DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH

Analysis of Numerical Methods I MATH 6610 – Section 001 – Fall 2025 Homework 4 Singular Values, I

Due Wednesday, September 17, 2025

Submission instructions:

Submit your assignment on gradescope.

Problem assignment:

1. (The spectral theorem for normal matrices) Prove that $A \in \mathbb{C}^{n \times n}$ is unitarily diagonalizable iff it's normal.

(It's helpful to recall the Schur Decomposition from the previous assignment.)

- **2.** Let $A \in \mathbb{C}^{n \times n}$.
- (a) Assume A is Hermitian positive semi-definite. Show that the singular values and the eigenvalues of A are the same.
- (b) If A is normal, how are the eigenvalues of A and the singular values of A related?
- **3.** Let $A \in \mathbb{C}^{m \times n}$. Show that $\|A\|_F^2 = \|\sigma\|_2^2$, where $\|\cdot\|_F$ is the Frobenius norm, $\|\cdot\|_2$ is the ℓ^2 norm on vectors, and $\sigma \in \mathbb{C}^{\min\{m,n\}}$ is the vector of singular values of A.
- **4.** (Schmidt-Eckart-Young-Mirsky in the ℓ^2 norm) With $\|\cdot\|_2$ the induced 2-norm, and for an arbitrary $k \in \mathbb{N}$ and $\mathbf{A} \in \mathbb{C}^{m \times n}$, prove that the matrix \mathbf{A}_k defined as,

$$A_k = \underset{\text{rank}(B) \le k}{\operatorname{argmin}} \|A - B\|_2,$$

is the rank-min $\{k, \text{rank}(\mathbf{A})\}\$ truncated SVD.

(The typical approach: for any rank-k \boldsymbol{B} , construct a vector \boldsymbol{v} lying both in $\ker(\boldsymbol{B})$ and in the span of the first k+1 right-singular vectors of \boldsymbol{A} , and compute a lower bound for $\|(\boldsymbol{A}-\boldsymbol{B})\boldsymbol{v}\|_2$.)

5. (Orthogonal projectors are distance-minimizers) Let $x \in \mathbb{C}^n$ be arbitrary, and let P be an orthogonal projector onto some subspace $V \subset \mathbb{C}^n$. Prove that,

$$\|m{x} - m{P}m{x}\|_2 = \min_{m{v} \in V} \|m{x} - m{v}\|_2.$$

(The only substantive tools you need are basic properties of orthogonal projectors and the Pythagorean Theorem.)

6. (Principal Component Analysis) Let $\mathbf{B} \in \mathbb{C}^{m \times n}$ be comprised of columns \mathbf{b}_j , $j \in [n]$. In this problem, we will view each column as a single piece of data in \mathbb{C}^m -dimensional space. In particular, we'll consider these columns as random realizations from some probability distribution

on vectors. Under this model, the (empirical) mean of our set of realizations is

$$\boldsymbol{b}_0 \coloneqq \frac{1}{n} \sum_{j \in [n]} \boldsymbol{b}_j,$$

which is the "average" data point. Often we are interested in $m \gg n$, but this assumption is not needed.

For a fixed $k \leq \min\{m, n\}$, the ultimate goal of Principal Component Analysis (PCA) is to define a compression matrix $Q_k \in \mathbb{C}^{m \times k}$, $Q_k^* Q_k = I$, such that the compression of the data, $Q_k^* b_j$ contains as much of the "variance" of B as possible. In this problem, we'll maximize the variance of the projected data, defined as the quadratic variation of the data. Let $A = B - b_0 1^*$, where 1^* is an $n \times 1$ vector of ones. Then PCA chooses the dimension-k compression/reduction as the following affine transformation:

$$oldsymbol{c}_j = oldsymbol{Q}_k^* oldsymbol{a}_j, \qquad \qquad oldsymbol{a}_j \coloneqq (oldsymbol{b}_j - oldsymbol{b}_0)\,,$$

The matrix $C \in \mathbb{C}^{k \times n}$ with columns c_j is the PCA representation of B, and the lifted representation:

$$\widetilde{\boldsymbol{b}}_j = \boldsymbol{Q}_k \boldsymbol{c}_j + \boldsymbol{b}_0,$$

is the rank-k approximation of \boldsymbol{b}_j in the full m-dimensional space. The particular \boldsymbol{Q}_k chosen by PCA is $\boldsymbol{Q}_k = \boldsymbol{U}_k$, where \boldsymbol{U}_k is the first k columns of the left singular-vector matrix of \boldsymbol{A} . The columns of \boldsymbol{U}_k are the *principal components* of the data. We will show why this is chosen in this problem.

Our definition of "variance" will be quadratic variation from the mean b_0 when orthogonally projected onto the subspace V:

$$\operatorname{var}_V(\boldsymbol{B}) \coloneqq \sum_{j \in [n]} \|\boldsymbol{P}_V \boldsymbol{a}_j\|_2^2,$$

where P_V is the orthogonal projection onto the subspace V.

(a) Show that if P_U is the orthogonal projector onto range (U), then for any $A \in \mathbb{C}^{m \times n}$:

$$oldsymbol{P_{U_k}} oldsymbol{A} = \sum_{j \in [k]} \sigma_j oldsymbol{u}_j oldsymbol{v}_j^*,$$

where u_j and v_j are the ordered left- and right-singular vectors of A, and σ_j are the corresponding singular values of A. (This part really has nothing to do with PCA.)

(b) For any $\boldsymbol{A} \in \mathbb{C}^{m \times n}$, show that \boldsymbol{U}_k solves the optimization problem,

$$\underset{\substack{\boldsymbol{U} \in \mathbb{C}^{m \times k} \\ \boldsymbol{U}^* \boldsymbol{U} = \boldsymbol{I}}}{\operatorname{argmin}} \|\boldsymbol{A} - \boldsymbol{P}_{\boldsymbol{U}} \boldsymbol{A}\|_F^2.$$

(Again, not explicitly related to PCA. You may use Schmidt-Eckart-Young-Mirksy here.)

(c) Prove that the PCA choice $V = \text{span}\{u_1, \dots, u_k\}$ solves the optimization problem,

$$\operatorname*{argmax}_{\dim V=k} \operatorname{var}_{V}(\boldsymbol{B}),$$

and hence $Q_k = U_k$ as in PCA maximizes variance of the projected data.