
Deck 1: A Primer on Numerical Linear Algebra
Math 7870: Topics in Randomized Numerical Linear Algebra

Spring 2026

Akil Narayan

NLA Primer Math 7870, Spring 2026 – UofU 1

Notation

Some consistent notation we’ll use:
• Non-negative integers: n;m; p; r P 0

• Index sets: rns “ t1; 2; : : : ; nu
• Vectors: v P n (often we’ll specialize to n for notational simplicity)
• Matrices: A P mˆn

• Slicing vectors: Given, S P rns, then vS P |S| is the S-sliced entries from v

• Slicing matrices: Given, S P rns, then A˚S P mˆ|S| is the S-sliced columns from A

• Row slices: AT˚ for T ! rms. The matrix ATS also makes sense.
• Matrix (conjugate) transpose/adjoint, determinant, trace: A˚ P nˆm, detpAq, trpAq.
• Standard inner product on vectors: xv ;wy “ w˚v P .
• Vectors are orthogonal (in ‘2) if xv ;wy “ 0.

Some basic properties:
• 1-element slices produces entries: S “ tiu means vS “ vi . T “ tju means ATS “ Aj i .
• | detA| “ 1 i! A has orthonormal columns.
• Norms } ¨ } on vectors or matrices are non-negative, order-1 positively homogeneous, convex

functions with trivial zero level set. (Cf. the standard ‘p norm.)

NLA Primer Math 7870, Spring 2026 – UofU 2

Notation

Some consistent notation we’ll use:
• Non-negative integers: n;m; p; r P 0

• Index sets: rns “ t1; 2; : : : ; nu
• Vectors: v P n (often we’ll specialize to n for notational simplicity)
• Matrices: A P mˆn

• Slicing vectors: Given, S P rns, then vS P |S| is the S-sliced entries from v

• Slicing matrices: Given, S P rns, then A˚S P mˆ|S| is the S-sliced columns from A

• Row slices: AT˚ for T ! rms. The matrix ATS also makes sense.
• Matrix (conjugate) transpose/adjoint, determinant, trace: A˚ P nˆm, detpAq, trpAq.
• Standard inner product on vectors: xv ;wy “ w˚v P .
• Vectors are orthogonal (in ‘2) if xv ;wy “ 0.

Some basic properties:
• 1-element slices produces entries: S “ tiu means vS “ vi . T “ tju means ATS “ Aj i .
• | detA| “ 1 i! A has orthonormal columns.
• Norms } ¨ } on vectors or matrices are non-negative, order-1 positively homogeneous, convex

functions with trivial zero level set. (Cf. the standard ‘p norm.)

NLA Primer Math 7870, Spring 2026 – UofU 2

Matrix classifications and structure

• Square/rectangular/wide/tall
• (skew-)Hermitian
• Unitary/orthogonal
• Normal
• Diagonalizable
• Sparse
• (Orthogonal) projectors
• Circulant

NLA Primer Math 7870, Spring 2026 – UofU 3

Matrix structure is very useful

E.g.: A matrix A P nˆn is circulant if it satisfies,

a1 a2 a3 a4 a5
a5 a1 a2 a3 a4
a4 a5 a1 a2 a3
a3 a4 a5 a1 a2
a2 a3 a4 a5 a1








A “

¨

˚̊
˚̊
˚̋

a1 an an´1 ¨ ¨ ¨ a2
a2 a1 an ¨ ¨ ¨ a3

.

an an´1 an´2 ¨ ¨ ¨ a1

˛

‹‹‹‹‹‚
; i.e.:

"
A˚;i`1 “ PA˚;i ; i P rn ´ 1s
A˚;1 “ PA˚;n:

where P is the down-shift permutation matrix:

P “ pe2 e2 e3 : : : en e1q “

¨

˚̊
˚̊
˚̋

1
1

1
. . .

