Math 6610: Analysis of Numerical Methods, |
Eigenvalues and eigenvectors

Department of Mathematics, University of Utah

Fall 2025

Resources:  Trefethen and Bau 1997, Lecture 24
Siili and Mayers 2003, Section 5.1
Salgado and Wise 2022, Sections 1.3, 8.3

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Eigenvalues



Eigenvalues and eigenvectors D03-502(a)

Given A e C™*", (\,v) € C x (C™\{0}) is an eigenvalue-eigenvector pair if
Av = .

Recall: it doesn't matter what value(s) A takes on, but v cannot be 0.
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Eigenvalues and eigenvectors D03-502(b)

Given A e C™*", (\,v) € C x (C™\{0}) is an eigenvalue-eigenvector pair if
Av = .

Recall: it doesn't matter what value(s) A takes on, but v cannot be 0. A .
z

Some additional terminology/properties: (" 0 )

— The collection of all eigenvalues of A is A\(A) < C, its spectrum. }

— Even if A e R"™™, A\(A) can contain complex values, and eigenvectors can be complex-valued.

— On paper, we typically identify the spectrum by computing roots of the characteristic polynomial,
pa(A) = det(AI — A). (This turns out to be a terrible algorithmic strategy.)
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Eigenpair properties D03-503(a)

There are many properties of eigenvalues and eigenvectors of A € C"*":
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Eigenpair properties D03-503(b)

There are many properties of eigenvalues and eigenvectors of A € C"*":
— All square matrices have exactly n eigenvalues, with some possibly repeated.
— All square matrices have at least 1 eigenvector. ( l 0)

- . . | |
(k’lgzwfa**s acen W'ﬂql“;

hecantse of sealing)

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Eigenvalues



Eigenpair properties D03-503(c)

There are many properties of eigenvalues and eigenvectors of A € C"*":
— All square matrices have exactly n eigenvalues, with some possibly repeated.
— All square matrices have at least 1 eigenvector.
— Eigenvectors from distinct eigenvalues are linearly independent.

— Every distinct eigenvalue has at least 1 eigenvector.)
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Eigenpair properties D03-503(d)

There are many properties of eigenvalues and eigenvectors of A € C"*":
— All square matrices have exactly n eigenvalues, with some possibly repeated.
— All square matrices have at least 1 eigenvector.
— Eigenvectors from distinct eigenvalues are linearly independent.
— Every distinct eigenvalue has at least 1 eigenvector.

— The collection of all eigenvectors associated to an eigenvalue )\ is a subspace, and is frequently called
an eigenspace E.

— Eigenspaces are invariant subspaces of A, i.e., AE)\ C E\.
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Eigenpair properties D03-503(e)

There are many properties of eigenvalues and eigenvectors of A € C"*":

All square matrices have exactly n eigenvalues, with some possibly repeated.
All square matrices have at least 1 eigenvector.

Eigenvectors from distinct eigenvalues are linearly independent.

Every distinct eigenvalue has at least 1 eigenvector.

The collection of all eigenvectors associated to an eigenvalue X is a subspace, and is frequently called
an eigenspace E.

Eigenspaces are invariant subspaces of A, i.e., AE)\ C FE\.

The number of times an eigenvalue is repeated a is its algebraic multiplicity

@The geometric multiplicity g of an eigenvalue )\ is dim FE. I
— Simple eigenvalues \ have gy = a) = 1. SN -
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Eigenpair properties D03-503(f)

There are many properties of eigenvalues and eigenvectors of A € C"*":

All square matrices have exactly n eigenvalues, with some possibly repeated.
All square matrices have at least 1 eigenvector.

Eigenvectors from distinct eigenvalues are linearly independent.

Every distinct eigenvalue has at least 1 eigenvector.

The collection of all eigenvectors associated to an eigenvalue X is a subspace, and is frequently called
an eigenspace E.

Eigenspaces are invariant subspaces of A, i.e., AE)\ C FE\.

The number of times an eigenvalue is repeated a is its algebraic multiplicity
The geometric multiplicity g» of an eigenvalue X is dim F).

Simple eigenvalues X\ have g\ = a) = 1.

