# Math 6610: Analysis of Numerical Methods, I Orthogonal, Projection, and Permutation matrices

Department of Mathematics, University of Utah

Fall 2025

Resources: Trefethen and Bau 1997, Lectures 2, 6

Atkinson 1989, Sections 7.1

Salgado and Wise 2022, Sections 1.1, 1.2, 5.2

A very special and important class of matrices:

# Definition (Unitary/orthogonal matrices)

A matrix  $oldsymbol{U} \in \mathbb{C}^{n imes n}$  is unitary if  $oldsymbol{U^*U} = oldsymbol{I}_n$ 

A matrix  $oldsymbol{U} \in \mathbb{R}^{n \times n}$  is orthogonal if  $oldsymbol{U}^T oldsymbol{U} = oldsymbol{I}_n$ 

A unitary matrix is one whose columns are an orthonormal basis for  $\mathbb{C}^n$  under the  $\ell^2(\mathbb{C}^n)$  inner product.

A very special and important class of matrices:

# Definition (Unitary/orthogonal matrices)

A matrix  $\boldsymbol{U} \in \mathbb{C}^{n \times n}$  is unitary if  $\boldsymbol{U}^* \boldsymbol{U} = \boldsymbol{I}_n$ 

A matrix  $oldsymbol{U} \in \mathbb{R}^{n imes n}$  is orthogonal if  $oldsymbol{U}^T oldsymbol{U} = oldsymbol{I}_n$ 

A unitary matrix is one whose columns are an orthonormal basis for  $\mathbb{C}^n$  under the  $\ell^2(\mathbb{C}^n)$  inner product.

#### Theorem

Let  $U \in \mathbb{C}^{n \times n}$  be a unitary matrix. Then

- $\boldsymbol{U}^{-1} = \boldsymbol{U}^T$
- $UU^T = I$
- $\| \boldsymbol{U} \boldsymbol{x} \|_2 = \| \boldsymbol{x} \|_2 \text{ for all } \boldsymbol{x} \in \mathbb{C}^n.$

A very special and important class of matrices:

# Definition (Unitary/orthogonal matrices)

A matrix  $\boldsymbol{U} \in \mathbb{C}^{n \times n}$  is unitary if  $\boldsymbol{U}^* \boldsymbol{U} = \boldsymbol{I}_n$ 

A matrix  $oldsymbol{U} \in \mathbb{R}^{n \times n}$  is orthogonal if  $oldsymbol{U}^T oldsymbol{U} = oldsymbol{I}_n$ 

A unitary matrix is one whose columns are an orthonormal basis for  $\mathbb{C}^n$  under the  $\ell^2(\mathbb{C}^n)$  inner product.

#### Theorem

Let  $U \in \mathbb{C}^{n \times n}$  be a unitary matrix. Then

- $\boldsymbol{U}^{-1} = \boldsymbol{U}^T$
- $\boldsymbol{U}\boldsymbol{U}^T = \boldsymbol{I}$
- $\| \boldsymbol{U} \boldsymbol{x} \|_2 = \| \boldsymbol{x} \|_2 \text{ for all } \boldsymbol{x} \in \mathbb{C}^n.$

This last property in particular shows: unitary matrices are *isometries*, i.e., are norm-preserving. Unitary matrices have nice geometric interpretations: they are precisely rigid rotations and/or reflections.

## Projections and projection matrices: Geometric construction

With  $\mathbb{C}^n$  the ambient space, we want to define square matrix "projections". Informally, we want projections to

- Act like the identity on some subspace (the range)
- Annihilate components in another subspace (the kernel)

# Projections and projection matrices: Geometric construction

With  $\mathbb{C}^n$  the ambient space, we want to define square matrix "projections". Informally, we want projections to

- Act like the identity on some subspace (the range)
- Annihilate components in another subspace (the kernel)

In order to be well-defined, we need an additional condition.

