Math 6610: Analysis of Numerical Methods, I Orthogonal, Projection, and Permutation matrices

Department of Mathematics, University of Utah

Fall 2025

Resources: Trefethen and Bau 1997, Lectures 2, 6

Atkinson 1989, Sections 7.1

Salgado and Wise 2022, Sections 1.1, 1.2, 5.2

A very special and important class of matrices:

Definition (Unitary/orthogonal matrices)

A matrix $U \in \mathbb{C}^{n \times n}$ is unitary if $U^*U = I_n$

A matrix $m{U} \in \mathbb{R}^{n \times n}$ is orthogonal if $m{U}^T m{U} = m{I}_n$

A unitary matrix is one whose columns are an orthonormal basis for \mathbb{C}^n under the $\ell^2(\mathbb{C}^n)$ inner product.

A very special and important class of matrices:

Definition (Unitary/orthogonal matrices)

A matrix $oldsymbol{U} \in \mathbb{C}^{n \times n}$ is unitary if $oldsymbol{U^*U} = oldsymbol{I}_n$

A matrix $\boldsymbol{U} \in \mathbb{R}^{n \times n}$ is **orthogonal** if $\boldsymbol{U}^T \boldsymbol{U} = \boldsymbol{I}_n$

A unitary matrix is one whose columns are an orthonormal basis for \mathbb{C}^n under the $\ell^2(\mathbb{C}^n)$ inner product.

Theorem

Let $U \in \mathbb{C}^{n \times n}$ be a unitary matrix. Then

- $U^{-1} = U^T U^F$
- $-UU^T = I$
- $\| \boldsymbol{U} \boldsymbol{x} \|_2 = \| \boldsymbol{x} \|_2 \text{ for all } \boldsymbol{x} \in \mathbb{C}^n.$

A very special and important class of matrices:

Definition (Unitary/orthogonal matrices)

A matrix $\boldsymbol{U} \in \mathbb{C}^{n \times n}$ is unitary if $\boldsymbol{U^*U} = \boldsymbol{I}_n$

A matrix $\boldsymbol{U} \in \mathbb{R}^{n \times n}$ is orthogonal if $\boldsymbol{U}^T \boldsymbol{U} = \boldsymbol{I}_n$

A unitary matrix is one whose columns are an orthonormal basis for \mathbb{C}^n under the $\ell^2(\mathbb{C}^n)$ inner product.

Theorem

Let $U \in \mathbb{C}^{n \times n}$ be a unitary matrix. Then

$$- U^{-1} = U^T$$

$$- UU^T = I$$

-
$$\|\boldsymbol{U}\boldsymbol{x}\|_2 = \|\boldsymbol{x}\|_2$$
 for all $\boldsymbol{x} \in \mathbb{C}^n$.

$$F.g: U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

This last property in particular shows: unitary matrices are *isometries*, i.e., are norm-preserving. Unitary matrices have nice geometric interpretations: they are precisely rigid rotations and/or reflections.

With \mathbb{C}^n the ambient space, we want to define square matrix "projections". Informally, we want projections to

- Act like the identity on some subspace (the range)
- Annihilate components in another subspace (the kernel)

Projected to O.

With \mathbb{C}^n the ambient space, we want to define square matrix "projections". Informally, we want projections to

- Act like the identity on some subspace (the range)
- Annihilate components in another subspace (the kernel)

In order to be well-defined, we need an additional condition.

Definition (Geometric definition of projection matrices)

A matrix $P \in \mathbb{C}^{n \times n}$ is a projection matrix if

- 1. Pv = v for all $v \in V = \text{range}(P)$
- 2. Pw = 0 for all $w \in W = \ker(P)$
- 3. range(\mathbf{P}) $\oplus \ker(\mathbf{P}) = \mathbb{C}^n$ and range(\mathbf{P}) $\cap \ker \mathbf{P} = \{0\}$.

3. $\operatorname{range}(\mathbf{F}) \oplus \operatorname{ker}(\mathbf{F}) = \mathbb{C}$ and $\operatorname{range}(\mathbf{F}) \cap \operatorname{ker} \mathbf{F} = \{0\}.$

We typically say that ${m P}$ projects onto V, and projects along W.

span is V span is W

VAW = { XV+ BW ; VEV, WEW, d, REC?

