
Math 6610: Analysis of Numerical Methods, I
Floating-point arithmetic and computer algorithms

Department of Mathematics, University of Utah

Fall 2025

Resources: Trefethen and Bau 1997, Lectures 12-15
Atkinson 1989, Chapter 1
Salgado and Wise 2022, Sections 4.2, 4.3

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Finite representation of numbers

D05-S02(a)

Numbers in decimal are represented as

34.1503,

This actually means the more complicated expression
3 ˆ 101 ` 4 ˆ 100 ` 1 ˆ 10´1 ` 5 ˆ 10´2 ` 0 ˆ 10´3 ` 3 ˆ 10´4

There’s an anatomy to this breakdown:
– The portion 34 is the “integer” part.
– 1503 is the “fractional” part.
– The integer and fractional part are separated by the radix (point).
– The base 10 is to be understood (implied) by context.

Without context, the base b could be other positive integers:
b “ 6 ñ 3 ˆ 61 ` 4 ˆ 60 ` 1 ˆ 6´1 ` 5 ˆ 6´2 ` 0 ˆ 6´3 ` 3 ˆ 6´4

Note that by convention b must be strictly larger than all the digits.
(So 34.1503 could be base 6, or 10, or 978, but could not be base 5.)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Finite representation of numbers

D05-S02(b)

Numbers in decimal are represented as

34.1503,

This actually means the more complicated expression
3 ˆ 101 ` 4 ˆ 100 ` 1 ˆ 10´1 ` 5 ˆ 10´2 ` 0 ˆ 10´3 ` 3 ˆ 10´4

There’s an anatomy to this breakdown:
– The portion 34 is the “integer” part.
– 1503 is the “fractional” part.
– The integer and fractional part are separated by the radix (point).
– The base 10 is to be understood (implied) by context.

Without context, the base b could be other positive integers:
b “ 6 ñ 3 ˆ 61 ` 4 ˆ 60 ` 1 ˆ 6´1 ` 5 ˆ 6´2 ` 0 ˆ 6´3 ` 3 ˆ 6´4

Note that by convention b must be strictly larger than all the digits.
(So 34.1503 could be base 6, or 10, or 978, but could not be base 5.)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Finite representation of numbers

D05-S02(c)

Numbers in decimal are represented as

34.1503,

This actually means the more complicated expression
3 ˆ 101 ` 4 ˆ 100 ` 1 ˆ 10´1 ` 5 ˆ 10´2 ` 0 ˆ 10´3 ` 3 ˆ 10´4

There’s an anatomy to this breakdown:
– The portion 34 is the “integer” part.
– 1503 is the “fractional” part.
– The integer and fractional part are separated by the radix (point).
– The base 10 is to be understood (implied) by context.

Without context, the base b could be other positive integers:
b “ 6 ñ 3 ˆ 61 ` 4 ˆ 60 ` 1 ˆ 6´1 ` 5 ˆ 6´2 ` 0 ˆ 6´3 ` 3 ˆ 6´4

Note that by convention b must be strictly larger than all the digits.
(So 34.1503 could be base 6, or 10, or 978, but could not be base 5.)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Finite representation of numbers

D05-S02(d)

Numbers in decimal are represented as

34.1503,

This actually means the more complicated expression
3 ˆ 101 ` 4 ˆ 100 ` 1 ˆ 10´1 ` 5 ˆ 10´2 ` 0 ˆ 10´3 ` 3 ˆ 10´4

There’s an anatomy to this breakdown:
– The portion 34 is the “integer” part.
– 1503 is the “fractional” part.
– The integer and fractional part are separated by the radix (point).
– The base 10 is to be understood (implied) by context.

Without context, the base b could be other positive integers:
b “ 6 ñ 3 ˆ 61 ` 4 ˆ 60 ` 1 ˆ 6´1 ` 5 ˆ 6´2 ` 0 ˆ 6´3 ` 3 ˆ 6´4

Note that by convention b must be strictly larger than all the digits.
(So 34.1503 could be base 6, or 10, or 978, but could not be base 5.)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Computer representations

D05-S03(a)

Circuits typically detect the presence (1) or absence (0) of an electrical signal.

