˛

‚
2

:

So we can attempt to solve the problem:
min
pj

VarX subject to
ÿ

jPrks
pj “ 1:
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Importance sampling, II
We have:

pj “ |cj |
}c}1

ùñ VarX “ }c}21 ´ p1T cq2:

In this case, if c “ e j , then VarX “ 0. (This was the “near” worst-case before.)

This analysis can be lifted to the case when the inner product is pm ˆ nq-valued (i.e., a matrix).
Like before, with A P mˆk and B P kˆn,

AB “
ÿ

jPrks
ajb

T
j :

With X P mˆn the random matrix,

pX

ˆ
1

pj
ajb

T
j

˙
“ pj ùñ X “ AB:
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Importance sampling, III
A direct computation yields that the expected Frobenius norm error is,

››››››
AB ´ 1

N

ÿ

qPrNs
Xq

››››››

2

F

“ 1

N
tracepVarpvecpXqqq “ 1

N

ÿ

pi ;jqPrmsˆrns
VarppABqi ;jq

“ 1

N

¨

˝
ÿ

jPrks

1

pj
}aj}2}bj}2 ´ }AB}2F

˛

‚:

This quadratic norm is miminized by choosing,

pj “ }aj}2}bj}2!
qPrks }|aq}2}bq}2

ùñ tracepVarpvecpXqqq “
¨

˝
ÿ

qPrks
}aq}2}bq}2

˛

‚
2

´ }AB}2F :

This does give preasymptotic quantitative understanding of first- and second-moments of the
estimator.
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A note on practicality

We sort-of have a chicken vs egg problem: To compute }aq}2 and }bq}2 for all q naively, we
require k-dependent complexity, which we’re trying to avoid.

Sometimes a there is exploitable structure in matrices that allow us to compute these values.

Alteratively, if we can approximate these values, then we can still achieve similar results.

Namely, if we can choose the probabilities pj so that for some fi ! 1,

pj " fi
}aj}2}bj}2!

qPrks }|aq}2}bq}2

then the resulting quadratic expected error su!ers a multiplicative 1{fi penalty.

The point: we can sample near -optimally and get near-optimal results.
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Moments to probabilities, I
We’ve computed the expectation of the error.
More practical information, such as the probability of failure, require more analysis. A simple,
suboptimal strategy is to use e.g., Markov’s inequality,

PrpX " tq ! X

t
pX " 0 wp1q

To use this in our matrix multiplication setting, let,

Z “

››››››
AB ´ 1

N

ÿ

qPrNs
Xq

››››››

2

F

; Z “ 1

N

»

–

¨

˝
ÿ

qPrks
}aq}2}bq}2

˛

‚
2

´ }AB}2F

fi

fl “:
˛

N
:

Our goals are:
• Given › # 0, ensure that Z ! ›˛.
• Given ‹ # 0, ensure failure of the above with probability at most ‹.

I.e., given ›; ‹, when is it true that PrpZ " ›˛q ! ‹?
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Moments to probabilities, II

We require N " 1{p‹›q for this to occur.

This is a precise sample complexity to achieve prescribed accuracy with prescribed error.

This means: if we choose N " 1{p‹›q, then Z ! ›˛ with probability at least 1 ´ ‹.

(To achieve simplicity, we’re kind of cheating here: this is a bound for quadratic error. Really we should
worry about

?
Z. By using Jensen’s inequality, N " 1{p‹›q2 is the sample requirement for ›-relative

accuracy on
?
Z.)
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Matrix multiplication summary
Using a simple concentration strategy, we have a random sampling algorithm (with probabilistic
weights depending on the columw/row norms of A;B) that achieves a prescribed error with a
prescribed probability.

• We can explicitly compute moments.
• A variance-like quadratic deviation can be minimized by choosing appropriate probabilities

(that require knowledge of A;B).
• These moments can be transformed into failure probabilities through inequalities. (We used

Markov’s inequality.)
• This results in precise sample requirements to achieve (error, success).
• The resulting sampling complexity is not that great: ensuring an at-most 10% failure rate

with 10% relative error requires 100 samples. (And this is to guarantee achieving the
quadratic variance-type error.)

• We can do better...with some more work. The way we’ve transformed moments into
probabilities is a very loose translation. Stronger, sharper results require more precise
estimates of concentration.
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