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Eigenvalues and eigenvectors D03-S02(a)

Given A P C
nˆn, pλ,vq P Cˆ pC

n
zt0uq is an eigenvalue-eigenvector pair if

Av “ λv.

Recall: it doesn’t matter what value(s) λ takes on, but v cannot be 0.

Some additional terminology/properties:

– The collection of all eigenvalues of A is λpAq Ă C, its spectrum.

– Even if A P R
nˆn, λpAq can contain complex values, and eigenvectors can be complex-valued.

– On paper, we typically identify the spectrum by computing roots of the characteristic polynomial,
pApλq “ detpλI ´ Aq. (This turns out to be a terrible algorithmic strategy.)
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Eigenvalues and eigenvectors D03-S02(b)

Given A P C
nˆn, pλ,vq P Cˆ pC

n
zt0uq is an eigenvalue-eigenvector pair if

Av “ λv.

Recall: it doesn’t matter what value(s) λ takes on, but v cannot be 0.

Some additional terminology/properties:

– The collection of all eigenvalues of A is λpAq Ă C, its spectrum.

– Even if A P R
nˆn, λpAq can contain complex values, and eigenvectors can be complex-valued.

– On paper, we typically identify the spectrum by computing roots of the characteristic polynomial,
pApλq “ detpλI ´ Aq. (This turns out to be a terrible algorithmic strategy.)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Eigenpair properties D03-S03(a)

There are many properties of eigenvalues and eigenvectors of A P C
nˆn:

– All square matrices have exactly n eigenvalues, with some possibly repeated.

– All square matrices have at least 1 eigenvector.

– Eigenvectors from distinct eigenvalues are linearly independent.

– Every distinct eigenvalue has at least 1 eigenvector.

– The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called
an eigenspace Eλ.

– Eigenspaces are invariant subspaces of A, i.e., AEλ Ď Eλ.

– The number of times an eigenvalue is repeated aλ is its algebraic multiplicity

– The geometric multiplicity gλ of an eigenvalue λ is dimEλ.

– Simple eigenvalues λ have gλ “ aλ “ 1.

– In general we always have gλ ď aλ, so that, 1 ď
ř

λPλpAq
gλ ď

ř

λPλpAq
aλ “ n.

– Eigenvalues λ with gλ ă aλ are defective

– Any A with a defective eigenvalue is defective.
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Eigenpair properties D03-S03(b)

There are many properties of eigenvalues and eigenvectors of A P C
nˆn:

– All square matrices have exactly n eigenvalues, with some possibly repeated.

– All square matrices have at least 1 eigenvector.

– Eigenvectors from distinct eigenvalues are linearly independent.

– Every distinct eigenvalue has at least 1 eigenvector.

– The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called
an eigenspace Eλ.

– Eigenspaces are invariant subspaces of A, i.e., AEλ Ď Eλ.

– The number of times an eigenvalue is repeated aλ is its algebraic multiplicity

– The geometric multiplicity gλ of an eigenvalue λ is dimEλ.

– Simple eigenvalues λ have gλ “ aλ “ 1.

– In general we always have gλ ď aλ, so that, 1 ď
ř

λPλpAq
gλ ď

ř

λPλpAq
aλ “ n.

– Eigenvalues λ with gλ ă aλ are defective

– Any A with a defective eigenvalue is defective.
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Eigenpair properties D03-S03(c)

There are many properties of eigenvalues and eigenvectors of A P C
nˆn:

– All square matrices have exactly n eigenvalues, with some possibly repeated.

– All square matrices have at least 1 eigenvector.

– Eigenvectors from distinct eigenvalues are linearly independent.

– Every distinct eigenvalue has at least 1 eigenvector.

– The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called
an eigenspace Eλ.

– Eigenspaces are invariant subspaces of A, i.e., AEλ Ď Eλ.

– The number of times an eigenvalue is repeated aλ is its algebraic multiplicity

– The geometric multiplicity gλ of an eigenvalue λ is dimEλ.

– Simple eigenvalues λ have gλ “ aλ “ 1.

– In general we always have gλ ď aλ, so that, 1 ď
ř

λPλpAq
gλ ď

ř

λPλpAq
aλ “ n.

– Eigenvalues λ with gλ ă aλ are defective

– Any A with a defective eigenvalue is defective.
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Eigenpair properties D03-S03(d)

There are many properties of eigenvalues and eigenvectors of A P C
nˆn:

– All square matrices have exactly n eigenvalues, with some possibly repeated.