For this reason, base b “ 2 is the standard computer format, e.g.,:

100010.0010011001111

is approximately equal to the decimal 34.1503.

Computers store this binary representation of these numbers, and each digit is a “bit”.

8 bits = 1 “byte”

Binary representations must store the integer part, the fractional part, and typically also a sign.

Q: Why do we always write numbers in base 10?

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Computer representations

D05-S03(b)

Circuits typically detect the presence (1) or absence (0) of an electrical signal.

For this reason, base b “ 2 is the standard computer format, e.g.,:

100010.0010011001111

is approximately equal to the decimal 34.1503.

Computers store this binary representation of these numbers, and each digit is a “bit”.

8 bits = 1 “byte”

Binary representations must store the integer part, the fractional part, and typically also a sign.

Q: Why do we always write numbers in base 10?

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Computer representations

D05-S03(c)

Circuits typically detect the presence (1) or absence (0) of an electrical signal.

For this reason, base b “ 2 is the standard computer format, e.g.,:

100010.0010011001111

is approximately equal to the decimal 34.1503.

Computers store this binary representation of these numbers, and each digit is a “bit”.

8 bits = 1 “byte”

Binary representations must store the integer part, the fractional part, and typically also a sign.

Q: Why do we always write numbers in base 10?

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Computer representations

D05-S03(d)

Circuits typically detect the presence (1) or absence (0) of an electrical signal.

For this reason, base b “ 2 is the standard computer format, e.g.,:

100010.0010011001111

is approximately equal to the decimal 34.1503.

Computers store this binary representation of these numbers, and each digit is a “bit”.

8 bits = 1 “byte”

Binary representations must store the integer part, the fractional part, and typically also a sign.

Q: Why do we always write numbers in base 10?

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Fixed point vs floating point

D05-S04(a)

Fixed-point representations have a fixed radix point, with the size of the fractional part predetermined:

100010. 0010011001111loooooooomoooooooon
fixed number of entries

Then the fractional precision of this representation is fixed for any number.

This truncation of finite representations is one of the main challenges to address in numerical computations.

Fixed-point representation has a restriced range of precision (pre)defined by the size of the fractional part.

Floating-point representations allow the radix to float:

1. 000100010011001111loooooooooooomoooooooooooon
fixed number of entries

` exponent

The exponent encodes which exponent the radix is aligned with. (Above: 5)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Fixed point vs floating point

D05-S04(b)

Fixed-point representations have a fixed radix point, with the size of the fractional part predetermined:

100010. 0010011001111loooooooomoooooooon
fixed number of entries

Then the fractional precision of this representation is fixed for any number.

This truncation of finite representations is one of the main challenges to address in numerical computations.

Fixed-point representation has a restriced range of precision (pre)defined by the size of the fractional part.

Floating-point representations allow the radix to float:

1. 000100010011001111loooooooooooomoooooooooooon
fixed number of entries

` exponent

The exponent encodes which exponent the radix is aligned with. (Above: 5)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Fixed point vs floating point

D05-S04(c)

Fixed-point representations have a fixed radix point, with the size of the fractional part predetermined:

100010. 0010011001111loooooooomoooooooon
fixed number of entries

Then the fractional precision of this representation is fixed for any number.

This truncation of finite representations is one of the main challenges to address in numerical computations.

Fixed-point representation has a restriced range of precision (pre)defined by the size of the fractional part.

Floating-point representations allow the radix to float:

1. 000100010011001111loooooooooooomoooooooooooon
fixed number of entries

` exponent

The exponent encodes which exponent the radix is aligned with. (Above: 5)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Floating-point representations

D05-S05(a)

Generally speaking, floating-point representations store:

significand ` exponent ` sign

The significand combines the integer and fractional parts of the number.

The exponent encodes the location of the radix.

Floating-point representations allows for a (much) larger operating range than fixed-point representations.

The most popular representation is the IEEE 754 standard, defining various formats:
– Binary 16
– Binary 32 (“single precision”)
– Binary 64 (“double precision”)

–
...

