Department of Mathematics, University of Utah

Applied Complex Variables and Asymptotic Methods
MATH 6720 - Section 001 - Spring 2024
Homework 6
Residue Calculus, II
Due: Friday, March 29, 2024

Below, problem C in section A.B is referred to as exercise A.B.C.

Text: Complex Variables: Introduction and Applications, Ablowitz \& Fokas,
Exercises: 4.2.1, parts (b) and (d)
4.2.2, parts (a), (d), and (g)
4.2.5
4.2.7
4.3.2
4.3.3
4.3.7, part (a) only. Note that $0<k<1$ is the correct restriction on k. 4.3.13, only compute the first integral, i.e., the one involving $x^{1 / 2} \log x$. In addition, for this section the text considers the principal branch of $\log z$ and $z^{1 / 2}$ to correspond to $z=r e^{i \theta}$ for $\theta \in[0,2 \pi)$.

Submit your homework assignment on Canvas via Gradescope.
4.2.1. Evaluate the following real integrals.
(b) $\int_{0}^{\infty} \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)^{2}}, a^{2}>0$
(d) $\int_{0}^{\infty} \frac{\mathrm{d} x}{x^{6}+1}$
4.2.2. Evaluate the following real integrals by residue integration:
(a) $\int_{-\infty}^{\infty} \frac{x \sin x}{x^{2}+a^{2}} \mathrm{~d} x, \quad a^{2}>0$
(d) $\int_{0}^{\infty} \frac{\cos k x}{x^{4}+1} \mathrm{~d} x, \quad k$ real
(g) $\int_{0}^{\pi / 2} \sin ^{4} \theta d \theta$
4.2.5. Consider a rectangular contour with corners at $b \pm i R$ and $b+1 \pm i R$. Use this contour to show that,

$$
\lim _{R \rightarrow \infty} \frac{1}{2 \pi i} \int_{b-i R}^{b+i R} \frac{e^{a z}}{\sin \pi z} \mathrm{~d} z=\frac{1}{\pi\left(1+e^{-a}\right)},
$$

where $0<b<1$ and $|\operatorname{Im}(a)|<\pi$.
4.2.7. Use a sector contour with radius R, as in Figure 4.2 .6 in the text, centered at the origin
with angle $0 \leq \theta \leq \frac{2 \pi}{5}$ to find, for $a>0$,

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{x^{5}+a^{5}}=\frac{\pi}{5 a^{4} \sin \frac{\pi}{5}} .
$$

4.3.2. Show that,

$$
\int_{0}^{\infty} \frac{\sin x}{x\left(x^{2}+1\right)} \mathrm{d} x=\frac{\pi}{2}\left(1-\frac{1}{e}\right)
$$

4.3.3. Show that,

$$
\int_{-\infty}^{\infty} \frac{\cos x-1}{x^{2}\left(x^{2}+a^{2}\right)} \mathrm{d} x=-\frac{\pi}{a^{2}}+\frac{\pi}{a^{3}}\left(1-e^{-a}\right), \quad a>0 .
$$

4.3.7. Use the keyhole contour of Figure 4.3 .6 in the text to show that on the principal branch of x^{k},
(a)

$$
I(a)=\int_{0}^{\infty} \frac{x^{k-1}}{(x+a)} \mathrm{d} x=\frac{\pi}{\sin k \pi} a^{k-1}, \quad 0<k<1, \quad a>0
$$

4.3.13. Use the keyhole contour of Figure 4.3 .6 to show for the principal branch of $x^{1 / 2}$ and $\log x$,

$$
\int_{0}^{\infty} \frac{x^{1 / 2} \log x}{\left(1+x^{2}\right)} \mathrm{d} x=\frac{\pi^{2}}{2 \sqrt{2}}
$$