– All square matrices have at least 1 eigenvector.

– Eigenvectors from distinct eigenvalues are linearly independent.

– Every distinct eigenvalue has at least 1 eigenvector.

– The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called
an eigenspace Eλ.

– Eigenspaces are invariant subspaces of A, i.e., AEλ Ď Eλ.

– The number of times an eigenvalue is repeated aλ is its algebraic multiplicity

– The geometric multiplicity gλ of an eigenvalue λ is dimEλ.

– Simple eigenvalues λ have gλ “ aλ “ 1.

– In general we always have gλ ď aλ, so that, 1 ď
ř

λPλpAq
gλ ď

ř

λPλpAq
aλ “ n.

– Eigenvalues λ with gλ ă aλ are defective

– Any A with a defective eigenvalue is defective.
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Eigenpair properties D03-S03(e)

There are many properties of eigenvalues and eigenvectors of A P C
nˆn:

– All square matrices have exactly n eigenvalues, with some possibly repeated.

– All square matrices have at least 1 eigenvector.

– Eigenvectors from distinct eigenvalues are linearly independent.

– Every distinct eigenvalue has at least 1 eigenvector.

– The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called
an eigenspace Eλ.

– Eigenspaces are invariant subspaces of A, i.e., AEλ Ď Eλ.

– The number of times an eigenvalue is repeated aλ is its algebraic multiplicity

– The geometric multiplicity gλ of an eigenvalue λ is dimEλ.

– Simple eigenvalues λ have gλ “ aλ “ 1.

– In general we always have gλ ď aλ, so that, 1 ď
ř

λPλpAq
gλ ď

ř

λPλpAq
aλ “ n.

– Eigenvalues λ with gλ ă aλ are defective

– Any A with a defective eigenvalue is defective.
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Eigenpair properties D03-S03(f)

There are many properties of eigenvalues and eigenvectors of A P C
nˆn:

– All square matrices have exactly n eigenvalues, with some possibly repeated.

– All square matrices have at least 1 eigenvector.

– Eigenvectors from distinct eigenvalues are linearly independent.

– Every distinct eigenvalue has at least 1 eigenvector.

– The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called
an eigenspace Eλ.

– Eigenspaces are invariant subspaces of A, i.e., AEλ Ď Eλ.

– The number of times an eigenvalue is repeated aλ is its algebraic multiplicity

– The geometric multiplicity gλ of an eigenvalue λ is dimEλ.

– Simple eigenvalues λ have gλ “ aλ “ 1.

– In general we always have gλ ď aλ, so that, 1 ď
ř

λPλpAq
gλ ď

ř

λPλpAq
aλ “ n.

– Eigenvalues λ with gλ ă aλ are defective

– Any A with a defective eigenvalue is defective.
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Eigenpair properties D03-S03(g)

There are many properties of eigenvalues and eigenvectors of A P C
nˆn:

– All square matrices have exactly n eigenvalues, with some possibly repeated.

– All square matrices have at least 1 eigenvector.

– Eigenvectors from distinct eigenvalues are linearly independent.

– Every distinct eigenvalue has at least 1 eigenvector.

– The collection of all eigenvectors associated to an eigenvalue λ is a subspace, and is frequently called
an eigenspace Eλ.

– Eigenspaces are invariant subspaces of A, i.e., AEλ Ď Eλ.

– The number of times an eigenvalue is repeated aλ is its algebraic multiplicity

– The geometric multiplicity gλ of an eigenvalue λ is dimEλ.

– Simple eigenvalues λ have gλ “ aλ “ 1.

– In general we always have gλ ď aλ, so that, 1 ď
ř

λPλpAq
gλ ď

ř

λPλpAq
aλ “ n.

– Eigenvalues λ with gλ ă aλ are defective

– Any A with a defective eigenvalue is defective.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



A digression: similarity transforms D03-S04(a)

Two square matrices A and B are similar if D an invertible S such that

B “ S´1AS.

(The map A ÞÑ S´1AS is a similarity transform.)

Suppose A is not defective: then with linearly independent vi, i P rns we have the relations,

Avi “ λivi.