1

˛

‹‹‹‹‹‚
; P

¨

˚̊
˚̊
˚̋

v1
v2
...

vn´1

vn

˛

‹‹‹‹‹‚
“

¨

˚̊
˚̊
˚̋

vn
v1
...

vn´2

vn´1

˛

‹‹‹‹‹‚

The punchline: circulant matrices are diagonalizable by the discrete Fourier transform!
(Why is this useful...?)
NLA Primer Math 7870, Spring 2026 – UofU 4

Matrix structure is very useful

E.g.: A matrix A P nˆn is circulant if it satisfies,

a1 a2 a3 a4 a5
a5 a1 a2 a3 a4
a4 a5 a1 a2 a3
a3 a4 a5 a1 a2
a2 a3 a4 a5 a1








A “

¨

˚̊
˚̊
˚̋

a1 an an´1 ¨ ¨ ¨ a2
a2 a1 an ¨ ¨ ¨ a3

.

an an´1 an´2 ¨ ¨ ¨ a1

˛

‹‹‹‹‹‚
; i.e.:

"
A˚;i`1 “ PA˚;i ; i P rn ´ 1s
A˚;1 “ PA˚;n:

where P is the down-shift permutation matrix:

P “ pe2 e2 e3 : : : en e1q “

¨

˚̊
˚̊
˚̋

1
1

1
. . .

1

˛

‹‹‹‹‹‚
; P

¨

˚̊
˚̊
˚̋

v1
v2
...

vn´1

vn

˛

‹‹‹‹‹‚
“

¨

˚̊
˚̊
˚̋

vn
v1
...

vn´2

vn´1

˛

‹‹‹‹‹‚

The punchline: circulant matrices are diagonalizable by the discrete Fourier transform!
(Why is this useful...?)
NLA Primer Math 7870, Spring 2026 – UofU 4

Why focus on linear algebra?

The canonical reasons:
• Solving linear systems
• Vector manipulation (e.g., orthogonalizing, identifying subspaces)
• Constructing operators: projectors, discretization of di!erential operators

Some less obvious reasons:
• Compression, dimension reduction
• High-order optimization schemes
• Low-rank approximations
• Training for AI/LLM/neural architectures

There are “classical” applications where linear algebra is known to be useful (physics-based
modeling, classical statistics, computer vision/animation).

But it’s quite hard to undersell the importance of (numerical) linear algebra in modern
computational applications (data science/analysis, machine learning, language models).

NLA Primer Math 7870, Spring 2026 – UofU 5

Why focus on linear algebra?

The canonical reasons:
• Solving linear systems
• Vector manipulation (e.g., orthogonalizing, identifying subspaces)
• Constructing operators: projectors, discretization of di!erential operators

Some less obvious reasons:
• Compression, dimension reduction
• High-order optimization schemes
• Low-rank approximations
• Training for AI/LLM/neural architectures

There are “classical” applications where linear algebra is known to be useful (physics-based
modeling, classical statistics, computer vision/animation).

But it’s quite hard to undersell the importance of (numerical) linear algebra in modern
computational applications (data science/analysis, machine learning, language models).

NLA Primer Math 7870, Spring 2026 – UofU 5

Computational building blocks

Linear algebra (LA), roughly, studies the mathematics of objects in linear (sub)spaces, which
include operators.
(i.e., vectors, matrices, and linear-type operations involving these)

Numerical linear algebra (NLA), roughly, studies computational methods/algorithms that one
actually uses to accomplish some linear algebraic operations.
(e.g., computing the determinant of a matrix)

The core, classical components of NLA are matrix decompositions.

NLA Primer Math 7870, Spring 2026 – UofU 6

Matrix decompositions/factorizations

=A

















(LU factorization)

A=

















(QR factorization)

=







A

















(Eigenvalue decomposition)

=A

























(Singular value decomposition)

NLA Primer Math 7870, Spring 2026 – UofU 7

(P)LU

Given A P mˆn, its LU decomposition is,
A “ LU; L P mˆp; U P pˆn; p “ mintm; nu;

where L is lower triangular, and U is upper triangular.

