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Eigenevalue decompositions and “spectral” theorems D04-S02(a)

If A P nˆn, then
– If A is not defective, it’s diagonalizable
– A is Hermitian i! it’s unitarily real diagonalizable

Unitary diagonalizability, i.e., a “spectral theorem”, is conceptually attractive: such matrices are diagonal
under an appropriate rigid rotation/reflection of coordinates.
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The spectral theorem D04-S03(a)

“The” spectral theorem on finite-dimensional spaces is an equivalence between the geometric notion of
unitary diagonalizability and an algebraic characterization of matrices.

Definition
A matrix A P nˆn is a normal matrix if it commutes with its transpose, i.e., AA˚ “ A˚A.

Now, here is the most general spectral theorem.

Theorem (The spectral theorem (for normal operators))

A square matrix is unitarily diagonalizable i! it is normal.
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The spectral theorem D04-S03(b)

“The” spectral theorem on finite-dimensional spaces is an equivalence between the geometric notion of
unitary diagonalizability and an algebraic characterization of matrices.

Definition
A matrix A P nˆn is a normal matrix if it commutes with its transpose, i.e., AA˚ “ A˚A.

Now, here is the most general spectral theorem.

Theorem (The spectral theorem (for normal operators))

A square matrix is unitarily diagonalizable i! it is normal.
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Normal matrices D04-S04(a)

The definition of eigenvalues, Av “ ωv, suggests that the eigenvalues of a matrix are su"cient to
quantitatively characterize its action. This is in many contexts false for general A.

Normal matrices are the class of matrices for which eigenvalues precisely characterize the action of a matrix.

If A is normal, ...
– then the 2-norm induced operator, spectral radius, and numerical radius (sup |W pAq|) coincide
– then }Ax}2 “ }A˚x}2 for any vector x
– then A “ A˚U for some unitary U

Actually, any of the above also implies that A is normal.
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Normal matrices D04-S04(b)

The definition of eigenvalues, Av “ ωv, suggests that the eigenvalues of a matrix are su"cient to
quantitatively characterize its action. This is in many contexts false for general A.

Normal matrices are the class of matrices for which eigenvalues precisely characterize the action of a matrix.

If A is normal, ...
– then the 2-norm induced operator, spectral radius, and numerical radius (sup |W pAq|) coincide
– then }Ax}2 “ }A˚x}2 for any vector x
– then A “ A˚U for some unitary U

Actually, any of the above also implies that A is normal.
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The Schur decomposition D04-S05(a)

One relatively simple proof of the spectral theorem exercises a general matrix decomposition.

Theorem (Schur factorization/decomposition)

Let A P nˆn. Then there is a unitary matrix U P nˆn and an upper triangular matrix T P nˆn such
that A “ UTU˚.

(I.e.: all square matrices are unitarily triangularizable.)

For now, the Schur factorization is essentially “just” a crutch for proving the spectral theorem.

But here’s a preview for why it’s useful more broadly: By the Schur factorization, every matrix A is
unitarily similar to a triangular matrix T .

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: The SVD



The Schur decomposition D04-S05(b)

One relatively simple proof of the spectral theorem exercises a general matrix decomposition.

Theorem (Schur factorization/decomposition)

Let A P nˆn. Then there is a unitary matrix U P nˆn and an upper triangular matrix T P nˆn such
that A “ UTU˚.

(I.e.: all square matrices are unitarily triangularizable.)

For now, the Schur factorization is essentially “just” a crutch for proving the spectral theorem.

But here’s a preview for why it’s useful more broadly: By the Schur factorization, every matrix A is
unitarily similar to a triangular matrix T .
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A summary of similarity D04-S06(a)

Recall:
– All non-defective square matrices are diagonalizable (eigenvalue decomposition)
– All square matrices are bidiagonalizable (Jordan normal form)
– All square matrices are unitarily triangularizable (Schur decomposition)
– All normal matrices are exactly the set of unitarily diagonalizable square matrices (spectral theorem)

What about rectangular matrices?
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A summary of similarity D04-S06(b)

Recall:
– All non-defective square matrices are diagonalizable (eigenvalue decomposition)
– All square matrices are bidiagonalizable (Jordan normal form)
– All square matrices are unitarily triangularizable (Schur decomposition)
– All normal matrices are exactly the set of unitarily diagonalizable square matrices (spectral theorem)

What about rectangular matrices?
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The singular value decomposition D04-S07(a)

Perhaps the most powerful matrix factorization is the following, which states that all matrices (even
defective or rectangular ones) are asymmetrically unitarily diagonalizable, with non-negative diagonal.

