Math 1210: Calculus I Solving equations numerically

Department of Mathematics, University of Utah

Spring 2025

Accompanying text: Varberg, Purcell, and Rigdon 2007, Section 3.7

Solving equations

D24-S02(a)

Suppose we are given a function f(x), and we wish to find a *root*, i.e., we seek x that satisfies,

f(x) = 0

Solving equations

D24-S02(b)

Suppose we are given a function f(x), and we wish to find a *root*, i.e., we seek x that satisfies,

f(x) = 0

- The value 0 is not special. To solve f(x) = c for any c, we simply define g(x) = f(x) c, and solve g(x) = 0.
- When f is a polynomial of degree n, there are at most n solutions. (There may be fewer.)
- For general, non-polynomial functions f, we generally don't know if a solution exists, or how many solutions exist.

Solving equations

D24-S02(c)

Suppose we are given a function f(x), and we wish to find a *root*, i.e., we seek x that satisfies,

f(x) = 0

- The value 0 is not special. To solve f(x) = c for any c, we simply define g(x) = f(x) c, and solve g(x) = 0.
- When f is a polynomial of degree n, there are at most n solutions. (There may be fewer.)
- For general, non-polynomial functions f, we generally don't know if a solution exists, or how many solutions exist.

The main goal of this section: concepts we've learned (in particular, calculus) can be used in computational algorithms to determine solutions.

Method 1: Bisection

The method of **bisection** is an application of the *Intermediate Value Theorem*. (Recall: if there is a continuous f(x) on an interval [a, b], then f attains every value between f(a) and f(b) somewhere inside the open interval (a, b).)

$$(b, f(b))$$

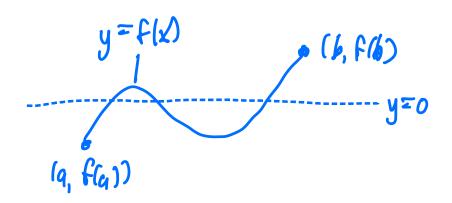
 $(f(x)) = f(x) = f(x)$ and $f(b)$.
 $(a, f(a))$

Method 1: Bisection

The method of **bisection** is an application of the *Intermediate Value Theorem*. (Recall: if there is a continuous f(x) on an interval [a, b], then f attains every value between f(a) and f(b) somewhere inside the open interval (a, b).)

As before we wish to find a value of x such that f(x) = 0. Suppose we know two values a, b with a < b such that

f(a) < 0 < f(b) or f(b) < 0 < f(a).



intermediate value theorem: f(x)=0 for some x in (q,b).

Method 1: Bisection

The method of **bisection** is an application of the *Intermediate Value Theorem*. (Recall: if there is a continuous f(x) on an interval [a, b], then f attains every value between f(a) and f(b) somewhere inside the open interval (a, b).)

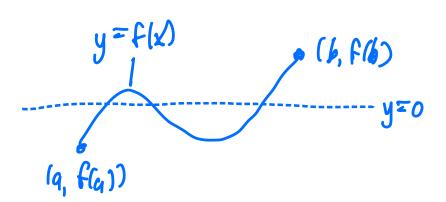
As before we wish to find a value of x such that f(x) = 0. Suppose we know two values a, b with a < b such that

$$f(a) < 0 < f(b)$$
 or $f(b) < 0 < f(a)$.

Then by the intermediate value theorem, there is at least one value of x in (a, b) such that f(x) = 0.

In exactly this scenario, the method of bisection helps us computationally identify this value.

The above intuition leads to a fairly straightforward procedure: Suppose we are given a function f, and an interval [a, b] such that f(a) < 0 and f(b) > 0. (If the roles of a and b are reversed, the procedure is largely the same.)

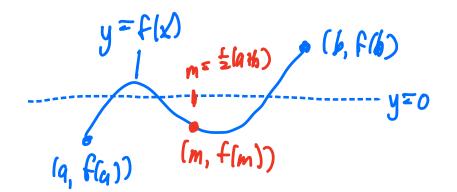


here: fla) < 0 < flb)

D24-S04(b)

The above intuition leads to a fairly straightforward procedure: Suppose we are given a function f, and an interval [a, b] such that f(a) < 0 and f(b) > 0. (If the roles of a and b are reversed, the procedure is largely the same.)