In general we always have g, < ay, so that, 1 < Z,\e,\(A) g < Zkek(A) ax = n.
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Eigenpair properties D03-503(g)

There are many properties of eigenvalues and eigenvectors of A € C"*":

All square matrices have exactly n eigenvalues, with some possibly repeated.
All square matrices have at least 1 eigenvector.

Eigenvectors from distinct eigenvalues are linearly independent.

Every distinct eigenvalue has at least 1 eigenvector.

The collection of all eigenvectors associated to an eigenvalue X is a subspace, and is frequently called
an eigenspace E.

Eigenspaces are invariant subspaces of A, i.e., AE)\ C FE\.

The number of times an eigenvalue is repeated a is its algebraic multiplicity
The geometric multiplicity g» of an eigenvalue X is dim F).

Simple eigenvalues X\ have g\ = a) = 1.

In general we always have g, < ay, so that, 1 < Z,\e,\(A) g < Zkek(A) ax = n.

Any A with a defective eigenvalue is defective. YA PR 0 A(:'!') - gf}

00 1) %=3, Ga=2

Eigenvalues A with g\ < a) are defective 110
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A digression: similarity transforms D03-504(a)

Two square matrices A and B are similar if 3 an invertible S such that
B=S'AS.

(The map A +— S~ 'AS is a similarity transform.)

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Eigenvalues



A digression: similarity transforms D03-504(b)
Two square matrices A and B are similar if 3 an invertible S such that
B =S"'AS.
(The map A +— S~ 'AS is a similarity transform.)
Suppose A is not defective: then with linearly independent v;, i € [n] we have the relations,
Av; = \iv;.

This is equivalent to,

AV = MV, V=|vi -+ v, |, A = diag(\1, ..., ).
| |
v
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A digression: similarity transforms D03-504(c)
Two square matrices A and B are similar if 3 an invertible S such that
B =S"'AS.
(The map A +— S~ 'AS is a similarity transform.)
Suppose A is not defective: then with linearly independent v;, i € [n] we have the relations,
Av; = \iv;.

This is equivalent to,

AV = MV, V| v - v | A = diag( A1, .., An).
vA

And since V is full-rank, then

A=VvVFrRV, VAVT

< R =

i.e., A is similar to a diagonal matrix containing its spectrum.

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Eigenvalues



Matrix diagonalizability D03-505(a)

This motivates a key definition and consequence.

Definition
A square matrix A € C"*" is diagonalizable if it is similar to a diagonal matrix.

Theorem
A square matrix A is diagonalizable iff it is not defective.

When A is not defective, it is diagonalizable via a matrix whose columns are comprised of its linearly
independent eigenvectors.
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Similarity invariances D03-S06(a)

One simple observation is that the set of eigenvalues is invariant under a(ny) similarity transform, since if
A is diagonalizable with diagonal matrix A, then,

STTAS = (VS) 'A(VS)

is a diagonalization of S™'AS with the same diagonal matrix A.
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Similarity invariances D03-S06(b)

One simple observation is that the set of eigenvalues is invariant under a(ny) similarity transform, since if
A is diagonalizable with diagonal matrix A, then,

STTAS = (VS) 'A(VS)
is a diagonalization of S™'AS with the same diagonal matrix A.

More consequences follow, e.g., some familiar determinant and trace properties,

detAzﬁ)\j, trA = i)\j
j=1 j=1

The above is actually true for any square matrix A, defective or not.
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Jordan normal form D03-S07(a)

Defective matrices certainly exist. The most common example is,

(o 1)

A rather nice fact is that the above example is “spiritually” the prototypical and essentially only type of
defective matrix.
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Jordan normal form D03-S07(b)

Defective matrices certainly exist. The most common example is,

1 1
0o 1 /)°
A rather nice fact is that the above example is “spiritually” the prototypical and essentially only type of

defective matrix.

Theorem (Jordan normal form)

Every square matrix A € C"*" is bidiagonalizable, i.e., is similar to a bidiagonal matrix.

More specifically, let \1, ..., \u be the unique eigenvalues of A, and suppose they have algebraic and
geometric multiplicities a; and g;, j € [U], respectively. Tnen:

A=VJV VeQr ",
where V is invertible, and J is bidiagonal with A(A) on the diagonal, given by,

J=P NIg_1@J;), Ji = Aidaj—g; 41+ Naj—g; 41,
jelU]

where N, is a k x k matrix, nonzero only on its main superdiagonal that has entries all 1.
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To diagonalizability and beyond D03-508(a)

“Most” square matrices are diagonalizable.

