DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH

Analysis of Numerical Methods I MATH 6610 – Section 001 – Fall 2025 Homework 3 Eigenvalues

Due Wednesday, September 10, 2025

Submission instructions:

Submit your assignment on gradescope.

Problem assignment:

1. Using properties of the trace and determinant (notably that $\det(\mathbf{AB}) = (\det \mathbf{A})(\det \mathbf{B})$ and $\operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{BA})$), show that if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of $\mathbf{A} \in \mathbb{C}^{n \times n}$, then,

$$\det \mathbf{A} = \prod_{i \in [n]} \lambda_i, \qquad \operatorname{tr} \mathbf{A} = \sum_{i \in [n]} \lambda_i.$$

2. (Gershgorin's theorem) Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, with entries $(A)_{i,j} = a_{i,j}$. Define the following Gershgorin discs in the complex plane:

$$D_i := \left\{ z \in \mathbb{C} \mid |z - a_{i,i}| \le \sum_{j \ne i} |a_{i,j}| \right\}, \qquad i \in [n].$$

Prove that $\lambda(\mathbf{A}) \subset \bigcup_{i \in [n]} D_i$. (Pick an eigenpair (λ, \mathbf{w}) , and algebraically manipulate a particular row of the equality $\mathbf{A}\mathbf{w} = \lambda \mathbf{w}$.)

- 3. (The spectral theorem for skew-Hermitian matrices) Let $A \in \mathbb{C}^{n \times n}$ be skew-Hermitian, i.e., $A^* = -A$. Prove that A is skew-Hermitian iff it's unitarily diagonalizable with purely imaginary spectrum.
- **4.** (Schur decomposition) Let $A \in \mathbb{C}^{n \times n}$. Prove that there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ and an upper-triangular matrix T such that $A = UTU^*$. (Start with U_1 any unitary matrix where the first column is a unit-norm eigenvector of A, and compute $U_1^*AU_1$.)
- **5.** (Numerical range) Let $\mathbf{A} \in \mathbb{C}^{n \times n}$. Define $r(\mathbf{A}) = \sup |W(\mathbf{A})|$, which is the numerical radius of \mathbf{A} .
- (a) Show that $\rho(A) \leq r(A) \leq ||A||_2$, where $\rho(A)$ is the spectral radius of A.
- (b) Let $\theta \in [0, 2\pi)$. Show that $W(e^{i\theta} \mathbf{A}) = e^{i\theta} W(\mathbf{A})$.
- (c) Show that $W(\mathbf{A}^*) = (W(\mathbf{A}))^*$.
- (d) Define $H(\mathbf{A}) := \frac{1}{2}(\mathbf{A} + \mathbf{A}^*)$ as the Hermitian part of \mathbf{A} . Describe how $W(H(\mathbf{A}))$ relates to $W(\mathbf{A})$. How would you compute $W(H(\mathbf{A}))$?

6. (Computing the numerical range of a matrix) Using the facts about $W(\mathbf{A})$ in the previous problem, devise a feasible algorithm for computing the numerical range of a general matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$. You may (and should) rely on the ability to compute the spectrum of Hermitian matrices, which is a routine provided in every modern numerical computing software, language, or library. Note that since $W(\mathbf{A})$ is compact, you need only compute points on the boundary of the set. Explain your algorithm at the level of a discussion of pseudocode implementation. Implement your algorithm (in your software of choice) by testing on various matrices \mathbf{A} . In

Implement your algorithm (in your software of choice) by testing on various matrices A. In particular, computationally investigate the numerical range of the $n \times n$ nilpotent matrix that is all zero except for entries 1 on the main superdiagonal. (This is a size-n Jordan block.) If $A \in \mathbb{C}^{n \times n}$ is an arbitrary matrix, how would you describe W(J), the numerical range of its Jordan normal form?