- 1. Define $m = \frac{1}{2}(a+b)$, the midpoint between a and b.
- 2. Evaluate f(m)



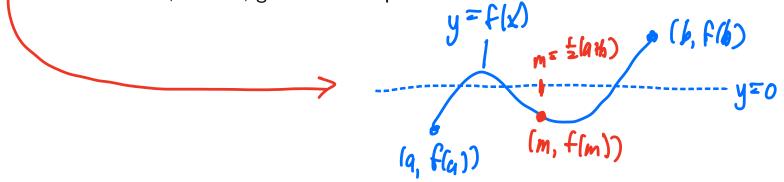
D24-S04(c)

The above intuition leads to a fairly straightforward procedure: Suppose we are given a function f, and an interval [a, b] such that f(a) < 0 and f(b) > 0. (If the roles of a and b are reversed, the procedure is largely the same.)

1. Define
$$m = \frac{1}{2}(a+b)$$
, the midpoint between a and b.

2. Evaluate f(m)

- If f(m) = 0, we are done, return m.
- If f(m) < 0, then [m, b] is a new interval where f takes different signs at the endpoints. Set $a \leftarrow m$, $b \leftarrow b$, go back to step 1.
- If f(m) > 0, then [a, m] is a new interval where f takes different signs at the endpoints.
 Set a ← a, b ← m, go back to step 1.



D24-S04(d)

The above intuition leads to a fairly straightforward procedure:

Suppose we are given a function f, and an interval [a, b] such that f(a) < 0 and f(b) > 0. (If the roles of a and b are reversed, the procedure is largely the same.)

- 1. Define $m = \frac{1}{2}(a+b)$, the midpoint between a and b.
- 2. Evaluate f(m)
 - If f(m) = 0, we are done, return m.
 - If f(m) < 0, then [m, b] is a new interval where f takes different signs at the endpoints.
 Set a ← m, b ← b, go back to step 1.
 - If f(m) > 0, then [a, m] is a new interval where f takes different signs at the endpoints.
 Set a ← a, b ← m, go back to step 1.

The above procedure typically doesn't terminate (f(m) = 0 exactly almost never happens). One often *terminates* the procedure when the length of the interval b - a is "sufficiently small", say is some value E.

The "proper" choice of E is an art.

Bisection example

D24-S05(a)

Example (Example 3.7.1) Determine the real root of $f(x) = x^3 - 3x - 5 = 0$ that lies inside the interval [2,3]. a=2 f(a)=8-6-5=-3f(a) < 0 < f(b) b=3 f(b)=27-9-5=13con use bijection 1 Tteration 1: M= = 2(arb) = 2.5 $f(m) = (2.5)^3 - 3.2.5 - 5 = (2.5)^3 - 12.5$ = 15.625 - 12.5 = 3.125

* (3,12)
(2,5,2125)

$$(2,5,2125)$$

 $(2,5,3125)$
Since f(a) only f(m) have different signs,
choose new interval as [0, m] = [2, 2.5]
Assign [a, b] = [2, 2.5]
Iteration 2: m = $\frac{1}{2}(a+b) = 2.25$
 $f(m) = (2.25)^3 - 3.2.25 - 5 = (2.25)^3 - 11.75$
 $= 11.390625 - 11.75$
 $= -0.359...$
 $(2.5, 3.125)$
 $\frac{2.25}{a}$
 $(2,-3) = -0.359...)$
Since f(m) and f(b) have different
signs, choose [m, b] as next interval
 455 ign [a,b] = [2.25, 2.5]

Bisection example

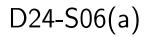
D24-S05(b)

Example (Example 3.7.1)

Determine the real root of $f(x) = x^3 - 3x - 5 = 0$ that lies inside the interval [2,3].