This is (incredibly) powerful: a symmetric linear change of basis of the input and output spaces results in a
diagonal linear operator.
The particular change of basis can be quite anisotropic (and non-isometric) in nature.

All square matrices are not diagonalizable. However, ...
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To diagonalizability and beyond D03-508(b)

“Most” square matrices are diagonalizable.

This is (incredibly) powerful: a symmetric linear change of basis of the input and output spaces results in a
diagonal linear operator.
The particular change of basis can be quite anisotropic (and non-isometric) in nature.

All square matrices are not diagonalizable. However, ...

— ...all square matrices are bidiagonalizable (Jordan normal form)
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To diagonalizability and beyond D03-508(c)

“Most” square matrices are diagonalizable.

This is (incredibly) powerful: a symmetric linear change of basis of the input and output spaces results in a
diagonal linear operator.
The particular change of basis can be quite anisotropic (and non-isometric) in nature.

All square matrices are not diagonalizable. However, ...

— ...all square matrices are bidiagonalizable (Jordan normal form)

— ...all square matrices are unitarily triangularizable (Schur decomposition)
While triangularizability is not as clean as diagonalizability, that there are unitary transformations
accomplishing this is very attractive.
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To diagonalizability and beyond D03-508(d)

“Most” square matrices are diagonalizable.

This is (incredibly) powerful: a symmetric linear change of basis of the input and output spaces results in a
diagonal linear operator.
The particular change of basis can be quite anisotropic (and non-isometric) in nature.

All square matrices are not diagonalizable. However, ...

— ...all square matrices are bidiagonalizable (Jordan normal form)

— ...all square matrices are unitarily triangularizable (Schur decomposition)
While triangularizability is not as clean as diagonalizability, that there are unitary transformations
accomplishing this is very attractive.

Are there matrices that are unitarily diagonalizable?
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A “spectral’ theorem D03-509(a)

A seemingly unrelated algebraic definition is our starting point.
Definition

A matrix A € C"*" is Hermitian if A = A*.
(Hermitian matrices are also called self-adjoint, or symmetric when A is real-valued.)
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A “spectral’ theorem D03-509(b)

A seemingly unrelated algebraic definition is our starting point.

Definition
A matrix A € C"*" is Hermitian if A = A*.
(Hermitian matrices are also called self-adjoint, or symmetric when A is real-valued.)

Theorem (Spectral Theorem for Hermitian matrices)

If A e C"*™ is Hermitian, then it is unitarily diagonalizable with real eigenvalues.
(Its spectrum is real-valued, and the similarity matrix accomplishing diagonalization is unitary.)
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A “spectral’ theorem D03-509(c)

A seemingly unrelated algebraic definition is our starting point.

Definition
A matrix A € C"*" is Hermitian if A = A*.
(Hermitian matrices are also called self-adjoint, or symmetric when A is real-valued.)

Theorem (Spectral Theorem for Hermitian matrices)

If Ae C**"™ is Hermitian, then it is unitarily diagonalizable with real eigenvalues.
(Its spectrum is real-valued, and the similarity matrix accomplishing diagonalization is unitary.)

Hermitian matrices are very common in applications, and the spectral theorem has numerous uses.
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Application |: Geometric interpretation of Hermitian matrices D03-510(a)

If A e C"*" is unitarily diagonalizable, then it can be written as

A =UAU* = Y \u;uj,

where {u;}7_; are the columns of U. —ut—
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Application |: Geometric interpretation of Hermitian matrices D03-510(b)

If A e C"*" is unitarily diagonalizable, then it can be written as
A=UAU" = ) \u;uf,
j=1

where {u;}7_; are the columns of U.

|.e., Hermitian matrices (an algebraic property) have strong geometric interpretation: they are “just”
diagonal matrices in a rotated/reflected orthonormal frame.
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Application Il: The induced 2-norm /0/_) D03-511(a)
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Application Ill: The “A norm” D03-512(a)

A matrix A € C"*" is Hermitian positive definite (sometimes symmetric positive-definite or “spd”) if it's
Hermitian and its (real) spectrum is strictly positive.
(reah) Mok W20

(Respectively, positive semi-definite if the spectrum is non-negative.)
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Application Ill: The “A norm” D03-512(b)

A matrix A € C"*" is Hermitian positive definite (sometimes symmetric positive-definite or “spd”) if it's
Hermitian and its (real) spectrum is strictly positive.