Theorem (SVD: Singular Value Decomposition)

Any matrix A P mˆn can be written as the product,

A “ U!V ˚,

where U P mˆm and V P nˆn are unitary.
The matrix ! P Cmˆn is diagonal with non-negative entries.
By convention the diagonal elements of ! are ordered in non-increasing order: !i,i ! !i`1,i`1.
This decomposition is unique up to unitary transformations in subspaces with equal singular values.
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The singular value decomposition D04-S07(b)

Perhaps the most powerful matrix factorization is the following, which states that all matrices (even
defective or rectangular ones) are asymmetrically unitarily diagonalizable, with non-negative diagonal.

Theorem (SVD: Singular Value Decomposition)

Any matrix A P mˆn can be written as the product,

A “ U!V ˚,

where U P mˆm and V P nˆn are unitary.
The matrix ! P Cmˆn is diagonal with non-negative entries.
By convention the diagonal elements of ! are ordered in non-increasing order: !i,i ! !i`1,i`1.
This decomposition is unique up to unitary transformations in subspaces with equal singular values.

With p “ mintm,nu, notational convention:
– ! “ diagpε1, . . . ,εpq
– ε1 ! ε2 ! ¨ ¨ ¨ ! εp ! 0, the “singular values”
– U “ ru1, u2, . . . , ums, the “left singular vectors”
– V “ rv1, v2, . . . , vns, the “right singular vectors”
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The singular value decomposition D04-S07(c)

Perhaps the most powerful matrix factorization is the following, which states that all matrices (even
defective or rectangular ones) are asymmetrically unitarily diagonalizable, with non-negative diagonal.

Theorem (SVD: Singular Value Decomposition)

Any matrix A P mˆn can be written as the product,

A “ U!V ˚,

where U P mˆm and V P nˆn are unitary.
The matrix ! P Cmˆn is diagonal with non-negative entries.
By convention the diagonal elements of ! are ordered in non-increasing order: !i,i ! !i`1,i`1.
This decomposition is unique up to unitary transformations in subspaces with equal singular values.

Proof step 1: Assuming m ! n, compute eigendecomposition of A˚A.
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The singular value decomposition D04-S07(d)

Perhaps the most powerful matrix factorization is the following, which states that all matrices (even
defective or rectangular ones) are asymmetrically unitarily diagonalizable, with non-negative diagonal.

Theorem (SVD: Singular Value Decomposition)

Any matrix A P mˆn can be written as the product,

A “ U!V ˚,

where U P mˆm and V P nˆn are unitary.
The matrix ! P Cmˆn is diagonal with non-negative entries.
By convention the diagonal elements of ! are ordered in non-increasing order: !i,i ! !i`1,i`1.
This decomposition is unique up to unitary transformations in subspaces with equal singular values.

Proof step 2: Define εj , compute uj “ 1
ωj

Avj , show they are orthonormal.
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The singular value decomposition D04-S07(e)

Perhaps the most powerful matrix factorization is the following, which states that all matrices (even
defective or rectangular ones) are asymmetrically unitarily diagonalizable, with non-negative diagonal.

Theorem (SVD: Singular Value Decomposition)

Any matrix A P mˆn can be written as the product,

A “ U!V ˚,

where U P mˆm and V P nˆn are unitary.
The matrix ! P Cmˆn is diagonal with non-negative entries.
By convention the diagonal elements of ! are ordered in non-increasing order: !i,i ! !i`1,i`1.
This decomposition is unique up to unitary transformations in subspaces with equal singular values.

Proof step 3: Concatenate vector equalities, complete bases for m, n, solve for A.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: The SVD





The SVD D04-S08(a)
The SVD is incredibly general and useful.