This is equivalent to,

AV “ ΛV , V “

¨

˝

| |

v1 ¨ ¨ ¨ vn

| |

˛

‚, Λ “ diagpλ1, . . . , λnq.

And since V is full-rank, then

A “ V ´1ΛV ,

i.e., A is similar to a diagonal matrix containing its spectrum.
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A digression: similarity transforms D03-S04(b)

Two square matrices A and B are similar if D an invertible S such that

B “ S´1AS.

(The map A ÞÑ S´1AS is a similarity transform.)

Suppose A is not defective: then with linearly independent vi, i P rns we have the relations,

Avi “ λivi.

This is equivalent to,

AV “ ΛV , V “

¨

˝

| |

v1 ¨ ¨ ¨ vn

| |

˛

‚, Λ “ diagpλ1, . . . , λnq.

And since V is full-rank, then

A “ V ´1ΛV ,

i.e., A is similar to a diagonal matrix containing its spectrum.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



A digression: similarity transforms D03-S04(c)

Two square matrices A and B are similar if D an invertible S such that

B “ S´1AS.

(The map A ÞÑ S´1AS is a similarity transform.)

Suppose A is not defective: then with linearly independent vi, i P rns we have the relations,

Avi “ λivi.

This is equivalent to,

AV “ ΛV , V “

¨

˝

| |

v1 ¨ ¨ ¨ vn

| |

˛

‚, Λ “ diagpλ1, . . . , λnq.

And since V is full-rank, then

A “ V ´1ΛV ,

i.e., A is similar to a diagonal matrix containing its spectrum.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Matrix diagonalizability D03-S05(a)

This motivates a key definition and consequence.

Definition
A square matrix A P C

nˆn is diagonalizable if it is similar to a diagonal matrix.

Theorem
A square matrix A is diagonalizable iff it is not defective.

When A is not defective, it is diagonalizable via a matrix whose columns are comprised of its linearly
independent eigenvectors.
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Similarity invariances D03-S06(a)

One simple observation is that the set of eigenvalues is invariant under a(ny) similarity transform, since if
A is diagonalizable with diagonal matrix Λ, then,

S´1AS “ pV Sq
´1 Λ pV Sq

is a diagonalization of S´1AS with the same diagonal matrix Λ.

More consequences follow, e.g., some familiar determinant and trace properties,

detA “

n
ź

j“1

λj , trA “

n
ÿ

j“1

λj .

The above is actually true for any square matrix A, defective or not.
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Similarity invariances D03-S06(b)

One simple observation is that the set of eigenvalues is invariant under a(ny) similarity transform, since if
A is diagonalizable with diagonal matrix Λ, then,

S´1AS “ pV Sq
´1 Λ pV Sq

is a diagonalization of S´1AS with the same diagonal matrix Λ.

More consequences follow, e.g., some familiar determinant and trace properties,

detA “

n
ź

j“1

λj , trA “

n
ÿ

j“1

λj .

The above is actually true for any square matrix A, defective or not.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Jordan normal form D03-S07(a)

Defective matrices certainly exist. The most common example is,
ˆ

1 1
0 1

˙

.

A rather nice fact is that the above example is “spiritually” the prototypical and essentially only type of
defective matrix.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Jordan normal form D03-S07(b)

Defective matrices certainly exist. The most common example is,
ˆ

1 1
0 1

˙

.

A rather nice fact is that the above example is “spiritually” the prototypical and essentially only type of
defective matrix.

Theorem (Jordan normal form)

Every square matrix A P C
nˆn is bidiagonalizable, i.e., is similar to a bidiagonal matrix.

More specifically, let λ1, . . . , λU be the unique eigenvalues of A, and suppose they have algebraic and
geometric multiplicities aj and gj , j P rU s, respectively. Tnen:

A “ V JV ´1, V P C
nˆn,

where V is invertible, and J is bidiagonal with ΛpAq on the diagonal, given by,

J “
à

jPrUs

`

λjIgj´1 ‘ Jj

˘

, Jj “ λjIaj´gj`1 ` Naj´gj`1,

where Nk is a k ˆ k matrix, nonzero only on its main superdiagonal that has entries all 1.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



To diagonalizability and beyond D03-S08(a)

“Most” square matrices are diagonalizable.

This is (incredibly) powerful: a symmetric linear change of basis of the input and output spaces results in a
diagonal linear operator.
The particular change of basis can be quite anisotropic (and non-isometric) in nature.

