Department of Mathematics, University of Utah
 Applied Complex Variables and Asymptotic Methods
 MATH 6720 - Section 001 - Spring 2024
 Homework 7
 Asymptotic Methods

Due: Friday, April 19, 2024

Below, problem C in section A.B is referred to as exercise A.B.C.
Text: Complex Variables: Introduction and Applications, Ablowitz \& Fokas,
Exercises: 5.7.1
5.7.5
6.1.1
6.1.2
6.2.2
6.2.3
6.2.5
6.3.1
6.3.3

Submit your homework assignment on Canvas via Gradescope.
5.7.1. Show that the "cross ratios" associated with the points $(z, 0,1,-1)$ and $(w, i, 2,4)$ are $(z+1) / 2 z$ and $(w-4)(2-i) / 2(i-w)$, respectively. Use these to find the bilinear transformation that maps $0,1,-1$ to $i, 2,4$.
5.7.5. Let C_{1} be the circle with center $i / 2$ passing through 0 , and let C_{2} be the circle with center $i / 4$ passing through 0 (see Figure 5.7.7 in the text). Let D be the region enclosed by C_{1} and C_{2}. Show that the inversion $w_{1}=1 / z$ maps D onto the strip $-2<\operatorname{Im}(w)_{1}<-1$ and the transformation $w_{2}=e^{\pi w_{1}}$ maps this strip to the upper half plane. Use these results to find a conformal mapping that maps D onto the unit disk.

6.1.1.

(a) Consider the function

$$
f(\epsilon)=e^{\epsilon} .
$$

Find the asymptotic expansion of $f(\epsilon)$ in powers of ϵ as $\epsilon \rightarrow 0$.
(b) Similarly for the function

$$
f(\epsilon)=e^{-\frac{1}{\epsilon}}
$$

find the asymptotic expansion of $f(\epsilon)$ in powers of ϵ as $\epsilon \rightarrow 0$.
6.1.2. Show that both the functions $(1+x)^{-1}$ and $\left(1+e^{-x}\right)(1+x)^{-1}$ possess the same asymptotic expansion as $x \rightarrow \infty$.
6.2.2. Use integration by parts to obtain the first two terms of the asymptotic expansion of

$$
\int_{1}^{\infty} e^{-k\left(t^{2}+1\right)} \mathrm{d} t
$$

6.2.3. Use Watson's Lemma to obtain an infinite asymptotic expansion of

$$
I(k)=\int_{0}^{\pi} e^{-k t} t^{-\frac{1}{3}} \cos t \mathrm{~d} t
$$

as $k \rightarrow \infty$.
6.2.5. Use Laplace's method to determine the leading behavior (first term) of

$$
I(k)=\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-k \sin ^{4} t} \mathrm{~d} t
$$

as $k \rightarrow \infty$.
6.3.1. Use integration by parts to obtain the asymptotic expansion as $k \rightarrow \infty$ of the following integrals up to order $\frac{1}{k^{2}}$:
(a) $\int_{0}^{2}(\sin t+t) e^{i k t} \mathrm{~d} t$
(b) $\int_{0}^{\infty} \frac{e^{i k t}}{1+t^{2}} \mathrm{~d} t$
6.3.3. Use the method of stationary phase to find the leading behavior of the following integrals as $k \rightarrow \infty$:
(a) $\int_{0}^{1} \tan t e^{i k t^{4}} \mathrm{~d} t$
(b) $\int_{\frac{1}{2}}^{2}(1+t) e^{i k\left(\frac{t^{3}}{3}-t\right)} \mathrm{d} t$

