DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH

Analysis of Numerical Methods I MATH 6610 – Section 001 – Fall 2025Homework 12

Fourier series approximation

Due Wednesday, November 26, 2025

Submission instructions:

Submit your assignment on gradescope.

Problem assignment:

1. Prove that if $u \in H_p^s$ for some integer $s \ge 0$, then

$$||u - P_N u||_{L^2} \le N^{-s} ||u||_{H_n^s},$$

where the space H_p^s is defined on slide D12-S12 and P_N is defined on slide D12-S08(b).

2. (The Lebesgue constant) Define $C([0, 2\pi]; \mathbb{C})$ as the space of complex-valued continuous functions on $[0, 2\pi]$. This space is metrized with the norm,

$$f \in C = C([0, 2\pi]; \mathbb{C}) \implies ||f||_C = \max_{x \in [0, 2\pi]} |f(x)|.$$

Let $N \in \mathbb{N}_0$, and define M = 2N + 1. Now let $X_M := \{x_1, \dots, x_M\} \subset [0, 2\pi]$ be M distinct points on $[0, 2\pi]$, and consider the interpolation operator $I_M : C \to V_N$, where for any $f \in C$:

$$V_N = \text{span}\{e^{ikx} \mid k \in \mathbb{Z}, |k| \le N\},$$
 $(I_M f)(x_m) = f(x_m).$

Assume that I_N is unisolvent on X_M . Prove that Λ , defined as,

$$\Lambda := ||I_M||_{C \mapsto C} = \sup_{f \in C, \ f \neq 0} \frac{||I_M f||_C}{||f||_C}$$

is given by,

$$\Lambda = \max_{x \in [0, 2\pi]} \lambda(x), \qquad \qquad \lambda(x) = \sum_{m \in [M]} |\ell_m(x)|,$$

where $\{\ell_m\}_{m\in[M]}$ is the set of cardinal Lagrange functions in V_N associated to the interpolation points X_M . Λ is called the *Lebesgue constant* (associated to (V_N, X_M)), and λ is the *Lebesgue function*.

3. (Lebesgue's Lemma) Let V be an M-dimensional subspace of functions on \mathbb{R} , and let X be a set of M distinct points on \mathbb{R} . Assume the interpolation problem on the nodes X and the subspace V is unisolvent, and hence that a corresponding (V, X) interpolation operator I_M is well-defined. Prove that for any continuous function f,

$$||f - I_M f|| \le (1 + \Lambda) \inf_{v \in V} ||f - v||,$$

where Λ is the (V, X) Lebesgue constant, and $\|\cdot\|$ is the maximum norm on the domain, as in the previous problem.

- **4.** (The DFT Lebesgue constant) Fix $N \in \mathbb{N}_0$ with $x \in [0, 2\pi]$, and with M = 2N + 1 consider the M-point interpolant onto the space $V_N = \text{span}\{e^{ikx}\}_{|k| \leq N}$. Let $X_M = \{x_m\}_{m \in [M]}$ be the equidistant nodes $x_m = 2\pi(m-1)/M$. Consider the interpolation operator I_M associated with (V_N, X_M) .
- (a) Show that the cardinal Lagrange function centered at the point x_j is given by,

$$\ell_j(x) = \frac{1}{M} \frac{\sin\left(\frac{M}{2}(x - x_j)\right)}{\sin\left(\frac{1}{2}(x - x_j)\right)}.$$

(This function is called the normalized *Dirichlet kernel*.)

- (b) For this choice of nodal set, show that the Lebesgue constant Λ , defined earlier, satisfies $\Lambda \gtrsim \log M$, and hence that Λ cannot be bounded as $M \uparrow \infty$. (One way to do this is to evaluate the Lebesgue function at a midpoint between two consecutive gridpoints. Here $a \gtrsim b$ means $a \geq Cb$ for some universal constant C. The asymptotic lower bound above is actually the correct asymptotic behavior.)
- **5.** (Fourier interpolation)
- (a) For any $N \geq 1, k \in \mathbb{Z}$, prove that $I_N \phi_k = \phi_\ell$, where ℓ satisfying $|\ell| \leq N$ is the modular restriction of k to [-N, N]:

$$\ell = \ell(k) := k - (2N+1)j \in [-N, N], \qquad j \in \mathbb{Z}.$$

An equivalent definition: $\ell(k) = -N + [(k+N) \pmod{2N+1}]$. The operator I_N is defined on D13-S12(a) as the M = (2N+1)-point Fourier interpolation operator, and ϕ_k is defined on slide D13-S02(a).

(b) If $u \in H_p^s$, prove that,

$$||u - I_N u||_{L^2} \lesssim N^{-s} ||u||_{H_p^s},$$

where $a \lesssim b$ means that $a \leq Cb$ for some constant C independent of N and u.

6. Numerically confirm the behavior stated by the theorems on slides D12-S13(a) (L^2 convergence of Fourier projection) and D13-S16(a) (L^2 convergence of Fourier interpolation; don't worry about H^r convergence). To do this, for the first theorem, numerically compute $||u_j - P_N u_j||_{L^2}$ as a function of N for each j = 0, 1, 2, 3. The functions $u_j, j \geq 0$, are defined as,

$$u_0(x) := \begin{cases} 1, & |x - \pi| < \frac{\pi}{2} \\ -1, & else \end{cases} \qquad u_j(x) := c_j + \int_0^x u_{j-1}(y) \, \mathrm{d}y \quad (j \ge 1),$$

where c_j is chosen so that u_j is a mean-0 function. Based on your numerical results what type of regularity (s) does u_j seem to have? Repeat the experiment for the error in $I_N u_j$.