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Notation

Some consistent notation we'll use: u*r’W!

Probability of an event w: Pr(w)

Probability events: A, B, etc. @%
Conditional probability: Pr(A|B) = Pr(An B)/Pr(B

Scalar random variables (RV): uppercase Roman characters X,Y, etc.

The (cumulative) distribution function for X: Fx(x) = Pr(X < x)

The mass function for discrete X: px(x) = Pr(X = x) = Fx(x) —lim,_,,— Fx(y)
The density function for continuous X: fx(x) = Fi(x)

o—
Joint and conditional distributions: Fxy(x, y), FX|y(x]y). ; &/‘px[x\
The expectation operator: 2( —=

{ h(x)fx(x)dx, X is continuous
Eh(X) = { 2 h(x)JpX(x-), X is discrete

Moments: [EX is the mean, E(X — ]EX)2 is the variance, etc.

Ver(x) J
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Standard probability distributions

Continuous:
= Uniform:
= Beta
= Gaussian
= Gamma
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Standard probability distributions
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Continuous:

= Uniform:
= Beta
= Gaussian
= Gamma

Discrete:
= Uniform
= Poisson
= Bernoulli
= Binomial
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Sampling from non-standard distributions is generally tricky, but is simple for discrete
distributions.
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Sampling from non-standard discrete distributions
Let X be a finitely-supported (discrete) random variable, with ordered outcomes xi, . .., X,.

Given its distribution Fx, we can generate samples as follows:

Let Y be a (continuous) uniform RV on [0, 1].

= Generate a realization Yy of Y. -
= Find the smallest j € [n] such that Fx(x;) > Yo. — 1
m Set Xo=x;. | amecemmmmessceececececeeseseeeeeeaesn et
oo —d— >
Then Xj is a random variable distributed according to X.
This is called i f I e
(This is called inverse transform sampling.) wunbes
In [0 /7
Note that Fx(xx) is rather easy to compute if we only have the mass function: )

K
Fx(xi) = ) px(xe)-
=1

Probability Review Math 7870, Spring 2026 — UofU 4



Asymptotics, |

Some crown jewels of probability theory are asymptotic results on the concentration of sums:

Let X; be independent and identically distributed (iid) copies of X. The core question is

What kind of quantity is Z X;?
j=1

As written, this sum is unbounded in n. Normalizing by n gives a sample average.
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Asymptotics, |

Some crown jewels of probability theory are asymptotic results on the concentration of sums:
Let X; be independent and identically distributed (iid) copies of X. The core question is
n
What kind of quantity is Z X;?
j=1
As written, this sum is unbounded in n. Normalizing by n gives a sample average.

The Law of Large Numbers asserts that, if X has finite mean, then the sample average converges
to the mean:

n—oo N .

1
lim =} X; = EX
Jeln]

This limit holds “strongly”, meaning that the probability that the equality holds is 1.
This implies a “weak” statement, that for large n the probability of a small deviation of the
sample average from [EX converges to 1.
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Asymptotics, ||
The LLN encapsulates essentially the entire message of this course: If we don’t know [EX, we can
approximate it by taking an empirical average.

The main deficiency of the LLN: it provides no preasymptotic information. If n = 1000, we have
no idea how good of an estimator the sample mean is.

To characterize discrepancy of the estimator for fixed n, we want to know the “size” of the
following random variable:

1
EX — — X
IR
Jj€[n]
We expect that the random variable gets closer to 0O for larger n.
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Asymptotics, ||
The LLN encapsulates essentially the entire message of this course: If we don't know [EX, we can
approximate it by taking an empirical average.

The main deficiency of the LLN: it provides no preasymptotic information. If n = 1000, we have
no idea how good of an estimator the sample mean is.

To characterize discrepancy of the estimator for fixed n, we want to know the “size” of the
following random variable:

1

EX — - -
IR
Jj€[n]

We expect that the random variable gets closer to 0 for larger n.

The first moment of this random variable is not informative: its mean is 0. What about its second
moment?
Because this is a sum of iid random variables, we have,

1 1
V S— == .
ar | EX p E X; nVar(X)
J€[n]
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Asymptotics, IlI

1 Dev(X
StDev | mx _ L Z X; | = const  StDev(X)
n

Jeln] v v

There is a strong quantitative statement of this fact, the Central Limit Theorem (CLT).

Assume that X has finite first and second moments. Then for large n,

1
Vo EX — = Z X LR N (0, Var(X)) (Normal random variable of mean 0 and variance Var(X))
n
Jeln]

d i - - - 1 - - . . . .
Above, — means converges “in distribution”, i.e., its distribution function converges to the
distribution function of a normal random variable.
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Asymptotics, IlI

1 const  StDev(X)
D EX — — E X | = =

n
There is a strong quantitative statement of this fact, the Central Limit Theorem (CLT).