– Complex numbers are typically stored as two floats, e.g., Complex 128 (64 + 64)
Most high-level scientific computing languages use double precision as default.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Floating-point representations

D05-S05(b)

Generally speaking, floating-point representations store:

significand ` exponent ` sign

The significand combines the integer and fractional parts of the number.

The exponent encodes the location of the radix.

Floating-point representations allows for a (much) larger operating range than fixed-point representations.

The most popular representation is the IEEE 754 standard, defining various formats:
– Binary 16
– Binary 32 (“single precision”)
– Binary 64 (“double precision”)

–
...

– Complex numbers are typically stored as two floats, e.g., Complex 128 (64 + 64)
Most high-level scientific computing languages use double precision as default.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Floating-point details

D05-S06(a)

These standards define bit allocation:

Source: https://en.wikipedia.org/wiki/File:Float_example.svg

The number of bits allocated to the exponent indicates the rounding precision of the format.

Machine precision or machine epsilon is the maximum relative rounding error due to finite representation. If
flpxq is the floating-point representation of a number x, then machine precision is the maximum value of

ˇ̌
ˇ̌x ´ flpxq

x

ˇ̌
ˇ̌ .

Roughly speaking, machine epsilon is also the largest ω such that 1 ` ω is rounded to 1.

The roundo! or truncation error associated with a floating-point format is essentially equal to
base´p#significand digitsq.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

https://en.wikipedia.org/wiki/File:Float_example.svg

Floating-point details

D05-S06(b)

These standards define bit allocation:

Source: https://en.wikipedia.org/wiki/File:Float_example.svg

The number of bits allocated to the exponent indicates the rounding precision of the format.

Machine precision or machine epsilon is the maximum relative rounding error due to finite representation. If
flpxq is the floating-point representation of a number x, then machine precision is the maximum value of

ˇ̌
ˇ̌x ´ flpxq

x

ˇ̌
ˇ̌ .

Roughly speaking, machine epsilon is also the largest ω such that 1 ` ω is rounded to 1.

The roundo! or truncation error associated with a floating-point format is essentially equal to
base´p#significand digitsq.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

https://en.wikipedia.org/wiki/File:Float_example.svg

Floating-point details

D05-S06(c)

These standards define bit allocation:

Source: https://en.wikipedia.org/wiki/File:Float_example.svg

The number of bits allocated to the exponent indicates the rounding precision of the format.

Machine precision or machine epsilon is the maximum relative rounding error due to finite representation. If
flpxq is the floating-point representation of a number x, then machine precision is the maximum value of

ˇ̌
ˇ̌x ´ flpxq

x

ˇ̌
ˇ̌ .

Roughly speaking, machine epsilon is also the largest ω such that 1 ` ω is rounded to 1.

The roundo! or truncation error associated with a floating-point format is essentially equal to
base´p#significand digitsq.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

https://en.wikipedia.org/wiki/File:Float_example.svg

Machine precision

D05-S07(a)

Floating-point representation ensures that there is not really an absolute error committed by computer
representations, there is only a relative error.

Source: https://en.wikipedia.org/wiki/File:IEEE754.svg

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

https://en.wikipedia.org/wiki/File:IEEE754.svg

Roundo! and computing

D05-S08(a)

The rounding truncation imparted by finite representations requires attention to how algorithms are
implemented. E.g.,

– Implementation of the formula
?
1 ` x4 ´ 1 for small positive x.

– Evaluation of ex for x ! 0.

– Evaluation of fpx`hq´fpxq
h for small h.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Roundo! and computing

D05-S08(b)

The rounding truncation imparted by finite representations requires attention to how algorithms are
implemented. E.g.,

– Implementation of the formula
?
1 ` x4 ´ 1 for small positive x.

– Evaluation of ex for x ! 0.

– Evaluation of fpx`hq´fpxq
h for small h.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Roundo! and computing

D05-S08(c)

The rounding truncation imparted by finite representations requires attention to how algorithms are
implemented. E.g.,

– Implementation of the formula
?
1 ` x4 ´ 1 for small positive x.

– Evaluation of ex for x ! 0.