Projections and projection matrices: Geometric construction

With \mathbb{C}^n the ambient space, we want to define square matrix "projections". Informally, we want projections to

- Act like the identity on some subspace (the range)
- Annihilate components in another subspace (the kernel)

In order to be well-defined, we need an additional condition.

Definition (Geometric definition of projection matrices)

A matrix $P \in \mathbb{C}^{n \times n}$ is a projection matrix if

- 1. Pv = v for all $v \in V = \text{range}(P)$
- 2. Pw = 0 for all $w \in W = \ker(P)$
- 3. range(\mathbf{P}) $\oplus \ker(\mathbf{P}) = \mathbb{C}^n$ and range(\mathbf{P}) $\cap \ker \mathbf{P} = \{0\}$.

We typically say that P projects onto V, and projects along W.

This last condition is *necessary*:

- A projector P in \mathbb{R}^3 that projects onto (1,0,0) along (0,0,1) is undefined for input (0,1,0).
- A projector P in \mathbb{R}^2 that projects onto \mathbb{R}^2 along (1,0) is ill-defined.

D02-S04(a)

Does this definition make sense?

Theorem

If V and W are \mathbb{C}^N -subspaces such that $V \cap W = \{0\}$ and $\dim V + \dim W = N$, then \exists ! projection matrix $\mathbf{P} \in \mathbb{C}^{N \times N}$ such that $\operatorname{range}(\mathbf{P}) = V$ and $\ker(\mathbf{P}) = W$.

Let
$$V_1, V_2, ... V_n$$
 be a basis for V (dim $V=n$)

Let $W_1, ... W_{N-n}$ be a basis for W (dim $W=N-n$)

$$PV_j = V_j \ ... je[n] \} \Rightarrow P[V_1 \ V_2 \cdots V_n \ W_1 - W_{N-n}] = [V_1 \cdots V_n \ O \cdots O]$$

$$PW_k = O, \quad ke[N-n] \} P[V_1 \ V_2 \cdots V_n \ W_1 - W_{N-n}] = [V_1 \cdots V_n \ O \cdots O]$$

Does this definition make sense?

Theorem

If V and W are \mathbb{C}^N -subspaces such that $V \cap W = \{\mathbf{0}\}$ and $\dim V + \dim W = N$, then \exists ! projection matrix $\mathbf{P} \in \mathbb{C}^{N \times N}$ such that $\operatorname{range}(\mathbf{P}) = V$ and $\ker(\mathbf{P}) = W$.

Let $n = \dim V$. If $\mathbf{V} \in \mathbb{C}^{N \times n}$ satisfies $\mathrm{range}(\mathbf{V}) = V$, and $\mathbf{W} \in \mathbb{C}^{N \times (N-n)}$ satisfies $\mathrm{range}(\mathbf{W}) = W$, then

$$oldsymbol{P} = egin{bmatrix} oldsymbol{V} & oldsymbol{0}_{N imes (N-n)} \end{bmatrix} egin{bmatrix} oldsymbol{V} & oldsymbol{W} \end{bmatrix}^{-1}$$

There is a more algebraically convenient characterization of projection matrices.

A square matrix A is idempotent if $A = A^2$.

Projection matrices: Algebraic definitions

There is a more algebraically convenient characterization of projection matrices.

A square matrix A is idempotent if $A = A^2$.

Theorem

 $P \in \mathbb{C}^{n \times n}$ is a projection matrix iff it is idempotent.

Foot: if
$$V \oplus V = \mathbb{C}^n$$
 (and have trivial intersection)

then: $V \gtrsim \mathbb{C}^n$ $\chi = v + w$, $v \in V$, $w \in W$, v, w are unique.

Proof: (1) Assume P is a projection matrix.

Let $\chi \in \mathbb{C}^n \implies \chi = v + w$, $v \in V$, $w \in W$
 $(V = range(P), W = ker(P))$

There is a more algebraically convenient characterization of projection matrices.

A square matrix A is idempotent if $A = A^2$.

Theorem

 $P \in \mathbb{C}^{n \times n}$ is a projection matrix iff it is idempotent.

This motivates the more common definition of a projection matrix:

Definition (Algebraic definition of projection matrices)

 $P \in \mathbb{C}^{n \times n}$ is a projection matrix if $P = P^2$.

Consequence: If
$$P$$
 is a prejection, range V , $kernel W$, then $I-P$ is a projection, range W , $kernel V$.