All square matrices are not diagonalizable. However, ...

– ...all square matrices are bidiagonalizable (Jordan normal form)

– ...all square matrices are unitarily triangularizable (Schur decomposition)
While triangularizability is not as clean as diagonalizability, that there are unitary transformations
accomplishing this is very attractive.

Are there matrices that are unitarily diagonalizable?

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



To diagonalizability and beyond D03-S08(b)

“Most” square matrices are diagonalizable.

This is (incredibly) powerful: a symmetric linear change of basis of the input and output spaces results in a
diagonal linear operator.
The particular change of basis can be quite anisotropic (and non-isometric) in nature.

All square matrices are not diagonalizable. However, ...

– ...all square matrices are bidiagonalizable (Jordan normal form)

– ...all square matrices are unitarily triangularizable (Schur decomposition)
While triangularizability is not as clean as diagonalizability, that there are unitary transformations
accomplishing this is very attractive.

Are there matrices that are unitarily diagonalizable?

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



To diagonalizability and beyond D03-S08(c)

“Most” square matrices are diagonalizable.

This is (incredibly) powerful: a symmetric linear change of basis of the input and output spaces results in a
diagonal linear operator.
The particular change of basis can be quite anisotropic (and non-isometric) in nature.

All square matrices are not diagonalizable. However, ...

– ...all square matrices are bidiagonalizable (Jordan normal form)

– ...all square matrices are unitarily triangularizable (Schur decomposition)
While triangularizability is not as clean as diagonalizability, that there are unitary transformations
accomplishing this is very attractive.

Are there matrices that are unitarily diagonalizable?

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



To diagonalizability and beyond D03-S08(d)

“Most” square matrices are diagonalizable.

This is (incredibly) powerful: a symmetric linear change of basis of the input and output spaces results in a
diagonal linear operator.
The particular change of basis can be quite anisotropic (and non-isometric) in nature.

All square matrices are not diagonalizable. However, ...

– ...all square matrices are bidiagonalizable (Jordan normal form)

– ...all square matrices are unitarily triangularizable (Schur decomposition)
While triangularizability is not as clean as diagonalizability, that there are unitary transformations
accomplishing this is very attractive.

Are there matrices that are unitarily diagonalizable?

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



A “spectral” theorem D03-S09(a)

A seemingly unrelated algebraic definition is our starting point.

Definition
A matrix A P C

nˆn is Hermitian if A “ A˚.
(Hermitian matrices are also called self-adjoint, or symmetric when A is real-valued.)

Theorem (Spectral Theorem for Hermitian matrices)

If A P C
nˆn is Hermitian, then it is unitarily diagonalizable with real eigenvalues.

(Its spectrum is real-valued, and the similarity matrix accomplishing diagonalization is unitary.)

Hermitian matrices are very common in applications, and the spectral theorem has numerous uses.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



A “spectral” theorem D03-S09(b)

A seemingly unrelated algebraic definition is our starting point.

Definition
A matrix A P C

nˆn is Hermitian if A “ A˚.
(Hermitian matrices are also called self-adjoint, or symmetric when A is real-valued.)

Theorem (Spectral Theorem for Hermitian matrices)

If A P C
nˆn is Hermitian, then it is unitarily diagonalizable with real eigenvalues.

(Its spectrum is real-valued, and the similarity matrix accomplishing diagonalization is unitary.)

Hermitian matrices are very common in applications, and the spectral theorem has numerous uses.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



A “spectral” theorem D03-S09(c)

A seemingly unrelated algebraic definition is our starting point.

Definition
A matrix A P C

nˆn is Hermitian if A “ A˚.
(Hermitian matrices are also called self-adjoint, or symmetric when A is real-valued.)

Theorem (Spectral Theorem for Hermitian matrices)

If A P C
nˆn is Hermitian, then it is unitarily diagonalizable with real eigenvalues.

(Its spectrum is real-valued, and the similarity matrix accomplishing diagonalization is unitary.)

Hermitian matrices are very common in applications, and the spectral theorem has numerous uses.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Application I: Geometric interpretation of Hermitian matrices D03-S10(a)

If A P C
nˆn is unitarily diagonalizable, then it can be written as

A “ UΛU˚
“

n
ÿ

j“1

λjuju
˚
j ,

where tuju
n
j“1 are the columns of U .