– Evaluation of fpx`hq´fpxq
h for small h.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Solution sensitivity

D05-S09(a)

Goal: understand sensitivity of numerical algorithms to roundo! errors. (“stability”)

A first step: understand sensitivity of solutions of mathematical problems. (“conditioning”)

Example
Let fpxq “ ax for scalars a, x.
The sensitivity of the map x "Ñ fpxq depends on the value of a.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Solution sensitivity

D05-S09(b)

Goal: understand sensitivity of numerical algorithms to roundo! errors. (“stability”)

A first step: understand sensitivity of solutions of mathematical problems. (“conditioning”)

Example
Let fpxq “ ax for scalars a, x.
The sensitivity of the map x "Ñ fpxq depends on the value of a.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Absolute sensitivity measures

D05-S10(a)

Let f : n Ñ m.

A sensible measure of sensitivity of f at x is perturbation-based:

}fpx ` ωxq ´ fpxq}
}ωx} .

As with derivatives, we can measure the sensitivity at x by taking limits:

ε̂f pxq :“ lim
ωÑ0

sup
}ωx}!ω

}ωf}
}ωx} , ωf :“ fpx ` ωxq ´ fpxq

ε̂f pxq is called the absolute condition number of f at x.

Note that condition numbers are properties of the map f and not of an algorithmic or finite-precision
implementation.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Absolute sensitivity measures

D05-S10(b)

Let f : n Ñ m.

A sensible measure of sensitivity of f at x is perturbation-based:

}fpx ` ωxq ´ fpxq}
}ωx} .

As with derivatives, we can measure the sensitivity at x by taking limits:

ε̂f pxq :“ lim
ωÑ0

sup
}ωx}!ω

}ωf}
}ωx} , ωf :“ fpx ` ωxq ´ fpxq

ε̂f pxq is called the absolute condition number of f at x.

Note that condition numbers are properties of the map f and not of an algorithmic or finite-precision
implementation.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Absolute sensitivity measures

D05-S10(c)

Let f : n Ñ m.

A sensible measure of sensitivity of f at x is perturbation-based:

}fpx ` ωxq ´ fpxq}
}ωx} .

As with derivatives, we can measure the sensitivity at x by taking limits:

ε̂f pxq :“ lim
ωÑ0

sup
}ωx}!ω

}ωf}
}ωx} , ωf :“ fpx ` ωxq ´ fpxq

ε̂f pxq is called the absolute condition number of f at x.

Note that condition numbers are properties of the map f and not of an algorithmic or finite-precision
implementation.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Relative sensitivity measures

D05-S11(a)

Recall: floating-point arithmetic makes relative errors, not absolute ones.

Thus, absolute condition numbers have limited utility for understanding numerical stability.

The relative condition number of f at x is defined as

εf pxq :“ lim
ωÑ0

sup
}ωx}!ω

}ωf}
}fpxq}

}ωx}
}x}

“ lim
ωÑ0

sup
}ωx}!ω

}ωf} }x}
}ωx} }fpxq}

Again, this is a (mathematical) property of f , and not of an algorithmic implementation.

Problems (functions f) with “small” condition numbers are well-conditioned.
Problems (functions f) with “large” condition numbers are ill-conditioned.

Just like derivatives and di!erentials, the condition number is a sensitivity of relative errors:
}ωf}

}fpxq} À εf pxq }ωx}
}x} .

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Relative sensitivity measures

D05-S11(b)

Recall: floating-point arithmetic makes relative errors, not absolute ones.

Thus, absolute condition numbers have limited utility for understanding numerical stability.

The relative condition number of f at x is defined as

εf pxq :“ lim
ωÑ0

sup
}ωx}!ω

}ωf}
}fpxq}

}ωx}
}x}

“ lim
ωÑ0

sup
}ωx}!ω

}ωf} }x}
}ωx} }fpxq}

Again, this is a (mathematical) property of f , and not of an algorithmic implementation.

Problems (functions f) with “small” condition numbers are well-conditioned.
Problems (functions f) with “large” condition numbers are ill-conditioned.

Just like derivatives and di!erentials, the condition number is a sensitivity of relative errors:
}ωf}

}fpxq} À εf pxq }ωx}
}x} .

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Relative sensitivity measures

D05-S11(c)

Recall: floating-point arithmetic makes relative errors, not absolute ones.