The LU decomposition need not exist for an arbitrary matrix A.
(It exists i! detArqs;rqs ‰ 0 for all q P rps.)

A more general LU-type decomposition is the pivoted LU decomposition. This is one of the
decompositions:

AP 2 “ LU; P 2 P nˆn;

P 1A “ LU; P 1 P mˆm;

P 1AP 2 “ LU; P 1 P mˆm; P 2 P nˆn;

where both P 1 and P 2 are row and column permutation matrices, respectively.
(A permutation matrix is a unitary matrix, where each row/colunn is a cardinal unit vector.)

Pivoted LU decompositions exist for any matrix.
NLA Primer Math 7870, Spring 2026 – UofU 8

(P)LU

Given A P mˆn, its LU decomposition is,
A “ LU; L P mˆp; U P pˆn; p “ mintm; nu;

where L is lower triangular, and U is upper triangular.

The LU decomposition need not exist for an arbitrary matrix A.
(It exists i! detArqs;rqs ‰ 0 for all q P rps.)

A more general LU-type decomposition is the pivoted LU decomposition. This is one of the
decompositions:

AP 2 “ LU; P 2 P nˆn;

P 1A “ LU; P 1 P mˆm;

P 1AP 2 “ LU; P 1 P mˆm; P 2 P nˆn;

where both P 1 and P 2 are row and column permutation matrices, respectively.
(A permutation matrix is a unitary matrix, where each row/colunn is a cardinal unit vector.)

Pivoted LU decompositions exist for any matrix.
NLA Primer Math 7870, Spring 2026 – UofU 8

(P)LU – in practice and uses

The computation of the LU decomposition is “easy”: it’s Gaussian elimination.
(This is actually how the direct computation is done on a computer.)

The permutations are chosen iteratively so that elements in pivot locations have as large a
magnitude as possible.

The most popular pivoting strategy is row(-only) pivoting.

Why compute an LU decomposition?
• This is how invertible linear systems are solved: Ax “ b "Ñ x “ U´1L´1P ˚b.
• This is how “simultaneous” systems are solved (and how matrix inverses are computed).
• This is how determinants are computed: detA “ pdetP 1qpdetLqpdetUq.
• This is how (quasi-optimal) low-rank approximations are built. (“skeletonization”, “empirical

interpolation”)
• If A is Hermitian and positive-definite, then its LU decomposition (U “ L˚q is called the

Cholesky decomposition, which is quite useful when working with these classes of matrices.

NLA Primer Math 7870, Spring 2026 – UofU 9

(P)LU – in practice and uses

The computation of the LU decomposition is “easy”: it’s Gaussian elimination.
(This is actually how the direct computation is done on a computer.)

The permutations are chosen iteratively so that elements in pivot locations have as large a
magnitude as possible.

The most popular pivoting strategy is row(-only) pivoting.

Why compute an LU decomposition?
• This is how invertible linear systems are solved: Ax “ b "Ñ x “ U´1L´1P ˚b.
• This is how “simultaneous” systems are solved (and how matrix inverses are computed).
• This is how determinants are computed: detA “ pdetP 1qpdetLqpdetUq.
• This is how (quasi-optimal) low-rank approximations are built. (“skeletonization”, “empirical

interpolation”)
• If A is Hermitian and positive-definite, then its LU decomposition (U “ L˚q is called the

Cholesky decomposition, which is quite useful when working with these classes of matrices.

NLA Primer Math 7870, Spring 2026 – UofU 9

QR

Given A P mˆn, its QR decomposition is,

A “ QR; Q P mˆm; R P mˆn;

where Q is unitary (Q˚Q “ Im), and R is upper triangular.

There is also an “economical”/“thin” QR decomposition, mainly useful when m # n, which
truncates columns of Q corresponding to all-zero rows of R.

There’s also a (column-)pivoted version of QR:

AP “ QR; P P mˆm;

where P is chosen to ensure that the diagonal elements of R are non-decreasing.

