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Notation
Some consistent notation we’ll use:

• Probability of an event !: Prp!q
• Probability events: A, B, etc.
• Conditional probability: PrpA|Bq “ PrpA X Bq{PrpBq
• Scalar random variables (RV): uppercase Roman characters X, Y , etc.
• The (cumulative) distribution function for X: FXpxq “ PrpX ! xq
• The mass function for discrete X: pXpxq “ PrpX “ xq “ FXpxq ´ limyÑx´ FXpyq
• The density function for continuous X: fXpxq “ F 1

Xpxq
• Joint and conditional distributions: FX;Y px; yq, FX|Y px |yq.
• The expectation operator:

hpXq “
" !

hpxqfXpxqdx; X is continuous"
j hpxqjpXpxjq; X is discrete

• Moments: X is the mean, pX ´ Xq2 is the variance, etc.
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Standard probability distributions

Continuous:
• Uniform:
• Beta
• Gaussian
• Gamma 0 0.2 0.4 0.6 0.8 1
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Discrete:
• Uniform
• Poisson
• Bernoulli
• Binomial

Sampling from non-standard distributions is generally tricky, but is simple for discrete
distributions.
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Discrete:
• Uniform
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• Bernoulli
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Sampling from non-standard distributions is generally tricky, but is simple for discrete
distributions.
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Sampling from non-standard discrete distributions
Let X be a finitely-supported (discrete) random variable, with ordered outcomes x1; : : : ; xn.

Given its distribution FX , we can generate samples as follows:

Let Y be a (continuous) uniform RV on r0; 1s.
• Generate a realization Y0 of Y .
• Find the smallest j P rns such that FXpxjq " Y0.
• Set X0 “ xj .

Then X0 is a random variable distributed according to X.

(This is called inverse transform sampling.)

Note that FXpxkq is rather easy to compute if we only have the mass function:

FXpxkq “
kÿ

‘“1

pXpx‘q:
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Asymptotics, I
Some crown jewels of probability theory are asymptotic results on the concentration of sums:

Let Xj be independent and identically distributed (iid) copies of X. The core question is

What kind of quantity is
nÿ

j“1

Xj?

As written, this sum is unbounded in n. Normalizing by n gives a sample average.

The Law of Large Numbers asserts that, if X has finite mean, then the sample average converges
to the mean:

lim
nÑ8

1

n

ÿ

jPrns
Xj “ X

This limit holds “strongly”, meaning that the probability that the equality holds is 1.
This implies a “weak” statement, that for large n the probability of a small deviation of the
sample average from X converges to 1.
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Asymptotics, II
The LLN encapsulates essentially the entire message of this course: If we don’t know X, we can
approximate it by taking an empirical average.

The main deficiency of the LLN: it provides no preasymptotic information. If n “ 1000, we have
no idea how good of an estimator the sample mean is.

To characterize discrepancy of the estimator for fixed n, we want to know the “size” of the
following random variable:

X ´ 1

n

ÿ

jPrns
Xj

We expect that the random variable gets closer to 0 for larger n.

The first moment of this random variable is not informative: its mean is 0. What about its second
moment?
Because this is a sum of iid random variables, we have,

Var

¨

˝ X ´ 1

n

ÿ

jPrns
Xj

˛

‚“ 1

n
VarpXq:
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Asymptotics, III

StDev

¨

˝ X ´ 1

n

ÿ

jPrns
Xj

˛

‚“ const?
n

“ StDevpXq?
n

There is a strong quantitative statement of this fact, the Central Limit Theorem (CLT).

Assume that X has finite first and second moments. Then for large n,

?
n

¨

˝ X ´ 1

n

ÿ

jPrns
Xj

˛

‚ d#Ñ N p0;VarpXqq (Normal random variable of mean 0 and variance VarpXq)

Above, d#Ñ means converges “in distribution”, i.e., its distribution function converges to the
distribution function of a normal random variable.

In summary: the LLN tells us the limit of an empirical sum. The CLT tell us the (asymptotic)
discrepancy between the empirical sum and its limit.

These are the simplest examples of (asymptotic) concentration estimates: they tell us about the
limit of an empirical sum.
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Random sums in NLA: a simple example, I

Here’s a somewhat transparent example of why concentration estimates might be useful for NLA:

Consider A P mˆk and B P kˆn.

Our scenario: suppose k " m; n " 1. Computing AB directly is (super) expensive.

The matrix-matrix product AB is both
• an array of inner products (between columns of A˚ and columns of B)
• a sum of outer products (between columns of A and columns of B˚)

This latter form is the more useful interpretation for us.
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Random sums in NLA: a simple example, II

A P mˆk and B P kˆn. Compute AB.

Here’s how we can mitigate the cost of summing over k in this example:

Let pajqjPrks be the columns of A, and let pb˚
j qjPrks be the rows of B˚:

A “
¨

˝ a1 a2 ¨ ¨ ¨ ak

˛

‚; B “

¨

˚̊
˚̋

b˚
1

b˚
2
...
b˚
k

˛

‹‹‹‚:

Define the mˆn-valued random matrix X that has uniform mass on its support:

pXpkajb˚
j q “ 1

k
(X uniformly at random selects a k-scaled outer product)
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Random sums in NLA: a simple example, III
A direct computation reveals:

X “
ÿ

jPrks
pXpkajb˚

j qkajb˚
j “ 1

k

ÿ

jPrks
kajb

˚
j “ AB:

The above realization is the linchpin for a randomized method: Now let X j , j " 1 be iid copies of
X. Then for some N " 1, the (multivariate) LLN and CLT tell us:

1

N

ÿ

qPrNs
Xq

NÒ8###Ñ AB;
?
N vec

¨

˝AB ´ 1

N

ÿ

qPrNs
Xq

˛

‚N“8„ N p0;!q;

where ! satisfies,

trp!q “ V :“ k
ÿ

i ;j;q

|Ai ;qBq;j |2 ´ }AB}2F " 0

This is a useful result: if V is not too big, then for enormous k , we can take N ! k and obtain a
reasonable estimate for AB with some understanding of the error.
(NB: V “ 0 if aj “ a and bj “ b are j-independent vectors.)
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A prototypical randomized matmat

Here is a prototype of a randomized algorithm for the matrix-matrix multiplication AB, given A
and B:

0. Prescribe N. Set i “ 0, C “ 0 P mˆn.
1. If i “ N, go to step 5.
2. Choose j P rks uniformly at random.
3. Set C $ k

N ajb
˚
j .

4. Set i $ i ` 1. Go to step 1.
5. Return C.

This algorithm comes with some understanding of error: C ´ AB is centered, with total variance
scaling like V {N.
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Are we done?

Some outcomes of this problem:
• We crafted a randomized algorithm for approximating AB.
• Randomness is an algorithmic convenience. It is not a model of noise of stochasticity.
• The algorithm can fail badly with nonzero probability: E.g., there is nonzero probability that

we always choose index j “ 1, resulting in C “ ka1b
˚
1 ‰ AB.

• With high probability the algorithm is not exact: C ‰ AB with high probability.

We haven’t really solved this problem:
• The LLN and CLT are not quantitative enough: We don’t have a precise bound on how C

deviates from AB, we only have N-asymptotic results.
• Without this quantitative bound, we cannot construct reliable algorithms/software.
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