DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH

Analysis of Numerical Methods I MATH 6610 – Section 001 – Fall 2025 Homework 10

Iterative methods for linear systems

Due Wednesday, November 12, 2025

Submission instructions:

Submit your assignment on gradescope.

Problem assignment:

- 1. (Contractivity of iterated matrices)
 - (a) Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ and let $\|\cdot\|$ be any norm on matrices. Show that, even if $\rho(\mathbf{A}) < 1$, it's possible that $\lim_{k \to \infty} \|\mathbf{A}\|^k \neq 0$. (Here $\rho(\mathbf{A})$ is the spectral radius of \mathbf{A} .)
 - (b) Let $\mathbf{N} \in \mathbb{C}^{q \times q}$ be a size-q Jordan block, $(q \in \mathbb{N})$ associated with the eigenvalue 0. I.e., $(N)_{j,j+1} = 1$ for $j \in [q-1]$, and all other entries are 0. Prove that $\mathbf{N}^q = \mathbf{0}$. (\mathbf{N} is called a nilpotent matrix, and q is the degree of nilpotency.)
 - (c) Let $\mathbf{A} \in \mathbb{C}^{n \times n}$. Prove that $\rho(\mathbf{A}) < 1$ iff $\lim_{k \to \infty} \mathbf{A}^k = \mathbf{0}$.
- **2.** (Neumann Series) Suppose that $\mathbf{A} \in \mathbb{C}^{n \times n}$. Prove that $\rho(\mathbf{A}) < 1$ iff

$$(\boldsymbol{I} - \boldsymbol{A})^{-1} = \sum_{k=0}^{\infty} \boldsymbol{A}^k.$$

(You may find it helpful to recall how the geometric series is proven when A is a scalar.)

3. (Linear fixed point iteration) Let $A = B + C \in \mathbb{C}^{n \times n}$, with A and B invertible. Prove that $\rho(B^{-1}C) < 1$ iff the iterates x_k of the fixed point iteration,

$$Bx_{k+1} = b - Cx_k, \qquad k \ge 0,$$

converge to $A^{-1}b$ for fixed but arbitrary $b, x_0 \in \mathbb{C}^n$.

4. (Jacobi iteration for diagonally dominant systems) A matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is (strictly) diagonally dominant if

$$|A_{j,j}| > \sum_{k \neq j} |A_{j,k}|, \qquad j \in [n].$$

Asssume A is diagonally dominant, and let $b \in \mathbb{C}^n$ be given. Show that the Jacobi stationary iterative method (cf. slide D10-S10(b)) applied to the linear system Ax = b converges to the exact solution x for any initial guess x_0 .

5. (Stationary iterative methods for singular matrices) Let $G \in \mathbb{C}^{n \times n}$ satisfy $\rho(G) = 1$, with a non-defective eigenvalue $\lambda = 1$, and all other eigenvalues η satisfy $|\eta| < 1$.

- (a) For arbitrary $x \in \mathbb{C}^n$, prove that $\lim_{k \to \infty} G^k x$ converges, and determine what vector it converges to.
- (b) Precisely prescribe the set of valid $\boldsymbol{y} \in \mathbb{C}^n$ such that $\sum_{j=0}^{\infty} \boldsymbol{G}^j \boldsymbol{y}$ converges. (Again, explicitly identify what it converges to.)
- (c) Assume $B, C \in \mathbb{C}^{n \times n}$, with B invertible, are such that $G := -B^{-1}C$ satisfies the assumptions in this problem. Show that, with this setup, the fixed point iterative method in problem 3 corresponds to a singular matrix A = B + C. Prove that, nevertheless, and under particular assumptions on x_0 and/or b, this iterative scheme converges, and identify what it converges to.