NLA Primer Math 7870, Spring 2026 – UofU 10

QR

Given A P mˆn, its QR decomposition is,

A “ QR; Q P mˆm; R P mˆn;

where Q is unitary (Q˚Q “ Im), and R is upper triangular.

There is also an “economical”/“thin” QR decomposition, mainly useful when m # n, which
truncates columns of Q corresponding to all-zero rows of R.

There’s also a (column-)pivoted version of QR:

AP “ QR; P P mˆm;

where P is chosen to ensure that the diagonal elements of R are non-decreasing.

NLA Primer Math 7870, Spring 2026 – UofU 10

QR – in practice and uses

Explicit computation of the QR decomposition is “just” orthogonalizing the column vectors of A.
Gram-Schmidt orthogonalization can do this – but this is a numerically unstable procedure.

“Modified” Gram-Schmidt fixes the instability, but is not really used in practice: there are
procedures that employ a sequence of unitary transforms to compute the QR decomposition:

• Householder reflectors
• Givens rotations

This is how any modern implementation of the QR decomposition works in practice.

Why compute a QR decomposition?
• To orthogonalize vectors and/or compute orthogonal projection matrices
• This is how one could solve invertible linear systems: Ax “ b "Ñ x “ R´1Q˚b.
• This is how one solves (linear) least squares problems: Ax “ b "Ñ x “ R´1pQ˚;rnsq˚b.
• This is a core ingredient in computing eigenvalues (!).

NLA Primer Math 7870, Spring 2026 – UofU 11

QR – in practice and uses

Explicit computation of the QR decomposition is “just” orthogonalizing the column vectors of A.
Gram-Schmidt orthogonalization can do this – but this is a numerically unstable procedure.

“Modified” Gram-Schmidt fixes the instability, but is not really used in practice: there are
procedures that employ a sequence of unitary transforms to compute the QR decomposition:

• Householder reflectors
• Givens rotations

This is how any modern implementation of the QR decomposition works in practice.

Why compute a QR decomposition?
• To orthogonalize vectors and/or compute orthogonal projection matrices
• This is how one could solve invertible linear systems: Ax “ b "Ñ x “ R´1Q˚b.
• This is how one solves (linear) least squares problems: Ax “ b "Ñ x “ R´1pQ˚;rnsq˚b.
• This is a core ingredient in computing eigenvalues (!).

NLA Primer Math 7870, Spring 2026 – UofU 11

Eigenvalue decompositions

Given A P nˆn, its eigenvalue decomposition is given by,

A “ V !V ´1; V ;! P nˆn;

where ! is a diagonal matrix. The diagonal elements of ! are the eigenvalues of A, and the
columns of V are the corresponding eigenvectors of A.

Square matrices having an eigenvalue decomposition are diagonalizable. Not all square matrices
are diagonalizable. (But “most” are.)

Diagonalizable matrices are “just” diagonal matrices, when the mapping A is represented in the
right coordinate system.

There is a special class of matrices for which even more is true: A is normal if AA˚ “ A˚A. A
matrix is normal i! it’s unitarily diagonalizable, i.e., is diagonalizable with V a unitary matrix.

Normal matrices are diagonal matrices, when the input/output coordinates are simply
rotated/reflected.
(For example, Hermitian and skew-Hermitian matrices are normal.)

NLA Primer Math 7870, Spring 2026 – UofU 12

Eigenvalue decompositions

Given A P nˆn, its eigenvalue decomposition is given by,

A “ V !V ´1; V ;! P nˆn;

where ! is a diagonal matrix. The diagonal elements of ! are the eigenvalues of A, and the
columns of V are the corresponding eigenvectors of A.

Square matrices having an eigenvalue decomposition are diagonalizable. Not all square matrices
are diagonalizable. (But “most” are.)

Diagonalizable matrices are “just” diagonal matrices, when the mapping A is represented in the
right coordinate system.

There is a special class of matrices for which even more is true: A is normal if AA˚ “ A˚A. A
matrix is normal i! it’s unitarily diagonalizable, i.e., is diagonalizable with V a unitary matrix.