(Respectively, positive semi-definite if the spectrum is non-negative.)

Such matrices actually define a norm: |z|% = =* Az is a norm.
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Application 1V: Matrix square roots D03-513(a)

There is a functional calculus on spd matrices.

For example, a matrix B is the square root of a matrix A if A = B>
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Application 1V: Matrix square roots D03-513(b)

There is a functional calculus on spd matrices.

For example, a matrix B is the square root of a matrix A if A = B>

Example

If A is spd, compute a matrix square root of A.
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Application 1V: Matrix square roots D03-513(c)

There is a functional calculus on spd matrices.

For example, a matrix B is the square root of a matrix A if A = B>

Example

If A is spd, compute a matrix square root of A.

Theorem
If A is spd, then there is a unique spd square root B of A, i.e., B> = A.

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Eigenvalues



Application IV: Quadratic forms D03-514(a)

Given a Hermitian matrix A € C™*"™, the function,
Qa(x) = a:*Aa:,:<(4¥, X >

is a quadratic form, i.e., a real-valued quadratic function on C". The eigendecomposition of A uniquely

defines the behavior of Qa.
Qalk)= (U A (us)
y> u¥

= yrdy= Al kg%
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Application IV: Quadratic forms D03-514(b)

Given a Hermitian matrix A € C™*"™, the function,
Qa(x) = z* Az,

is a quadratic form, i.e., a real-valued quadratic function on C". The eigendecomposition of A uniquely
defines the behavior of Qa.

If the following eigenvectors correspond to the positive, negative, and zero eigenvalues of A, respectively,
- - 0
{vi }ie[n+] ) {vi }ie[n_] ) {vi }ie[no] )
where n = n™ +n~ 4+ n° Then clearly:

Qa(v]) >0, Qa(v;) <0, Qa(v)) =0.
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Application IV: Quadratic forms D03-514(c)

Given a Hermitian matrix A € C™*"™, the function,
Qa(x) = z* Az,

is a quadratic form, i.e., a real-valued quadratic function on C". The eigendecomposition of A uniquely
defines the behavior of Qa.

If the following eigenvectors correspond to the positive, negative, and zero eigenvalues of A, respectively,

+ - 0
{v; }ie[n+] ; {v; }ie[n_] ) {vi }ie[no] ;
where n = n™ +n~ 4+ n° Then clearly:
Qa(v) >0, Qa(v;) <0, Qa(vi) =0.
Generalizing this a bit: g&)a
V= {ol e Qa(z) > 0if z € V\{0}
V™ o= {v;}ie[n_] , =< Qa(x)<0if x e V7\{0}
V2= {vi}, o) Qa(z)=0ifxe V"

where C" =Vt V- V',
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Rayleigh quotients, | D03-515(a)

A final application of Hermitian matrices is a variational characterization of eigenvalues. We need some
buildup for this.

Let A € C™" " be a(ny) square matrix, and let € C"\{0} be a vector.

The Rayleigh Quotient (of A at x) is the (complex) scalar,
~ Qa(xz) z¥Azx (Ax,x)

Ral®) =0 = o2 = oy

x#0

Ostensibly, if (A, v) is an eigenpair of A, then Ra(v) = A.

RA(K) weli-de fed 6 oy Syyare ma Y.
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Rayleigh quotients, | D03-515(b)

A final application of Hermitian matrices is a variational characterization of eigenvalues. We need some
buildup for this.

Let A € C™" " be a(ny) square matrix, and let € C"\{0} be a vector.

The Rayleigh Quotient (of A at x) is the (complex) scalar,

2L
* -N4)
Ra(x) = QA(f) _z Ax _ <Aa:,:c>, ILA-/YH\,_ v 20 X ,V_
el r*x (z, ) ”)(”2 (D
Ostensibly, if (A, v) is an eigenpair of A, then Ra(v) = A. . o b

W{A)

The numerical range of A is the set of all possible values of Ra:
o ce LS
W(A):= Ra (C"\{0}).

One can view W(A) as the image of the Rayleigh quotient over all C", but also just as the image of the
Rayleigh quotient over the unit sphere in C".

