
Department of Mathematics, University of Utah
Analysis of Numerical Methods I

MATH 6610 – Section 001 – Fall 2025
Homework 4

Singular Values, I

Due Wednesday, September 17, 2025

Submission instructions:
Submit your assignment on gradescope.

Problem assignment:

1. (The spectral theorem for normal matrices) Prove that A ∈ Cn×n is unitarily diagonalizable
iff it’s normal.
(It’s helpful to recall the Schur Decomposition from the previous assignment.)

2. Let A ∈ Cn×n.

(a) Assume A is Hermitian positive semi-definite. Show that the singular values and the eigen-
vlaues of A are the same.

(b) If A is normal, how are the eigenvalues of A and the singular values of A related?

3. Let A ∈ Cm×n. Show that ∥A∥2F = ∥σ∥22, where ∥ · ∥F is the Frobenius norm, ∥ · ∥2 is the ℓ2

norm on vectors, and σ ∈ Cmin{m,n} is the vector of singular values of A.

4. (Schmidt-Eckart-Young-Mirsky in the ℓ2 norm) With ∥ · ∥2 the induced 2-norm, and for an
arbitrary k ∈ N and A ∈ Cm×n, prove that the matrix Ak defined as,

Ak = argmin
rank(B)≤k

∥A−B∥2,

is the rank-min{k, rank(A)} truncated SVD.
(The typical approach: for any rank-k B, construct a vector v lying both in ker(B) and in the
span of the first k+1 right-singular vectors of A, and compute a lower bound for ∥(A−B)v∥2.)

5. (Orthogonal projectors are distance-minimizers) Let x ∈ Cn be arbitrary, and let P be an
orthogonal projector onto some subspace V ⊂ Cn. Prove that,

∥x− Px∥2 = min
v∈V

∥x− v∥2.

(The only substantive tools you need are basic properties of orthogonal projectors and the
Pythagorean Theorem.)

6. (Principal Component Analysis) Let B ∈ Cm×n be comprised of columns bj , j ∈ [n]. In this
problem, we will view each column as a single piece of data in Cm-dimensional space. In par-
ticular, we’ll consider these columns as random realizations from some probability distribution
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on vectors. Under this model, the (empirical) mean of our set of realizations is

b0 :=
1

n

∑
j∈[n]

bj ,

which is the “average” data point. Often we are interested in m ≫ n, but this assumption is
not needed.
For a fixed k ≤ min{m,n}, the ultimate goal of Principal Component Analysis (PCA) is to
define a compression matrix Qk ∈ Cm×k, Q∗

kQk = I, such that the compression of the data,
Q∗

kbj contains as much of the “variance” of B as possible. In this problem, we’ll maximize the
variance of the projected data, defined as the quadratic variation of the data. LetA = B−b01

∗,
where 1∗ is an n×1 vector of ones. Then PCA chooses the dimension-k compression/reduction
as the following affine transformation:

cj = Q∗
kaj , aj := (bj − b0) ,

The matrix C ∈ Ck×n with columns cj is the PCA representation of B, and the lifted repre-
sentation:

b̃j = Qkcj + b0,

is the rank-k approximation of bj in the full m-dimensional space. The particular Qk chosen
by PCA is Qk = Uk, where Uk is the first k columns of the left singular-vector matrix of A.
The columns of Uk are the principal components of the data. We will show why this is chosen
in this problem.
Our definition of “variance” will be quadratic variation from the mean b0 when orthogonally
projected onto the subspace V :

varV (B) :=
∑
j∈[n]

∥PV aj∥22,

where PV is the orthogonal projection onto the subspace V .

(a) Show that if PU is the orthogonal projector onto range(U), then for any A ∈ Cm×n:

PUk
A =

∑
j∈[k]

σjujv
∗
j ,

where uj and vj are the ordered left- and right-singular vectors of A, and σj are the corre-
sponding singular values of A. (This part really has nothing to do with PCA.)

(b) For any A ∈ Cm×n, show that Uk solves the optimization problem,

argmin
U∈Cm×k

U∗U=I

∥A− PUA∥2F .

(Again, not explicitly related to PCA. You may use Schmidt-Eckart-Young-Mirksy here.)

(c) Prove that the PCA choice V = span{u1, . . . ,uk} solves the optimization problem,

argmax
dimV=k

varV (B),

and hence Qk = Uk as in PCA maximizes variance of the projected data.
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