Normal matrices are diagonal matrices, when the input/output coordinates are simply
rotated/reflected.
(For example, Hermitian and skew-Hermitian matrices are normal.)

NLA Primer Math 7870, Spring 2026 – UofU 12

Eigenvalue decompositions – in practice and uses

Computing eigenvalues/eigenvectors is a big (+ di"cult) business.
When A is normal, the business is not too bad. (Roughly speaking, the spectrum can be
computed from A through a well-conditioned operation.)
The so-called “non-symmetric” eigenvalue problem is really hard – computing eigenvalues can be
“arbitrarily di"cult”.

Here’s a vague sense of how QR is used to compute eigenvalues:
• Suppose we knew V .
• Compute V “ QR.
• How could we compute the spectrum of Q˚AQ?

Why compute eigenvalues?
• Transforming a complicated matrix to a diagonal makes it easy to understand what the

matrix is “doing”.
• When A is Hermitian and positive-definite, the spectrum tells us a lot about how to perform

compression and low-rank approximation.
• We can compute singular values....

NLA Primer Math 7870, Spring 2026 – UofU 13

Eigenvalue decompositions – in practice and uses

Computing eigenvalues/eigenvectors is a big (+ di"cult) business.
When A is normal, the business is not too bad. (Roughly speaking, the spectrum can be
computed from A through a well-conditioned operation.)
The so-called “non-symmetric” eigenvalue problem is really hard – computing eigenvalues can be
“arbitrarily di"cult”.

Here’s a vague sense of how QR is used to compute eigenvalues:
• Suppose we knew V .
• Compute V “ QR.
• How could we compute the spectrum of Q˚AQ?

Why compute eigenvalues?
• Transforming a complicated matrix to a diagonal makes it easy to understand what the

matrix is “doing”.
• When A is Hermitian and positive-definite, the spectrum tells us a lot about how to perform

compression and low-rank approximation.
• We can compute singular values....

NLA Primer Math 7870, Spring 2026 – UofU 13

Eigenvalue decompositions – in practice and uses

Computing eigenvalues/eigenvectors is a big (+ di"cult) business.
When A is normal, the business is not too bad. (Roughly speaking, the spectrum can be
computed from A through a well-conditioned operation.)
The so-called “non-symmetric” eigenvalue problem is really hard – computing eigenvalues can be
“arbitrarily di"cult”.

Here’s a vague sense of how QR is used to compute eigenvalues:
• Suppose we knew V .
• Compute V “ QR.
• How could we compute the spectrum of Q˚AQ?

Why compute eigenvalues?
• Transforming a complicated matrix to a diagonal makes it easy to understand what the

matrix is “doing”.
• When A is Hermitian and positive-definite, the spectrum tells us a lot about how to perform

compression and low-rank approximation.
• We can compute singular values....

NLA Primer Math 7870, Spring 2026 – UofU 13

An interlude: Hermitian positive (semi)-definite matrices

Hermitian matrices A P nˆn that are positive semi-definite, i.e., x˚Ax $ 0 for all x , are so
important that they deserve their own discussion.

The standard abbreviation for these matrices is “SPD”. An SPD matrix A has n real eigenvalues:
–1 $ –2 $ ¨ ¨ ¨ $ –n $ 0:

These eigenvalues are informative about A: }A}2 “ –1, and A is singular i! –n “ 0.

SPD matrices are ubiquitous, with the simplest examples being covariance matrices, (graph)
Laplacian matrices, kernel matrices, Gram matrices, ...

The cone of Hermitian matrices has a useful partial ordering, the Loewner order :
A ! B %ñ B ´ A is SPD

This ordering plays a nice role in matrix functional analysis: A sensible way to define a matrix
function is through its spectral decomposition:

f : Ñ ; A “ U!U˚; f pAq :“ Uf p!qU˚ (f p!q diagonal, componentwise evaluation):
An interesting question: are there operator monotone functions on SPD matrices?
I.e., if A;B " 0 and A ! B, is f pAq ! f pBq?
NLA Primer Math 7870, Spring 2026 – UofU 14

An interlude: Hermitian positive (semi)-definite matrices

Hermitian matrices A P nˆn that are positive semi-definite, i.e., x˚Ax $ 0 for all x , are so
important that they deserve their own discussion.