## Definition (Geometric definition of projection matrices)

A matrix  $P \in \mathbb{C}^{n \times n}$  is a projection matrix if

- 1. Pv = v for all  $v \in V = \text{range}(P)$
- 2. Pw = 0 for all  $w \in W = \ker(P)$
- 3.  $\operatorname{range}(\mathbf{P}) \oplus \ker(\mathbf{P}) = \mathbb{C}^n \text{ and } \operatorname{range}(\mathbf{P}) \cap \ker \mathbf{P} = \{0\}.$

We typically say that P projects onto V, and projects along W.

# Projections and projection matrices: Geometric construction

With  $\mathbb{C}^n$  the ambient space, we want to define square matrix "projections". Informally, we want projections to

- Act like the identity on some subspace (the range)
- Annihilate components in another subspace (the kernel)

In order to be well-defined, we need an additional condition.

## Definition (Geometric definition of projection matrices)

A matrix  $P \in \mathbb{C}^{n \times n}$  is a projection matrix if

- 1. Pv = v for all  $v \in V = \text{range}(P)$
- 2. Pw = 0 for all  $w \in W = \ker(P)$
- 3.  $\operatorname{range}(\mathbf{P}) \oplus \ker(\mathbf{P}) = \mathbb{C}^n \text{ and } \operatorname{range}(\mathbf{P}) \cap \ker \mathbf{P} = \{0\}.$

We typically say that P projects onto V, and projects along W.

This last condition is *necessary*:

- A projector P in  $\mathbb{R}^3$  that projects onto (1,0,0) along (0,0,1) is undefined for input (0,1,0).
- A projector P in  $\mathbb{R}^2$  that projects onto  $\mathbb{R}^2$  along (1,0) is ill-defined.

Does this definition make sense?

#### Theorem

If V and W are  $\mathbb{C}^N$ -subspaces such that  $V \cap W = \{\mathbf{0}\}$  and  $\dim V + \dim W = N$ , then  $\exists$ ! projection matrix  $\mathbf{P} \in \mathbb{C}^{N \times N}$  such that  $\mathrm{range}(\mathbf{P}) = V$  and  $\ker(\mathbf{P}) = W$ .

Does this definition make sense?

#### Theorem

If V and W are  $\mathbb{C}^N$ -subspaces such that  $V \cap W = \{\mathbf{0}\}$  and  $\dim V + \dim W = N$ , then  $\exists$ ! projection matrix  $\mathbf{P} \in \mathbb{C}^{N \times N}$  such that  $\mathrm{range}(\mathbf{P}) = V$  and  $\ker(\mathbf{P}) = W$ .

Let  $n=\dim V$ . If  $\mathbf{V}\in\mathbb{C}^{N\times n}$  satisfies  $\mathrm{range}(\mathbf{V})=V$ , and  $\mathbf{W}\in\mathbb{C}^{N\times (N-n)}$  satisfies  $\mathrm{range}(\mathbf{W})=W$ , then  $\mathbf{P}=\begin{bmatrix}\mathbf{V} & \mathbf{0}_{N\times (N-n)}\end{bmatrix}\begin{bmatrix}\mathbf{V} & \mathbf{W}\end{bmatrix}^{-1}$ 

There is a more algebraically convenient characterization of projection matrices.

A square matrix A is idempotent if  $A = A^2$ .

There is a more algebraically convenient characterization of projection matrices.

A square matrix A is idempotent if  $A = A^2$ .

#### Theorem

 $P \in \mathbb{C}^{n \times n}$  is a projection matrix iff it is idempotent.

Projection matrices: Algebraic definitions

There is a more algebraically convenient characterization of projection matrices.

A square matrix A is idempotent if  $A = A^2$ .

#### Theorem

 $P \in \mathbb{C}^{n \times n}$  is a projection matrix iff it is idempotent.

This motivates the more common definition of a projection matrix:

Definition (Algebraic definition of projection matrices)

 $P \in \mathbb{C}^{n \times n}$  is a projection matrix if  $P = P^2$ .

Projection matrices can in general inflate the size (norm) of non-trivial vectors by an arbitrary amount.

Projection matrices can in general inflate the size (norm) of non-trivial vectors by an arbitrary amount.