Thus, absolute condition numbers have limited utility for understanding numerical stability.

The relative condition number of f at x is defined as

εf pxq :“ lim
ωÑ0

sup
}ωx}!ω

}ωf}
}fpxq}

}ωx}
}x}

“ lim
ωÑ0

sup
}ωx}!ω

}ωf} }x}
}ωx} }fpxq}

Again, this is a (mathematical) property of f , and not of an algorithmic implementation.

Problems (functions f) with “small” condition numbers are well-conditioned.
Problems (functions f) with “large” condition numbers are ill-conditioned.

Just like derivatives and di!erentials, the condition number is a sensitivity of relative errors:
}ωf}

}fpxq} À εf pxq }ωx}
}x} .

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Examples

D05-S12(a)

Example
If f : n Ñ m is smooth, then condition numbers are norms of Jacobians.

ε̂f pxq “ }Jpxq}, Jpxq :“ Bf
Bx pxq,

εf pxq “ }Jpxq} }x}
}fpxq}

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Examples

D05-S12(b)

Example
f : Ñ defined by fpxq “ ax.
Compute ε̂f pxq and εf pxq.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Examples

D05-S12(c)

Example
f : Ñ defined by fpxq “ xp for arbitrary p # 0.
Compute ε̂f pxq and εf pxq.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Examples

D05-S12(d)

Example
Compute condition numbers for f : n Ñ n defined by fpxq “ Ax for invertible A P nˆn.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Linear problems

D05-S13(a)

The (relative) condition number of the linear map x "Ñ Ax, for invertible A, is bounded by

sup
xP n

εpxq “ }A}}A´1}.

By a similar argument, given A and b, the condition number of the problem that finds the solution x to

Ax “ b,

is (bounded by) }A}}A´1}.

More generally, given invertible A, the (matrix) condition number of A is defined as

εpAq “ }A}}A´1}.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Linear problems

D05-S13(b)

The (relative) condition number of the linear map x "Ñ Ax, for invertible A, is bounded by

sup
xP n

εpxq “ }A}}A´1}.

By a similar argument, given A and b, the condition number of the problem that finds the solution x to

Ax “ b,

is (bounded by) }A}}A´1}.

More generally, given invertible A, the (matrix) condition number of A is defined as

εpAq “ }A}}A´1}.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Linear problems

D05-S13(c)

The (relative) condition number of the linear map x "Ñ Ax, for invertible A, is bounded by

sup
xP n

εpxq “ }A}}A´1}.

By a similar argument, given A and b, the condition number of the problem that finds the solution x to

Ax “ b,

is (bounded by) }A}}A´1}.

More generally, given invertible A, the (matrix) condition number of A is defined as

εpAq “ }A}}A´1}.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Numerical algorithms

D05-S14(a)

Given f : n Ñ m, we wish to understand how roundo! errors a!ect evaluation of f .

This should depend on
– Loss of accuracy due to finite precision
– Conditioning of f

We need condition numbers here since we’ll make a small relative mistake in x (roundo!/truncation), so
we must understand what kind of relative mistake we make in fpxq.

However, things are somewhat more complicated because our implemention is never exactly f .

Let rf : n Ñ m denote the actual algorithmic implementation of f .

For example, the numerical implementation of fpxq “ 1 ` x might be rfpxq “ flp1q ‘ flpxq, where ‘ is
some implementation of the addition of two floating point numbers.

We might hope that

}fpxq ´ rfpxq}
}fpxq} “ Opωmachq,

and one suspects that this condition might be tied to conditioning of f .
Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Numerical algorithms

D05-S14(b)

Given f : n Ñ m, we wish to understand how roundo! errors a!ect evaluation of f .

This should depend on
– Loss of accuracy due to finite precision
– Conditioning of f

We need condition numbers here since we’ll make a small relative mistake in x (roundo!/truncation), so
we must understand what kind of relative mistake we make in fpxq.

However, things are somewhat more complicated because our implemention is never exactly f .

Let rf : n Ñ m denote the actual algorithmic implementation of f .

For example, the numerical implementation of fpxq “ 1 ` x might be rfpxq “ flp1q ‘ flpxq, where ‘ is
some implementation of the addition of two floating point numbers.