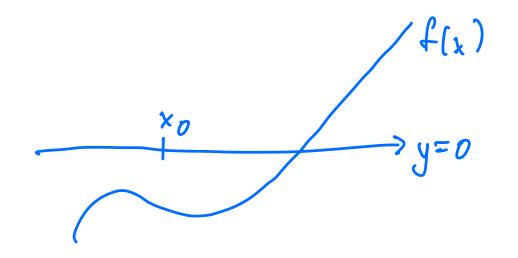
п	h_n	m_n	$f(m_n)$	
1	0.5	2.5	3.125	
2	0.25	2.25	-0.359	
3	0.125	2.375	1.271	
4	0.0625	2.3125	0.429	
5	0.03125	2.28125	0.02811	
6	0.015625	2.265625	-0.16729	
7	0.0078125	2.2734375	-0.07001	
8	0.0039063	2.2773438	-0.02106	
9	0.0019531	2.2792969	0.00350	
10	0.0009766	2.2783203	-0.00878	
11	0.0004883	2.2788086	-0.00264	
12	0.0002441	2.2790528	0.00043	
13	0.0001221	2.2789307	-0.00111	
14	0.0000610	2.2789918	-0.00034	
15	0.0000305	2.2790224	0.00005	
16	0.0000153	2.2790071	-0.00015	
17	0.0000076	2.2790148	-0.00005	
18	0.0000038	2.2790187	-0.000001	
19	0.0000019	2.2790207	0.000024	
20	0.0000010	2.2790197	0.000011	
21	0.0000005	2.2790192	0.000005	
22	0.0000002	2.2790189	0.0000014	
23	0.0000001	2.2790187	-0.0000011	
24	0.0000001	2.2790188	0.0000001	

Method 2: Newton's Method

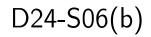


The previous method, bisection, did not exercise calculus. This second approach explicitly uses the lesson's we've learned in this class:

Again, we wish to find a value of x such that f(x) = 0. Assume we have an *initial guess* x_0 .



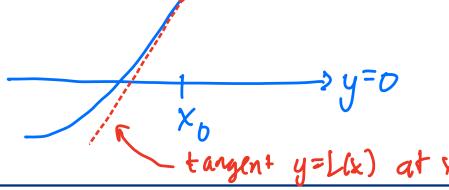
Method 2: Newton's Method



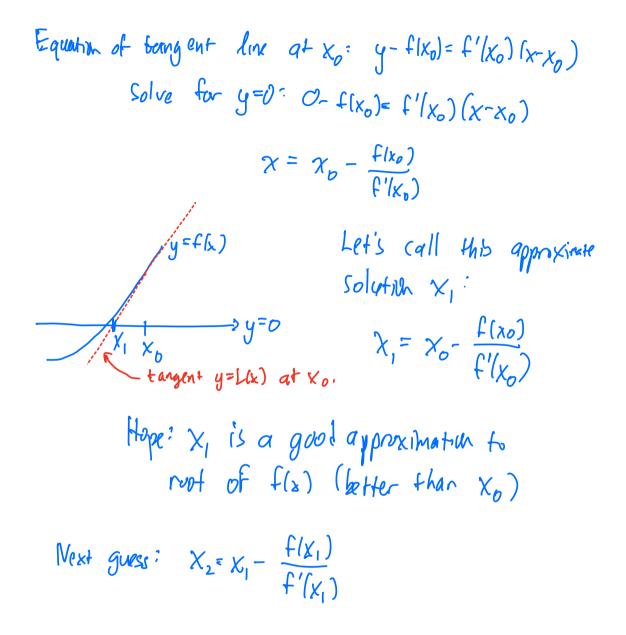
The previous method, bisection, did not exercise calculus. This second approach explicitly uses the lesson's we've learned in this class:

Again, we wish to find a value of x such that f(x) = 0. Assume we have an *initial guess* x_0 .

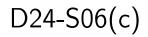
Recall that we can approximate graphs of curves with tangent lines. This is useful because solving f(x) = 0 can be hard, but if L(x) is a linear approximation, i.e., L(x) = ax + b, then solving L(x) = 0 is very easy. $\int y = f(x)$ $\int u d f(x) \approx L(x) (u d x)$



Since $f(X) \approx L(x)$ (near X_D), Let's solve L(x) = 0 instead of f(x) = 0.



Method 2: Newton's Method



The previous method, bisection, did not exercise calculus. This second approach explicitly uses the lesson's we've learned in this class:

Again, we wish to find a value of x such that f(x) = 0. Assume we have an *initial guess* x_0 .

Recall that we can approximate graphs of curves with tangent lines. This is useful because solving f(x) = 0 can be hard, but if L(x) is a linear approximation, i.e., L(x) = ax + b, then solving L(x) = 0 is very easy.