I.e., Hermitian matrices (an algebraic property) have strong geometric interpretation: they are “just”
diagonal matrices in a rotated/reflected orthonormal frame.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Application I: Geometric interpretation of Hermitian matrices D03-S10(b)

If A P C
nˆn is unitarily diagonalizable, then it can be written as

A “ UΛU˚
“

n
ÿ

j“1

λjuju
˚
j ,

where tuju
n
j“1 are the columns of U .

I.e., Hermitian matrices (an algebraic property) have strong geometric interpretation: they are “just”
diagonal matrices in a rotated/reflected orthonormal frame.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Application II: The induced 2-norm D03-S11(a)

The spectral radius of a matrix A is

ρpAq :“ max
j“1,...,n

|λjpAq|

If A is Hermitian, then }A}2 “ ρpAq.

This is direct from the definition of the induced 2-norm.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Application III: The “A norm” D03-S12(a)

A matrix A P C
nˆn is Hermitian positive definite (sometimes symmetric positive-definite or “spd”) if it’s

Hermitian and its (real) spectrum is strictly positive.

(Respectively, positive semi-definite if the spectrum is non-negative.)

Such matrices actually define a norm: }x}
2
A :“ x˚Ax is a norm.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Application III: The “A norm” D03-S12(b)

A matrix A P C
nˆn is Hermitian positive definite (sometimes symmetric positive-definite or “spd”) if it’s

Hermitian and its (real) spectrum is strictly positive.

(Respectively, positive semi-definite if the spectrum is non-negative.)

Such matrices actually define a norm: }x}
2
A :“ x˚Ax is a norm.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Application IV: Matrix square roots D03-S13(a)

There is a functional calculus on spd matrices.

For example, a matrix B is the square root of a matrix A if A “ B2.

Example

If A is spd, compute a matrix square root of A.

Theorem
If A is spd, then there is a unique spd square root B of A, i.e., B2

“ A.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Application IV: Matrix square roots D03-S13(b)

There is a functional calculus on spd matrices.

For example, a matrix B is the square root of a matrix A if A “ B2.

Example

If A is spd, compute a matrix square root of A.

Theorem
If A is spd, then there is a unique spd square root B of A, i.e., B2

“ A.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Application IV: Matrix square roots D03-S13(c)

There is a functional calculus on spd matrices.

For example, a matrix B is the square root of a matrix A if A “ B2.

Example

If A is spd, compute a matrix square root of A.

Theorem
If A is spd, then there is a unique spd square root B of A, i.e., B2

“ A.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Application IV: Quadratic forms D03-S14(a)

Given a Hermitian matrix A P C
nˆn, the function,

QApxq :“ x˚Ax,

is a quadratic form, i.e., a real-valued quadratic function on Cn. The eigendecomposition of A uniquely
defines the behavior of QA.

If the following eigenvectors correspond to the positive, negative, and zero eigenvalues of A, respectively,
␣

v`
i

(

iPrn`s
,

␣

v´
i

(

iPrn´s
,

␣

v0
i

(

iPrn0s
,

where n “ n`
` n´

` n0. Then clearly:

QApv`
i q ą 0, QApv´

i q ă 0, QApv0
i q “ 0.

Generalizing this a bit:

V ` :“
␣

v`
i

(

iPrn`s
,

V ´ :“
␣

v´
i

(

iPrn´s
,

V 0 :“
␣

v0
i

(

iPrn0s

,

/

.

/

-

ùñ

$

&

%

QApxq ą 0 if x P V `
zt0u

QApxq ă 0 if x P V ´
zt0u

QApxq “ 0 if x P V 0

where Cn
“ V `

‘ V ´
‘ V 0.
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Application IV: Quadratic forms D03-S14(b)

Given a Hermitian matrix A P C
nˆn, the function,

QApxq :“ x˚Ax,

is a quadratic form, i.e., a real-valued quadratic function on Cn. The eigendecomposition of A uniquely
defines the behavior of QA.

If the following eigenvectors correspond to the positive, negative, and zero eigenvalues of A, respectively,
␣

v`
i

(

iPrn`s
,

␣

v´
i

(

iPrn´s
,

␣

v0
i

(

iPrn0s
,

where n “ n`
` n´

` n0. Then clearly:

QApv`
i q ą 0, QApv´

i q ă 0, QApv0
i q “ 0.