The standard abbreviation for these matrices is “SPD”. An SPD matrix A has n real eigenvalues:
–1 $ –2 $ ¨ ¨ ¨ $ –n $ 0:

These eigenvalues are informative about A: }A}2 “ –1, and A is singular i! –n “ 0.

SPD matrices are ubiquitous, with the simplest examples being covariance matrices, (graph)
Laplacian matrices, kernel matrices, Gram matrices, ...

The cone of Hermitian matrices has a useful partial ordering, the Loewner order :
A ! B %ñ B ´ A is SPD

This ordering plays a nice role in matrix functional analysis: A sensible way to define a matrix
function is through its spectral decomposition:

f : Ñ ; A “ U!U˚; f pAq :“ Uf p!qU˚ (f p!q diagonal, componentwise evaluation):
An interesting question: are there operator monotone functions on SPD matrices?
I.e., if A;B " 0 and A ! B, is f pAq ! f pBq?
NLA Primer Math 7870, Spring 2026 – UofU 14

SVD

Given A P mˆn, its singular value decomposition (SVD) is,

A “ U”V ˚; U P mˆm; ” P mˆn; V P nˆn;

where both U and V are unitary, and ” is diagonal with its non-negative entries arranged in
non-increasing order.

The diagonal elements of ” are the singular values, !1;!2; : : : ;!p, with p “ mintm; nu.

The columns of U and V are the left- and right-singular vectors of A, respectively.

Sometimes, the SVD is truncated to remove unnecessary columns/rows from U{V ˚, e.g., those
corresponding to zero singluar values.

Generally, singular values and eigenvalues are unrelated.
E.g., a matrix can have all zero eigenvalues but some non-zero singular values.

Similarly, singular vectors and eigenvectors are generally unrelated.
The SVD and the eigenvalue decomposition of A coincide i! A is Hermitian and positive
semi-definite.
NLA Primer Math 7870, Spring 2026 – UofU 15

SVD

Given A P mˆn, its singular value decomposition (SVD) is,

A “ U”V ˚; U P mˆm; ” P mˆn; V P nˆn;

where both U and V are unitary, and ” is diagonal with its non-negative entries arranged in
non-increasing order.

The diagonal elements of ” are the singular values, !1;!2; : : : ;!p, with p “ mintm; nu.

The columns of U and V are the left- and right-singular vectors of A, respectively.

Sometimes, the SVD is truncated to remove unnecessary columns/rows from U{V ˚, e.g., those
corresponding to zero singluar values.

Generally, singular values and eigenvalues are unrelated.
E.g., a matrix can have all zero eigenvalues but some non-zero singular values.

Similarly, singular vectors and eigenvectors are generally unrelated.
The SVD and the eigenvalue decomposition of A coincide i! A is Hermitian and positive
semi-definite.
NLA Primer Math 7870, Spring 2026 – UofU 15

SVD – in practice and uses

The SVD is computed through an eigenvalue decomposition of the (normal!) matrix A˚A:

AA˚ “ U!U˚; ! “ ”2; V ˚ “ ”´1U˚A

For simplicity, we’ve assumed above that ” is invertible. (” is invertible i! A has full rank.)

Therefore: computing eigenvalues of Hermitian matrices is su"cient to allow us to compute the
SVD.

Why compute the SVD?
• The SVD tells you “almost everything” you need to know about a matrix: its

(co)range/(co)kernel, its rank, its norm for any unitarily invariant norm.
• One can solve linear systems, solve least-squares problems, compute determinants, determine

matrix rank, etc.
• Truncated SVDs are optimal low-rank approximations of A in any unitarily invariant norm,

and norms of sequence of truncated singular value are corresponding low-rank approximation
errors.