W (A) is some set in C, regardless of the dimension n of A.

Clearly we know A(A) € W(A).
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Rayleigh quotients, Il D03-516(a)

There is a rather more interesting property of the numerical range.
Theorem (Hausdorff-Toeplitz Theorem)
W (A) is a compact and convex set in C.

Compactness: W (A) is the image of a compact set (unit sphere in C™) under a continuous function

(Ra(-). \/ v \/ )(
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Rayleigh quotients, Il D03-516(b)

There is a rather more interesting property of the numerical range.
Theorem (Hausdorff-Toeplitz Theorem)

W (A) is a compact and convex set in C.

Compactness: W (A) is the image of a compact set (unit sphere in C™) under a continuous function

(Ra(")).
For certain classes of matrices, the Rayleigh quotient is a little more transparent.

For example, if A is Hermitian, then Ra(x) € R, so W(A) c R.
U/
Widy=[a bY R~ la bl <o,
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Rayleigh quotients, Il D03-516(c)

There is a rather more interesting property of the numerical range.
Theorem (Hausdorff-Toeplitz Theorem)

W (A) is a compact and convex set in C.

Compactness: W (A) is the image of a compact set (unit sphere in C") under a continuous function

(Ra(-).

For certain classes of matrices, the Rayleigh quotient is a little more transparent.

For example, if A is Hermitian, then Ra(x) € R, so W(A) c R. — wi4) —
L 14
In fact, something more precise is true —+ J L R

)\ }1. - )v..-, )n

Theorem
If A is Hermitian, then

Amin(A) < Ra (%) < Amax(A), z € C"\{0)}.

An immediate corollary: If A is Hermitian, then W (A) = [Amin(A), Amax(A)].
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Rayleigh quotients, Il D03-517(a)

Let A € C"*" be Hermitian. Consider a subspace V < C".

The image of the V' under the Rayleigh quotient, Ra(V'), is some subset of W(A) c R.
lh

TAOREETIAN A
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Rayleigh quotients, IlI D03-517(b)

Let A € C"*" be Hermitian. Consider a subspace V < C".

The image of the V' under the Rayleigh quotient, Ra(V'), is some subset of W(A) c R.

— The minimum value of Ra (V) is Amin(A), occuring when V' contains the minimum eigenvector.
What is the largest possible minimum value?

Te V ocmtaing v, (¥, 08 Cigppwe Char Wfondlné h o, e}gynralul,)
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Rayleigh quotients, Il D03-517(c)

Let A € C"*" be Hermitian. Consider a subspace V < C".

The image of the V' under the Rayleigh quotient, Ra(V'), is some subset of W (A) c RR.

— The minimum value of Ra(V) is Amin(A), occuring when V' contains the minimum eigenvector.
What is the largest possible minimum value?

— The maximum value of RAo(V) is Amax(A).
What is the smallest possible maximum value?
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The “min-max” theorem D03-518(a)

Theorem (Courant-Fischer-Weyl “min-max”)

Let A e C""" be Hermitian, with eigenvalues \1 < X2 < ... < \,,. Then for each 1 < k < n,

R
A = min max Wa (V)
Ve
dim V =k R
Ak = max  min Wa (V)

V™
dimV=n—k+1

In addition, if (u;);_, are the eigenvectors associated with (\;)7_,, then:
— V = span{ui,...,ur} achieves the outer minimum

— V = span{ug,...,u,} achieves the outer maximum

/:Rkh/) +hat athVFJ mih 0#

’:l._;c3~-~ ;l“_':-—'*)/]{ max R, (x)
n

k=n- , dimV~ )

—
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Cauchy interlacing theorem D03-519(a)

A matrix B is a compression of A if B = Q* AQ for some Q € C™*" with orthonormal columns.
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Cauchy interlacing theorem D03-519(b)
A matrix B is a compression of A if B = Q* AQ for some Q € C™*" with orthonormal columns.

Just one consequence of the min-max theorem:

Theorem (Cauchy interlacing)

Let B e C"=V*("=1) be 3 compression of a Hermitian matrix A € C"*™. If A has eigenvalues
A1 < X2 <...< \,, and B has eigenvalues (i1, ..., n—1, then

Aj < py < Aja,

forallj =1,...,n—1.
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