Assume that X has finite first and second moments. Then for large n,

1
Vo EX — = Z X LR N (0, Var(X)) (Normal random variable of mean 0 and variance Var(X))
n
Jeln]

d i - - - 1 - - . . . .
Above, — means converges “in distribution”, i.e., its distribution function converges to the
distribution function of a normal random variable.

In summary: the LLN tells us the limit of an empirical sum. The CLT tell us the (asymptotic)
discrepancy between the empirical sum and its limit.

These are the simplest examples of (asymptotic) concentration estimates: they tell us about the

limit of an empirical sum.
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Random sums in NLA: a simple example, |

Here's a somewhat transparent example of why concentration estimates might be useful for NLA:

Consider A € C™*k and B € Ckxn.

Our scenario: suppose k » m, n» 1. Computing AB directly is (super) expensive.
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Random sums in NLA: a simple example, |

Here's a somewhat transparent example of why concentration estimates might be useful for NLA:

Consider A € C™*k and B € Ckxn.

Our scenario: suppose k » m, n » 1. Computing AB directly is (super) expensive.

The matrix-matrix product AB is both
= an array of inner products (between columns of A* and columns of B)
= a sum of outer products (between columns of A and columns of B¥)

This latter form is the more useful interpretation for us.

f " ~ b}t— -
Az [0--a,) B[ A= 2.0 )]
: ’ —bf - J
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Random sums in NLA: a simple example, |I

Ac C™k and B € Ck*". Compute AB.

Here's how we can mitigate the cost of summing over k in this example:

Let (a;)je[x] be the columns of A, and let (b7)je[x) be the rows of B™:

Probability Review
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Random sums in NLA: a simple example, |I

< ¥
Aec C™k and B € C<*". Compute AB. ,4— - ) 0 L '
8 jetiy Y

Here's how we can mitigate the cost of summing over k in this example:

Let (a;)je[x] be the columns of A, and let (b7)je[x be the rows of B*:

— b —
. | — b —

A= a a» --- ax |, B =
— b —
Define the C™*"-valued random matrix X that has uniform mass on its support:

1
px(ka;jb}) = P (X uniformly at random selects a k-scaled outer product)

BY = T pylkaht) kg b = 2 kghl = s
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Random sums in NLA: a simple example, llI
A direct computation reveals:

EX = ) px(kajb})ka;b} Z ka;b}
Jjelk]
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Random sums in NLA: a simple example, llI
A direct computation reveals:

EX = ) px(kajb})ka;b} 2 ka;b}
Jjelk]
The above realization is the linchpin for a randomized method Now let X, j >
X. Then for some N > 1, the (multivariate) LLN and CLT tell us:

—ZX Niee, V'N vec B——ZX NZ®
CJV(VH(S()

tr(E) =V = k Y. |AiqBq,* — |AB|% > 0
i.J,q

where X satlsfles,
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Random sums in NLA: a simple example, llI
A direct computation reveals:

EX = ) px(kajb})ka;b} 2 ka;b}
jelk]

The above realization is the linchpin for a randomized method Now let X;, j > 1 be iid copies of
X. Then for some N > 1, the (multivariate) LLN and CLT tell us:

d 2 X, =, VN vec B—— 3 X, | "= N0, E),

qe[N
where X satlsfles,

tr(E) =V = k Y. |AiqBq > — |AB|} = 0
i.J,q

This is a useful result: if V' is not too big, then for enormous k, we can take N « k and obtain a
reasonable estimate for AB with some understanding of the error.
(NB: V =0if aj = a and b; = b are j-independent vectors.)
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A prototypical randomized matmat

Here is a prototype of a randomized algorithm for the matrix-matrix multiplication AB, given A
and B:

Prescribe N. Set i =0, C =0e C™*",

If i = N, go to step 5.

Choose j € [k] uniformly at random.
s, (< Ch oy, 2, b
Set i — i+ 1. Go to step 1.

5. Return C.

This algorithm comes with some understanding of error: C — AB is centered, with total variance
scaling like V//N.

= = o
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Are we done?

Some outcomes of this problem:
= We crafted a randomized algorithm for approximating AB.
= Randomness is an algorithmic convenience. It is not a model of noise of stochasticity.

The algorithm can fail badly with nonzero probability: E.g., there is nonzero probability that
we always choose index j = 1, resulting in C = ka;b] # AB.

= With high probability the algorithm is not exact: C # AB with high probability.
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Are we done?

Some outcomes of this problem:
= We crafted a randomized algorithm for approximating AB.

= Randomness is an algorithmic convenience. It is not a model of noise of stochasticity.

The algorithm can fail badly with nonzero probability: E.g., there is nonzero probability that
we always choose index j = 1, resulting in C = ka;b] # AB.

With high probability the algorithm is not exact: C # AB with high probability.

We haven't really solved this problem:

= The LLN and CLT are not quantitative enough: We don't have a precise bound on how C
deviates from AB, we only have N-asymptotic results.

= Without this quantitative bound, we cannot construct reliable algorithms/software.
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