NLA Primer Math 7870, Spring 2026 – UofU 16

SVD – in practice and uses

The SVD is computed through an eigenvalue decomposition of the (normal!) matrix A˚A:

AA˚ “ U!U˚; ! “ ”2; V ˚ “ ”´1U˚A

For simplicity, we’ve assumed above that ” is invertible. (” is invertible i! A has full rank.)

Therefore: computing eigenvalues of Hermitian matrices is su"cient to allow us to compute the
SVD.

Why compute the SVD?
• The SVD tells you “almost everything” you need to know about a matrix: its

(co)range/(co)kernel, its rank, its norm for any unitarily invariant norm.
• One can solve linear systems, solve least-squares problems, compute determinants, determine

matrix rank, etc.
• Truncated SVDs are optimal low-rank approximations of A in any unitarily invariant norm,

and norms of sequence of truncated singular value are corresponding low-rank approximation
errors.

NLA Primer Math 7870, Spring 2026 – UofU 16

Software and implementation

The core routines for computing essentially everything we’ve discussed is standardized through
existing, nearly bulletproof software:

• (BLAS) Basic linear algebra subroutines: low-level addition/subtraction of vectors, scalar
multiplication, matrix-vector and matrix-matrix multiplication.

• (LAPACK) The linear algebra package: eigenvalues, linear solvers, matrix factorization (LU,
QR, Cholesky, EVD, SVD)

These are modular routines: LAPACK uses BLAS for its building block.
E.g., GPU-enabled implementations of dense linear algebra factorizations can, “in principle”, be
implemented by recoding just the BLAS portion without changing LAPACK. (Cf. cuBLAS)

This is all great: what’s the problem?

All of the above is dense linear algebra: matrices are stored and manipulated as explicit arrays,
where each array entry is explicitly stored and arithmetically exercised.

NLA Primer Math 7870, Spring 2026 – UofU 17

Software and implementation

The core routines for computing essentially everything we’ve discussed is standardized through
existing, nearly bulletproof software:

• (BLAS) Basic linear algebra subroutines: low-level addition/subtraction of vectors, scalar
multiplication, matrix-vector and matrix-matrix multiplication.

• (LAPACK) The linear algebra package: eigenvalues, linear solvers, matrix factorization (LU,
QR, Cholesky, EVD, SVD)

These are modular routines: LAPACK uses BLAS for its building block.
E.g., GPU-enabled implementations of dense linear algebra factorizations can, “in principle”, be
implemented by recoding just the BLAS portion without changing LAPACK. (Cf. cuBLAS)

This is all great: what’s the problem?

All of the above is dense linear algebra: matrices are stored and manipulated as explicit arrays,
where each array entry is explicitly stored and arithmetically exercised.

NLA Primer Math 7870, Spring 2026 – UofU 17

Software and implementation

The core routines for computing essentially everything we’ve discussed is standardized through
existing, nearly bulletproof software:

• (BLAS) Basic linear algebra subroutines: low-level addition/subtraction of vectors, scalar
multiplication, matrix-vector and matrix-matrix multiplication.

• (LAPACK) The linear algebra package: eigenvalues, linear solvers, matrix factorization (LU,
QR, Cholesky, EVD, SVD)

These are modular routines: LAPACK uses BLAS for its building block.
E.g., GPU-enabled implementations of dense linear algebra factorizations can, “in principle”, be
implemented by recoding just the BLAS portion without changing LAPACK. (Cf. cuBLAS)

This is all great: what’s the problem?

All of the above is dense linear algebra: matrices are stored and manipulated as explicit arrays,
where each array entry is explicitly stored and arithmetically exercised.

NLA Primer Math 7870, Spring 2026 – UofU 17

Modern practice and bottlenecks

The problem: We always want our hammer to smack bigger, tougher nails.