A “ U!V ˚ “
pÿ

j“1

εj

`
ujv

˚
j

˘

If r “ rankpAq:
rankpAq “ r "ñ εr # 0, and εj “ 0, j # r

A has a reduced SVD:

A “
rÿ

j“1

εj

`
ujv

˚
j

˘ “ rU r! rV
˚
, rU “ ru1, . . . ,urs , rV “ rv1, . . . ,vrs

}A}2 “ ε1

The SVD is, at last, a decomposition that actually reveals the “size” of a matrix.

If A is square and invertible:

A´1 “ V !´1U˚
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The SVD D04-S08(b)
The SVD is incredibly general and useful.

A “ U!V ˚ “
pÿ

j“1

εj

`
ujv

˚
j

˘

If r “ rankpAq:
rankpAq “ r "ñ εr # 0, and εj “ 0, j # r

A has a reduced SVD:

A “
rÿ

j“1

εj

`
ujv

˚
j

˘ “ rU r! rV
˚
, rU “ ru1, . . . ,urs , rV “ rv1, . . . ,vrs

}A}2 “ ε1

The SVD is, at last, a decomposition that actually reveals the “size” of a matrix.

If A is square and invertible:

A´1 “ V !´1U˚
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The SVD D04-S08(c)
The SVD is incredibly general and useful.

A “ U!V ˚ “
pÿ

j“1

εj

`
ujv

˚
j

˘

If r “ rankpAq:
rankpAq “ r "ñ εr # 0, and εj “ 0, j # r

A has a reduced SVD:

A “
rÿ

j“1

εj

`
ujv

˚
j

˘ “ rU r! rV
˚
, rU “ ru1, . . . ,urs , rV “ rv1, . . . ,vrs

}A}2 “ ε1

The SVD is, at last, a decomposition that actually reveals the “size” of a matrix.

If A is square and invertible:

A´1 “ V !´1U˚
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The SVD D04-S08(d)
The SVD is incredibly general and useful.

A “ U!V ˚ “
pÿ

j“1

εj

`
ujv

˚
j

˘

If r “ rankpAq:
rankpAq “ r "ñ εr # 0, and εj “ 0, j # r

A has a reduced SVD:

A “
rÿ

j“1

εj

`
ujv

˚
j

˘ “ rU r! rV
˚
, rU “ ru1, . . . ,urs , rV “ rv1, . . . ,vrs

}A}2 “ ε1

The SVD is, at last, a decomposition that actually reveals the “size” of a matrix.

If A is square and invertible:

A´1 “ V !´1U˚
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The SVD D04-S08(e)
The SVD is incredibly general and useful.

A “ U!V ˚ “
pÿ

j“1

εj

`
ujv

˚
j

˘

If r “ rankpAq:
rankpAq “ r "ñ εr # 0, and εj “ 0, j # r

A has a reduced SVD:

A “
rÿ

j“1

εj

`
ujv

˚
j

˘ “ rU r! rV
˚
, rU “ ru1, . . . ,urs , rV “ rv1, . . . ,vrs

}A}2 “ ε1

The SVD is, at last, a decomposition that actually reveals the “size” of a matrix.

If A is square and invertible:

A´1 “ V !´1U˚
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The four fundamental subspaces, redux D04-S09(a)

The SVD immediately reveals the 4 fundamental subspaces. Since,

A “ rU r! rV ,

then:
– rangepAq “ spantu1, . . .uru
– corangepAq “ kerpA˚q “ spantur`1, . . .umu
– kerpAq “ spantvr`1, . . . ,vnu
– cokerpAq “ rangepA˚q “ spantv1, . . . ,vru

I.e., the SVD (nearly) tells you everything about a matrix.

Q: Let A be a square matrix. How are the singular values εi of A related to its spectrum?
(Or maybe to the modulus of its spectrum?)
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The four fundamental subspaces, redux D04-S09(b)

The SVD immediately reveals the 4 fundamental subspaces. Since,

A “ rU r! rV ,

then:
– rangepAq “ spantu1, . . .uru
– corangepAq “ kerpA˚q “ spantur`1, . . .umu
– kerpAq “ spantvr`1, . . . ,vnu
– cokerpAq “ rangepA˚q “ spantv1, . . . ,vru

I.e., the SVD (nearly) tells you everything about a matrix.