Generalizing this a bit:

V ` :“
␣

v`
i

(

iPrn`s
,

V ´ :“
␣

v´
i

(

iPrn´s
,

V 0 :“
␣

v0
i

(

iPrn0s

,

/

.

/

-

ùñ

$

&

%

QApxq ą 0 if x P V `
zt0u

QApxq ă 0 if x P V ´
zt0u

QApxq “ 0 if x P V 0

where Cn
“ V `

‘ V ´
‘ V 0.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Application IV: Quadratic forms D03-S14(c)

Given a Hermitian matrix A P C
nˆn, the function,

QApxq :“ x˚Ax,

is a quadratic form, i.e., a real-valued quadratic function on Cn. The eigendecomposition of A uniquely
defines the behavior of QA.

If the following eigenvectors correspond to the positive, negative, and zero eigenvalues of A, respectively,
␣

v`
i

(

iPrn`s
,

␣

v´
i

(

iPrn´s
,

␣

v0
i

(

iPrn0s
,

where n “ n`
` n´

` n0. Then clearly:

QApv`
i q ą 0, QApv´

i q ă 0, QApv0
i q “ 0.

Generalizing this a bit:

V ` :“
␣

v`
i

(

iPrn`s
,

V ´ :“
␣

v´
i

(

iPrn´s
,

V 0 :“
␣

v0
i

(

iPrn0s

,

/

.

/

-

ùñ

$

&

%

QApxq ą 0 if x P V `
zt0u

QApxq ă 0 if x P V ´
zt0u

QApxq “ 0 if x P V 0

where Cn
“ V `

‘ V ´
‘ V 0.
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Rayleigh quotients, I D03-S15(a)

A final application of Hermitian matrices is a variational characterization of eigenvalues. We need some
buildup for this.

Let A P C
nˆn be a(ny) square matrix, and let x P C

n
zt0u be a vector.

The Rayleigh Quotient (of A at x) is the (complex) scalar,

RApxq :“
QApxq

}x}22
“

x˚Ax

x˚x
“

xAx,xy

xx,xy
, x ‰ 0

Ostensibly, if pλ,vq is an eigenpair of A, then RApvq “ λ.

The numerical range of A is the set of all possible values of RA:

W pAq :“ RA pC
n

zt0uq .

One can view W pAq as the image of the Rayleigh quotient over all Cn, but also just as the image of the
Rayleigh quotient over the unit sphere in Cn.

W pAq is some set in C, regardless of the dimension n of A.

Clearly we know λpAq Ă W pAq.
Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Rayleigh quotients, I D03-S15(b)

A final application of Hermitian matrices is a variational characterization of eigenvalues. We need some
buildup for this.

Let A P C
nˆn be a(ny) square matrix, and let x P C

n
zt0u be a vector.

The Rayleigh Quotient (of A at x) is the (complex) scalar,

RApxq :“
QApxq

}x}22
“

x˚Ax

x˚x
“

xAx,xy

xx,xy
, x ‰ 0

Ostensibly, if pλ,vq is an eigenpair of A, then RApvq “ λ.

The numerical range of A is the set of all possible values of RA:

W pAq :“ RA pC
n

zt0uq .

One can view W pAq as the image of the Rayleigh quotient over all Cn, but also just as the image of the
Rayleigh quotient over the unit sphere in Cn.

W pAq is some set in C, regardless of the dimension n of A.

Clearly we know λpAq Ă W pAq.
Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Rayleigh quotients, II D03-S16(a)

There is a rather more interesting property of the numerical range.

Theorem (Hausdorff-Toeplitz Theorem)

W pAq is a compact and convex set in C.

Compactness: W pAq is the image of a compact set (unit sphere in Cn) under a continuous function
(RAp¨q).

For certain classes of matrices, the Rayleigh quotient is a little more transparent.

For example, if A is Hermitian, then RApxq P R, so W pAq Ă R.

In fact, something more precise is true

Theorem
If A is Hermitian, then

λminpAq ď RApxq ď λmaxpAq, x P C
n

zt0u.

An immediate corollary: If A is Hermitian, then W pAq “ rλminpAq, λmaxpAqs.
Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Rayleigh quotients, II D03-S16(b)

There is a rather more interesting property of the numerical range.

Theorem (Hausdorff-Toeplitz Theorem)

W pAq is a compact and convex set in C.