We might hope that

}fpxq ´ rfpxq}
}fpxq} “ Opωmachq,

and one suspects that this condition might be tied to conditioning of f .
Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Numerical algorithms

D05-S14(c)

Given f : n Ñ m, we wish to understand how roundo! errors a!ect evaluation of f .

This should depend on
– Loss of accuracy due to finite precision
– Conditioning of f

We need condition numbers here since we’ll make a small relative mistake in x (roundo!/truncation), so
we must understand what kind of relative mistake we make in fpxq.

However, things are somewhat more complicated because our implemention is never exactly f .

Let rf : n Ñ m denote the actual algorithmic implementation of f .

For example, the numerical implementation of fpxq “ 1 ` x might be rfpxq “ flp1q ‘ flpxq, where ‘ is
some implementation of the addition of two floating point numbers.

We might hope that

}fpxq ´ rfpxq}
}fpxq} “ Opωmachq,

and one suspects that this condition might be tied to conditioning of f .
Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Forward error

D05-S15(a)

Suppose f is the “exact” procedure, and rf is the “approximate” (computational) procedure.

The forward error at x is the relative error committed by rf :

FEpxq “ }fpxq ´ rfpxq}
}fpxq}

This notion of error is typically used to understand stability as follows:

FEpxq $ }rfpxq ´ fprxq}
}fpxq} ` }fprxq ´ fpxq}

}fpxq} ,

where we’ve introduced an intermediate quantity rx. Ideally, this quantity is a “small” perturbation of x.
In particular, if rx is “close” to x, then the latter term is

}fprxq ´ fpxq}
}fpxq} À εpxq }x ´ rx}

}x} .

All of this motivates a requirement on the behavior first term, which is purely an algorithmic concern.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Forward error

D05-S15(b)

Suppose f is the “exact” procedure, and rf is the “approximate” (computational) procedure.

The forward error at x is the relative error committed by rf :

FEpxq “ }fpxq ´ rfpxq}
}fpxq}

This notion of error is typically used to understand stability as follows:

FEpxq $ }rfpxq ´ fprxq}
}fpxq} ` }fprxq ´ fpxq}

}fpxq} ,

where we’ve introduced an intermediate quantity rx. Ideally, this quantity is a “small” perturbation of x.
In particular, if rx is “close” to x, then the latter term is

}fprxq ´ fpxq}
}fpxq} À εpxq }x ´ rx}

}x} .

All of this motivates a requirement on the behavior first term, which is purely an algorithmic concern.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Forward error

D05-S15(c)

Suppose f is the “exact” procedure, and rf is the “approximate” (computational) procedure.

The forward error at x is the relative error committed by rf :

FEpxq “ }fpxq ´ rfpxq}
}fpxq}

This notion of error is typically used to understand stability as follows:

FEpxq $ }rfpxq ´ fprxq}
}fpxq} ` }fprxq ´ fpxq}

}fpxq} ,

where we’ve introduced an intermediate quantity rx. Ideally, this quantity is a “small” perturbation of x.
In particular, if rx is “close” to x, then the latter term is

}fprxq ´ fpxq}
}fpxq} À εpxq }x ´ rx}

}x} .

All of this motivates a requirement on the behavior first term, which is purely an algorithmic concern.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Forward stability

D05-S16(a)

Definition
An algorithm rf is forward stable at x if there is some ω # 0 so that,

}rfpxq ´ fprxq}
}fpxq} À εpxq }x ´ rx}

}x} ,

whenever }x ´ rx}{}x} $ ω.

(Typically, this definition is applied/useful for ω “ Opωmachq.)

A forward stable algorithm provides “approximately the right answer to a closely related question”.

If an algorithm is forward stable and the procedure is well-conditioned, then we have our desired error:

FEpxq $ }rfpxq ´ fprxq}
}fpxq} ` }fprxq ´ fpxq}

}fpxq}

À εpxq }x ´ rx}
}x} ` εpxq }x ´ rx}

}x}
ε„εmachÀ εpxqωmach.