 $E.g.: (I-P)^2 = I-P-P+P^2 = I-P$, $v \in V$ $(I-P)_V = V-V = O$

Projection matrices can in general inflate the size (norm) of non-trivial vectors by an arbitrary amount.

Projection matrices can in general inflate the size (norm) of non-trivial vectors by an arbitrary amount.

However, projecting along $\operatorname{range}(\boldsymbol{P})^{\perp}$ is a norm non-expansive operation, i.e.,

D02-S06(c)

Projection matrices can in general inflate the size (norm) of non-trivial vectors by an arbitrary amount.

However, projecting along $\operatorname{range}(\boldsymbol{P})^{\perp}$ is a norm non-expansive operation, i.e.,

$$\ker(\boldsymbol{P}) = \operatorname{range}(\boldsymbol{P})^{\perp} \Longrightarrow \|\boldsymbol{P}\boldsymbol{v}\|_2 \leqslant \|\boldsymbol{v}\|_2.$$

Projection matrices P satisfying $\ker(P) = (\operatorname{range} P)^{\perp}$ are orthogonal projections.

Definition (Geometric definition of orthogonal projection matrices)

Let P be a projection matrix. It's an orthogonal projector P be a projection matrix. It's an orthogonal projector P

There is also an algebraically convenient characterization of orthogonal projection matrices.

Theorem

Let $P \in \mathbb{C}^{n \times n}$ be a projection matrix. Then it is an orthogonal projector iff it is Hermitian.

There is also an algebraically convenient characterization of orthogonal projection matrices.

Theorem

Let $P \in \mathbb{C}^{n \times n}$ be a projection matrix. Then it is an orthogonal projector iff it is Hermitian.

This motivates the more common definition of an orthogonal projection matrix:

Definition (Algebraic definition of orthogonal projectors)

 $P \in \mathbb{C}^{n \times n}$ is an orthogonal projection matrix if $P = P^2$ and $P = P^*$.

Tiff

A final class of matrices we'll consider are permutation matrices.

Definition

For a fixed $n \in \mathbb{N}$, $\pi : [n] \to [n]$ is a permutation if it is a bijection.

Permutations are linear operations, so π can be encoded as an $n \times n$ matrix.

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix} \xrightarrow{\mathbb{T}} \begin{pmatrix} 3 \\ 1 \\ 5 \\ 4 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 5 \\ 4 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & | & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
1 \\
2 \\
3 \\
4 \\
5
\end{pmatrix}
=
\begin{pmatrix}
3 \\
1 \\
5 \\
4 \\
2
\end{pmatrix}$$

A final class of matrices we'll consider are permutation matrices.

Definition

For a fixed $n \in \mathbb{N}$, $\pi : [n] \to [n]$ is a permutation if it is a bijection.

Permutations are linear operations, so π can be encoded as an $n \times n$ matrix.

Definition

 $P \in \mathbb{C}^{n \times n}$ is a <u>permutation matrix</u> if there is a permutation map π on [n] such that $Pe_j = e_{\pi(j)}$ for all $j \in [n]$.

Permutation D02-S08(c)

A final class of matrices we'll consider are permutation matrices.

Definition

For a fixed $n \in \mathbb{N}$, $\pi : [n] \to [n]$ is a permutation if it is a bijection.

Permutations are linear operations, so π can be encoded as an $n \times n$ matrix.

Definition

 $P \in \mathbb{C}^{n \times n}$ is a <u>permutation matrix</u> if there is a permutation map π on [n] such that $Pe_j = e_{\pi(j)}$ for all $j \in [n]$.

Permutation matrices are orthogonal/unitary, and hence if P is a permutation matrix, then $P^* = P^{-1}$.

The space of permutation matrices is closed under matrix multiplication, so that if P and Q are permutation matrices, then so is PQ.

References I D02-S09(a)

- Atkinson, Kendall (1989). An Introduction to Numerical Analysis. New York: Wiley. ISBN: 978-0-471-62489-9.
- Salgado, Abner J. and Steven M. Wise (2022). *Classical Numerical Analysis: A Comprehensive Course*. Cambridge: Cambridge University Press. ISBN: 978-1-108-83770-5. DOI: 10.1017/9781108942607.
- Trefethen, Lloyd N. and David Bau (1997). *Numerical Linear Algebra*. SIAM: Society for Industrial and Applied Mathematics. ISBN: 0-89871-361-7.