However, projecting along  $\mathrm{range}({m P})^{\perp}$  is a norm non-expansive operation, i.e.,

$$\ker(\boldsymbol{P}) = \operatorname{range}(\boldsymbol{P})^{\perp} \Longrightarrow \|\boldsymbol{P}\boldsymbol{v}\|_2 \leqslant \|\boldsymbol{v}\|_2.$$

Projection matrices can in general inflate the size (norm) of non-trivial vectors by an arbitrary amount.

However, projecting along  $\mathrm{range}(\boldsymbol{P})^{\perp}$  is a norm non-expansive operation, i.e.,

$$\ker(\boldsymbol{P}) = \operatorname{range}(\boldsymbol{P})^{\perp} \Longrightarrow \|\boldsymbol{P}\boldsymbol{v}\|_2 \leqslant \|\boldsymbol{v}\|_2.$$

Projection matrices P satisfying  $\ker(P) = (\operatorname{range} P)^{\perp}$  are orthogonal projections.

Definition (Geometric definition of orthogonal projection matrices)

Let P be a projection matrix. It's an orthogonal projector if  $P=P^*$ .

There is also an algebraically convenient characterization of orthogonal projection matrices.

#### Theorem

Let  $P \in \mathbb{C}^{n \times n}$  be a projection matrix. Then it is an orthogonal projector iff it is Hermitian.

There is also an algebraically convenient characterization of orthogonal projection matrices.

#### Theorem

Let  $P \in \mathbb{C}^{n \times n}$  be a projection matrix. Then it is an orthogonal projector iff it is Hermitian.

This motivates the more common definition of an orthogonal projection matrix:

Definition (Algebraic definition of orthogonal projectors)

 $m{P} \in \mathbb{C}^{n \times n}$  is an orthogonal projection matrix if  $m{P} = m{P}^2$  and  $m{P} = m{P}^*$ .

Permutation D02-S08(a)

A final class of matrices we'll consider are permutation matrices.

### Definition

For a fixed  $n \in \mathbb{N}$ ,  $\pi : [n] \to [n]$  is a permutation if it is a bijection.

Permutations are linear operations, so  $\pi$  can be encoded as an  $n \times n$  matrix.

Permutation D02-S08(b)

A final class of matrices we'll consider are permutation matrices.

### Definition

For a fixed  $n \in \mathbb{N}$ ,  $\pi : [n] \to [n]$  is a permutation if it is a bijection.

Permutations are linear operations, so  $\pi$  can be encoded as an  $n \times n$  matrix.

## Definition

 $P \in \mathbb{C}^{n \times n}$  is a <u>permutation matrix</u> if there is a permutation map  $\pi$  on [n] such that  $Pe_j = e_{\pi(j)}$  for all  $j \in [n]$ .

Permutation D02-S08(c)

A final class of matrices we'll consider are permutation matrices.

### Definition

For a fixed  $n \in \mathbb{N}$ ,  $\pi : [n] \to [n]$  is a permutation if it is a bijection.

Permutations are linear operations, so  $\pi$  can be encoded as an  $n \times n$  matrix.

#### Definition

 $P \in \mathbb{C}^{n \times n}$  is a <u>permutation matrix</u> if there is a permutation map  $\pi$  on [n] such that  $Pe_j = e_{\pi(j)}$  for all  $j \in [n]$ .

Permutation matrices are orthogonal/unitary, and hence if P is a permutation matrix, then  $P^* = P^{-1}$ .

The space of permutation matrices is closed under matrix multiplication, so that if P and Q are permutation matrices, then so is PQ.

References I D02-S09(a)



Atkinson, Kendall (1989). An Introduction to Numerical Analysis. New York: Wiley. ISBN: 978-0-471-62489-9.



Salgado, Abner J. and Steven M. Wise (2022). *Classical Numerical Analysis: A Comprehensive Course*. Cambridge: Cambridge University Press. ISBN: 978-1-108-83770-5. DOI: 10.1017/9781108942607.



Trefethen, Lloyd N. and David Bau (1997). *Numerical Linear Algebra*. SIAM: Society for Industrial and Applied Mathematics. ISBN: 0-89871-361-7.