This required error estimation procedure, establishment of forward stability of f , is forward error analysis.
Showing forward stability is frequently technical and di"cult.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Forward stability

D05-S16(b)

Definition
An algorithm rf is forward stable at x if there is some ω # 0 so that,

}rfpxq ´ fprxq}
}fpxq} À εpxq }x ´ rx}

}x} ,

whenever }x ´ rx}{}x} $ ω.

(Typically, this definition is applied/useful for ω “ Opωmachq.)

A forward stable algorithm provides “approximately the right answer to a closely related question”.

If an algorithm is forward stable and the procedure is well-conditioned, then we have our desired error:

FEpxq $ }rfpxq ´ fprxq}
}fpxq} ` }fprxq ´ fpxq}

}fpxq}

À εpxq }x ´ rx}
}x} ` εpxq }x ´ rx}

}x}
ε„εmachÀ εpxqωmach.

This required error estimation procedure, establishment of forward stability of f , is forward error analysis.
Showing forward stability is frequently technical and di"cult.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Forward stability

D05-S16(c)

Definition
An algorithm rf is forward stable at x if there is some ω # 0 so that,

}rfpxq ´ fprxq}
}fpxq} À εpxq }x ´ rx}

}x} ,

whenever }x ´ rx}{}x} $ ω.

(Typically, this definition is applied/useful for ω “ Opωmachq.)

A forward stable algorithm provides “approximately the right answer to a closely related question”.

If an algorithm is forward stable and the procedure is well-conditioned, then we have our desired error:

FEpxq $ }rfpxq ´ fprxq}
}fpxq} ` }fprxq ´ fpxq}

}fpxq}

À εpxq }x ´ rx}
}x} ` εpxq }x ´ rx}

}x}
ε„εmachÀ εpxqωmach.

This required error estimation procedure, establishment of forward stability of f , is forward error analysis.
Showing forward stability is frequently technical and di"cult.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Backward stability

D05-S17(a)

A dual, but somewhat stranger+stronger notion of stability is backward stability.

From this point of view, we essentially assume that the algorithm produces “exactly the right answer to a
closely related question”.

Definition
An algorithm rf is backward stable at x if we have

rfpxq “ fprxq, (1)

for some rx satisfying }x ´ rx} “ }x}Opωq.
(Again, to make this practical, one requires ω “ ωmach.

An ancillary definition: the corresponding notion of backward error of rf at x is,

BEpxq “ inf

" }x ´ rx}
}x}

ˇ̌ rfpxq “ fprxq
*
.

If rf is backward stable, then showing accuracy of the algorithm rf is easier.
Estimating error by establishing backward stability is backward error analysis. Backward stability is
frequently easier to show than forward stability, but forward stable algorithms need not be backward stable.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Backward stability

D05-S17(b)

A dual, but somewhat stranger+stronger notion of stability is backward stability.

From this point of view, we essentially assume that the algorithm produces “exactly the right answer to a
closely related question”.

Definition
An algorithm rf is backward stable at x if we have

rfpxq “ fprxq, (1)

for some rx satisfying }x ´ rx} “ }x}Opωq.
(Again, to make this practical, one requires ω “ ωmach.

An ancillary definition: the corresponding notion of backward error of rf at x is,

BEpxq “ inf

" }x ´ rx}
}x}

ˇ̌ rfpxq “ fprxq
*
.

If rf is backward stable, then showing accuracy of the algorithm rf is easier.
Estimating error by establishing backward stability is backward error analysis. Backward stability is
frequently easier to show than forward stability, but forward stable algorithms need not be backward stable.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Examples

D05-S18(a)

Assume some floating-point axioms:
1. For each x P , then flpxq “ xp1 ` ωq for |ω| $ Opωmachq.
2. For floating-points numbers x, y P , then x d y “ px ¨ yqp1 ` ωq for |ω| $ Opωmachq. (¨ = `, ´, ˆ)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Examples

D05-S18(b)

Assume some floating-point axioms:
1. For each x P , then flpxq “ xp1 ` ωq for |ω| $ Opωmachq.
2. For floating-points numbers x, y P , then x d y “ px ¨ yqp1 ` ωq for |ω| $ Opωmachq. (¨ = `, ´, ˆ)

Example
Given x, y P , is the implementation rfpx, yq :“ flpxq a flpyq of fpx, yq “ x ´ y backward stable?