Let's construct the linear approximation at our initial guess x_0 .

The slope of the tangent line is $f'(x_0)$, and it passes through the point $(x_0, f(x_0))$. Therefore, the equation of the line is:

$$y - f(x_0) = f'(x_0)(x - x_0) \implies y = L(x) = f(x_0) + f'(x_0)(x - x_0)$$

Newton's method

D24-S07(a)

$$y = L(x) = f(x_0) + f'(x_0)(x - x_0)$$

Instead of solving f(x) = 0, we'll solve L(x) = 0 as an approximation. This is not too hard:

$$L(x) = 0 \implies x = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Newton's method

D24-S07(b)

$$y = L(x) = f(x_0) + f'(x_0)(x - x_0)$$

Instead of solving f(x) = 0, we'll solve L(x) = 0 as an approximation. This is not too hard:

$$L(x) = 0 \quad \Longrightarrow \quad x = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Again, this value of x is a guess. It's not exact because f is (almost) never a linear function.

However, we expect it to be a better guess than x_0 . So let's call this new guess x_1 :

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Newton's method

D24-S07(c)

$$y = L(x) = f(x_0) + f'(x_0)(x - x_0)$$

Instead of solving f(x) = 0, we'll solve L(x) = 0 as an approximation. This is not too hard:

$$L(x) = 0 \implies x = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Again, this value of x is a guess. It's not exact because f is (almost) never a linear function.

However, we expect it to be a better guess than x_0 . So let's call this new guess x_1 :

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

As one expects, we can repeat this process:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},$$
 $n = 0, 1, 2, \dots$

This iterative algorithm is **Newton's method**.

Instructor: A. Narayan (University of Utah - Department of Mathematics)

Newton's method example

D24-S08(a)

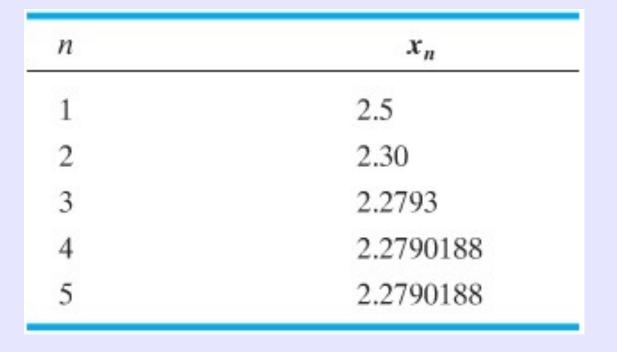
Example (Example 3.7.2)

Use Newton's method to find the real root r of $f(x) = x^3 - 3x - 5 = 0$.

Newton's method example

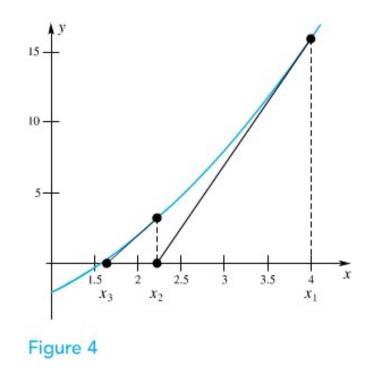
Example (Example 3.7.2)

Use Newton's method to find the real root r of $f(x) = x^3 - 3x - 5 = 0$.

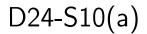


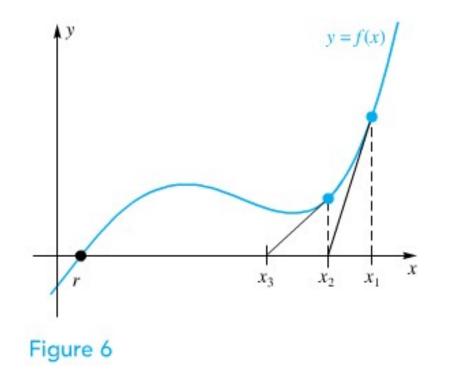
Geomtrically: Newton's method works

D24-S09(a)



Geomtrically: Newton's method can fail, badly





References I

Varberg, D.E., E.J. Purcell, and S.E. Rigdon (2007). *Calculus*. 9th. Pearson Prentice Hall. ISBN: 978-0-13-142924-6.