Compactness: W pAq is the image of a compact set (unit sphere in Cn) under a continuous function
(RAp¨q).

For certain classes of matrices, the Rayleigh quotient is a little more transparent.

For example, if A is Hermitian, then RApxq P R, so W pAq Ă R.

In fact, something more precise is true

Theorem
If A is Hermitian, then

λminpAq ď RApxq ď λmaxpAq, x P C
n

zt0u.

An immediate corollary: If A is Hermitian, then W pAq “ rλminpAq, λmaxpAqs.
Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Rayleigh quotients, II D03-S16(c)

There is a rather more interesting property of the numerical range.

Theorem (Hausdorff-Toeplitz Theorem)

W pAq is a compact and convex set in C.

Compactness: W pAq is the image of a compact set (unit sphere in Cn) under a continuous function
(RAp¨q).

For certain classes of matrices, the Rayleigh quotient is a little more transparent.

For example, if A is Hermitian, then RApxq P R, so W pAq Ă R.

In fact, something more precise is true

Theorem
If A is Hermitian, then

λminpAq ď RApxq ď λmaxpAq, x P C
n

zt0u.

An immediate corollary: If A is Hermitian, then W pAq “ rλminpAq, λmaxpAqs.
Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Rayleigh quotients, III D03-S17(a)

Let A P C
nˆn be Hermitian. Consider a subspace V Ă C

n.

The image of the V under the Rayleigh quotient, RApV q, is some subset of W pAq Ă R.

– The minimum value of RApV q is λminpAq, occuring when V contains the minimum eigenvector.
What is the largest possible minimum value?

– The maximum value of RApV q is λmaxpAq.
What is the smallest possible maximum value?

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Rayleigh quotients, III D03-S17(b)

Let A P C
nˆn be Hermitian. Consider a subspace V Ă C

n.

The image of the V under the Rayleigh quotient, RApV q, is some subset of W pAq Ă R.

– The minimum value of RApV q is λminpAq, occuring when V contains the minimum eigenvector.
What is the largest possible minimum value?

– The maximum value of RApV q is λmaxpAq.
What is the smallest possible maximum value?

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Rayleigh quotients, III D03-S17(c)

Let A P C
nˆn be Hermitian. Consider a subspace V Ă C

n.

The image of the V under the Rayleigh quotient, RApV q, is some subset of W pAq Ă R.

– The minimum value of RApV q is λminpAq, occuring when V contains the minimum eigenvector.
What is the largest possible minimum value?

– The maximum value of RApV q is λmaxpAq.
What is the smallest possible maximum value?

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



The “min-max” theorem D03-S18(a)

Theorem (Courant-Fischer-Weyl “min-max”)

Let A P C
nˆn be Hermitian, with eigenvalues λ1 ď λ2 ď . . . ď λn. Then for each 1 ď k ď n,

λk “ min
V ĂCn

dimV “k

maxWApV q

λk “ max
V ĂCn

dimV “n´k`1

minWApV q

In addition, if pujq
n
j“1 are the eigenvectors associated with pλjq

n
j“1, then:

– V “ spantu1, . . . ,uku achieves the outer minimum

– V “ spantuk, . . . ,unu achieves the outer maximum

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Cauchy interlacing theorem D03-S19(a)

A matrix B is a compression of A if B “ Q˚AQ for some Q P C
nˆr with orthonormal columns.

Just one consequence of the min-max theorem:

Theorem (Cauchy interlacing)

Let B P C
pn´1qˆpn´1q be a compression of a Hermitian matrix A P C

nˆn. If A has eigenvalues
λ1 ď λ2 ď . . . ď λn, and B has eigenvalues µ1, . . . , µn´1, then

λj ď µj ď λj`1,

for all j “ 1, . . . , n ´ 1.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues



Cauchy interlacing theorem D03-S19(b)

A matrix B is a compression of A if B “ Q˚AQ for some Q P C
nˆr with orthonormal columns.

Just one consequence of the min-max theorem:

Theorem (Cauchy interlacing)

Let B P C
pn´1qˆpn´1q be a compression of a Hermitian matrix A P C

nˆn. If A has eigenvalues
λ1 ď λ2 ď . . . ď λn, and B has eigenvalues µ1, . . . , µn´1, then

λj ď µj ď λj`1,

for all j “ 1, . . . , n ´ 1.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Eigenvalues