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Examples

D05-S18(c)

Assume some floating-point axioms:
1. For each x P , then flpxq “ xp1 ` ωq for |ω| $ Opωmachq.
2. For floating-points numbers x, y P , then x d y “ px ¨ yqp1 ` ωq for |ω| $ Opωmachq. (¨ = `, ´, ˆ)

Example
Given x P , is the implementation rfpxq :“ 1 ‘ flpxq of fpxq “ 1 ` x backward stable?

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Examples

D05-S18(d)

Assume some floating-point axioms:
1. For each x P , then flpxq “ xp1 ` ωq for |ω| $ Opωmachq.
2. For floating-points numbers x, y P , then x d y “ px ¨ yqp1 ` ωq for |ω| $ Opωmachq. (¨ = `, ´, ˆ)

Example
Given x,y P n, the floating-point implementation of fpx,yq “ yTx is backward stable.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Examples

D05-S18(e)

Assume some floating-point axioms:
1. For each x P , then flpxq “ xp1 ` ωq for |ω| $ Opωmachq.
2. For floating-points numbers x, y P , then x d y “ px ¨ yqp1 ` ωq for |ω| $ Opωmachq. (¨ = `, ´, ˆ)

Example
The floating-point implementation of fpx,yq “ xyT is not backward stable.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Some punch lines

D05-S19(a)

Conditioning is a property of mathematical maps/functions.

Stability is a property of an algorithmic implementation.

Well-conditioned functions and stable implementations yield reliable accuracy.

Source: https://nhigham.com/2020/03/25/what-is-backward-error

Studying conditioning of maps is essential to understanding best-possible behavior of algorithms.
An ill-conditioned operation with a stable implementation wouldn’t yield reliably accurate results.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

https://nhigham.com/2020/03/25/what-is-backward-error

Some punch lines

D05-S19(b)

Conditioning is a property of mathematical maps/functions.

Stability is a property of an algorithmic implementation.

Well-conditioned functions and stable implementations yield reliable accuracy.

Source: https://nhigham.com/2020/03/25/what-is-backward-error

Studying conditioning of maps is essential to understanding best-possible behavior of algorithms.
An ill-conditioned operation with a stable implementation wouldn’t yield reliably accurate results.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

https://nhigham.com/2020/03/25/what-is-backward-error

Eigenvalue conditioning

D05-S20(a)

Weren’t we interested in eigenvalues....?

Consider A P nˆn, along with the map ϑ : nˆn Ñ that computes an eigenvalue of A:

Av “ ϑpAqv, for some v ‰ 0

What is the conditioning of this operation?

Theorem (Bauer-Fike)

Assume A P Cnˆn is diagonalizable with eigenvector matrix V P nˆn. Then, using the 2-norm, the
absolute condition number of computing eigenvalues is rεϑpAq “ εpV q.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

Eigenvalue conditioning

D05-S20(b)

Weren’t we interested in eigenvalues....?

Consider A P nˆn, along with the map ϑ : nˆn Ñ that computes an eigenvalue of A:

Av “ ϑpAqv, for some v ‰ 0

What is the conditioning of this operation?

Theorem (Bauer-Fike)

Assume A P Cnˆn is diagonalizable with eigenvector matrix V P nˆn. Then, using the 2-norm, the
absolute condition number of computing eigenvalues is rεϑpAq “ εpV q.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

References I

D05-S21(a)

Atkinson, Kendall (1989). An Introduction to Numerical Analysis. New York: Wiley. ISBN:
978-0-471-62489-9.
Salgado, Abner J. and Steven M. Wise (2022). Classical Numerical Analysis: A Comprehensive Course.

Cambridge: Cambridge University Press. ISBN: 978-1-108-83770-5. DOI: 10.1017/9781108942607.
Trefethen, Lloyd N. and David Bau (1997). Numerical Linear Algebra. SIAM: Society for Industrial

and Applied Mathematics. ISBN: 0-89871-361-7.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Conditioning and stability

https://doi.org/10.1017/9781108942607