Using these established routines:
• For n ˆ n matrices, matmat multiplications have Opn3q complexity, matvecs are Opn2q.
• For A P mˆn, m $ n, computing its LU, QR, or SVD factorizations requires Opmn2q e!ort,

with Opmnq memory.
• For A P nˆn, solving a corresponding linear system requires Opn3q e!ort, and Opn2q

memory.
These are (e!ectively) optimal complexities for these operations.
For context:

• Datasets often feature m; n „ 106.
• ML architectures routinely have 106 parameters. (We need to compute matvecs with these

parameters, store/use gradients, or maybe even Hessians?)
• In physics-based models, we’d love to routinely solve linear systems with n " 1010.
• Even if matrices/vectors are sparse and you can get away with storing them with reasonable

memory requirements, many intermediate NLA quantities are dense.
• In general, matrices/vectors do not have special structure/sparsity that we can exploit.

This is the problem: the scale of modern problems defy naive usage of dense NLA procedures.
NLA Primer Math 7870, Spring 2026 – UofU 18

Modern practice and bottlenecks

The problem: We always want our hammer to smack bigger, tougher nails.

Using these established routines:
• For n ˆ n matrices, matmat multiplications have Opn3q complexity, matvecs are Opn2q.
• For A P mˆn, m $ n, computing its LU, QR, or SVD factorizations requires Opmn2q e!ort,

with Opmnq memory.
• For A P nˆn, solving a corresponding linear system requires Opn3q e!ort, and Opn2q

memory.
These are (e!ectively) optimal complexities for these operations.
For context:

• Datasets often feature m; n „ 106.
• ML architectures routinely have 106 parameters. (We need to compute matvecs with these

parameters, store/use gradients, or maybe even Hessians?)
• In physics-based models, we’d love to routinely solve linear systems with n " 1010.
• Even if matrices/vectors are sparse and you can get away with storing them with reasonable

memory requirements, many intermediate NLA quantities are dense.
• In general, matrices/vectors do not have special structure/sparsity that we can exploit.

This is the problem: the scale of modern problems defy naive usage of dense NLA procedures.
NLA Primer Math 7870, Spring 2026 – UofU 18

The potential, pitfalls, and promise of randomized NLA

PSA: There are no free lunches here.
If we are willing to give up nothing, we cannot really gain much more.

But there are some things we might be willing to give up:
• Maybe we only need an answer to low precision
• Maybe we only need some part of an answer
• Maybe we’re willing to cope with a possibility, hopefully minute, of algorithmic failure

It is here where randomized methods hold promise:
• I can get “close” to the answer by randomly approximating the problem
• I can get “part” of the answer by randomly compressing the problem
• Randomness entails some possibility of failure

The foundation of randomized NLA methods is laid in probability and statistics....

NLA Primer Math 7870, Spring 2026 – UofU 19

The potential, pitfalls, and promise of randomized NLA

PSA: There are no free lunches here.
If we are willing to give up nothing, we cannot really gain much more.

But there are some things we might be willing to give up:
• Maybe we only need an answer to low precision
• Maybe we only need some part of an answer
• Maybe we’re willing to cope with a possibility, hopefully minute, of algorithmic failure

It is here where randomized methods hold promise:
• I can get “close” to the answer by randomly approximating the problem
• I can get “part” of the answer by randomly compressing the problem
• Randomness entails some possibility of failure

The foundation of randomized NLA methods is laid in probability and statistics....

NLA Primer Math 7870, Spring 2026 – UofU 19

The potential, pitfalls, and promise of randomized NLA

PSA: There are no free lunches here.
If we are willing to give up nothing, we cannot really gain much more.

But there are some things we might be willing to give up:
• Maybe we only need an answer to low precision
• Maybe we only need some part of an answer
• Maybe we’re willing to cope with a possibility, hopefully minute, of algorithmic failure

It is here where randomized methods hold promise:
• I can get “close” to the answer by randomly approximating the problem
• I can get “part” of the answer by randomly compressing the problem
• Randomness entails some possibility of failure

The foundation of randomized NLA methods is laid in probability and statistics....

NLA Primer Math 7870, Spring 2026 – UofU 19