Q: Let A be a square matrix. How are the singular values εi of A related to its spectrum?
(Or maybe to the modulus of its spectrum?)
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Low rank approximation D04-S10(a)

There are numerous (quite potent) uses of the SVD. Here’s one of the more popular ones:

Suppose A P mˆn is a given matrix, and r $ mintm,nu. We wish to solve the optimization problem,

argmin
BP mˆn rankpBq!r

}A ´ B} ,

for some norm } ¨ }.

Why?
– data compression
– simplification or denoising
– interpretable modeling

Unsurpisingly, the choice of norm matters. There’s a particular choice that is convenient to consider.

Definition
A norm } ¨ } on m ˆ n matrices is unitarily invariant if }A} “ }UAV } for any A and arbitrary unitary
matrices U ,V of appropriates sizes. This implies the norm is a function of only the singular values. I.e.,
with p “ mintm,nu, } ¨ } is a function f : r0,8qp Ñ r0,8q such that,

}A} “ fpε1, . . . ,εpq.
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Low rank approximation D04-S10(b)

There are numerous (quite potent) uses of the SVD. Here’s one of the more popular ones:

Suppose A P mˆn is a given matrix, and r $ mintm,nu. We wish to solve the optimization problem,

argmin
BP mˆn rankpBq!r

}A ´ B} ,

for some norm } ¨ }.

Why?
– data compression
– simplification or denoising
– interpretable modeling

Unsurpisingly, the choice of norm matters. There’s a particular choice that is convenient to consider.

Definition
A norm } ¨ } on m ˆ n matrices is unitarily invariant if }A} “ }UAV } for any A and arbitrary unitary
matrices U ,V of appropriates sizes. This implies the norm is a function of only the singular values. I.e.,
with p “ mintm,nu, } ¨ } is a function f : r0,8qp Ñ r0,8q such that,

}A} “ fpε1, . . . ,εpq.
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Low rank approximation D04-S10(c)

There are numerous (quite potent) uses of the SVD. Here’s one of the more popular ones:

Suppose A P mˆn is a given matrix, and r $ mintm,nu. We wish to solve the optimization problem,

argmin
BP mˆn rankpBq!r

}A ´ B} ,

for some norm } ¨ }.

Why?
– data compression
– simplification or denoising
– interpretable modeling

Unsurpisingly, the choice of norm matters. There’s a particular choice that is convenient to consider.

Definition
A norm } ¨ } on m ˆ n matrices is unitarily invariant if }A} “ }UAV } for any A and arbitrary unitary
matrices U ,V of appropriates sizes. This implies the norm is a function of only the singular values. I.e.,
with p “ mintm,nu, } ¨ } is a function f : r0,8qp Ñ r0,8q such that,

}A} “ fpε1, . . . ,εpq.
Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: The SVD



Low rank approximation and the SVD D04-S11(a)

The main result is that the explicit solution to a(ny) nuclear norm low-rank approximation problem is a
truncated SVD.

Theorem (Schmidt-Eckart-Young-Mirsky)

Let A P mˆn, and k $ rankpAq % mintm,nu. Suppose } ¨ } is a unitarily invariant norm on m ˆ n
matrices. Then a solution Bk to,

Bk P argmin
BP mˆn rankpBq!k

}A ´ B} ,

is

Bk “
ÿ

jPrks
εkukv

˚
k

The minimizer Bk is unique i! εk # εk`1.

(NB: k ! rankpAq is fine, but the problem is then vacuous since one can choose B “ A.)
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Computing the SVD D04-S12(a)

It’s kind of unclear how the SVD should be computed. However, the proof we’ve presented is actually
constructive:

1. Since AA˚ P mˆm and A˚A P nˆn are both spd, we order their eigenvalues in decreasing order.
Then ε2

i pAq “ ωipAA˚q “ ωipA˚Aq.

2. Suppose we compute ωipA˚Aq for i P rns, so we have εipAq.
By the spectral theorem, we can also compute (orthonormal!) eigenvectors vi such that
A˚Avi “ ε2

i vi.

3. As in the proof, set ui “ Avi{εi. We now have εi,ui,vi for i P rns.

4. To compute un`1, . . .um, we can choose a(ny) m-orthogonal completion of u1, . . . ,un.
There are some minor details to iron out before this is actually implementable, e.g., we really only compute
ui for i % rankpAq, and the rest we identify through orthogonal completion.
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Computing the SVD D04-S12(b)

It’s kind of unclear how the SVD should be computed. However, the proof we’ve presented is actually
constructive:

1. Since AA˚ P mˆm and A˚A P nˆn are both spd, we order their eigenvalues in decreasing order.
Then ε2

i pAq “ ωipAA˚q “ ωipA˚Aq.

2. Suppose we compute ωipA˚Aq for i P rns, so we have εipAq.
By the spectral theorem, we can also compute (orthonormal!) eigenvectors vi such that
A˚Avi “ ε2

i vi.

3. As in the proof, set ui “ Avi{εi. We now have εi,ui,vi for i P rns.

4. To compute un`1, . . .um, we can choose a(ny) m-orthogonal completion of u1, . . . ,un.
There are some minor details to iron out before this is actually implementable, e.g., we really only compute
ui for i % rankpAq, and the rest we identify through orthogonal completion.
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Computing the SVD D04-S12(c)

It’s kind of unclear how the SVD should be computed. However, the proof we’ve presented is actually
constructive:

1. Since AA˚ P mˆm and A˚A P nˆn are both spd, we order their eigenvalues in decreasing order.
Then ε2

i pAq “ ωipAA˚q “ ωipA˚Aq.

2. Suppose we compute ωipA˚Aq for i P rns, so we have εipAq.
By the spectral theorem, we can also compute (orthonormal!) eigenvectors vi such that
A˚Avi “ ε2

i vi.

3. As in the proof, set ui “ Avi{εi. We now have εi,ui,vi for i P rns.

4. To compute un`1, . . .um, we can choose a(ny) m-orthogonal completion of u1, . . . ,un.
There are some minor details to iron out before this is actually implementable, e.g., we really only compute
ui for i % rankpAq, and the rest we identify through orthogonal completion.
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Computing the SVD D04-S12(d)

It’s kind of unclear how the SVD should be computed. However, the proof we’ve presented is actually
constructive:

1. Since AA˚ P mˆm and A˚A P nˆn are both spd, we order their eigenvalues in decreasing order.
Then ε2

i pAq “ ωipAA˚q “ ωipA˚Aq.

2. Suppose we compute ωipA˚Aq for i P rns, so we have εipAq.
By the spectral theorem, we can also compute (orthonormal!) eigenvectors vi such that
A˚Avi “ ε2

i vi.

3. As in the proof, set ui “ Avi{εi. We now have εi,ui,vi for i P rns.

4. To compute un`1, . . .um, we can choose a(ny) m-orthogonal completion of u1, . . . ,un.
There are some minor details to iron out before this is actually implementable, e.g., we really only compute
ui for i % rankpAq, and the rest we identify through orthogonal completion.
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Back to eigenvalues D04-S13(a)

Hence, we arrive at the conclusion that the SVD is quite directly computable through an eigenvalue
decomposition of symmetric (positive semi-definite) matrices!

So if we can compute eigenpairs of symmetric matrices, the rest is “easy”.

Pro tip: computing eigenpairs of matrices of size Á 10 using roots of characteristic polynomials is an
unattractive idea.

In summary: eigenvalues are important to compute!
Most tasks we discussed rely on computing eigenvalues, at least of Hermitian matrices. How is this done?

For the next few weeks, we’ll talk about how to compute eigenvalues. However, there’s a lot of buildup
we’ll need before arriving there:

– What makes a good computational algorithm?
– How do we solve linear systems?
– How to we orthogonalize vectors?
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Back to eigenvalues D04-S13(b)

Hence, we arrive at the conclusion that the SVD is quite directly computable through an eigenvalue
decomposition of symmetric (positive semi-definite) matrices!

So if we can compute eigenpairs of symmetric matrices, the rest is “easy”.

Pro tip: computing eigenpairs of matrices of size Á 10 using roots of characteristic polynomials is an
unattractive idea.

In summary: eigenvalues are important to compute!
Most tasks we discussed rely on computing eigenvalues, at least of Hermitian matrices. How is this done?

For the next few weeks, we’ll talk about how to compute eigenvalues. However, there’s a lot of buildup
we’ll need before arriving there:

– What makes a good computational algorithm?
– How do we solve linear systems?
– How to we orthogonalize vectors?
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