
Department of Mathematics, University of Utah
Applied Complex Variables and Asymptotic Methods

MATH 6720 – Section 001 – Spring 2024
Homework 6 Solutions
Residue Calculus, II

Due: Friday, March 29, 2024

Below, problem C in section A.B is referred to as exercise A.B.C.

Text: Complex Variables: Introduction and Applications, Ablowitz & Fokas,

Exercises: 4.2.1, parts (b) and (d)
4.2.2, parts (a), (d), and (g)
4.2.5
4.2.7
4.3.2
4.3.3
4.3.7, part (a) only. Note that 0 < k < 1 is the correct restriction on k.

4.3.13, only compute the first integral, i.e., the one involving x1/2 log x.
In addition, for this section the text considers the principal branch of log z

and z1/2 to correspond to z = reiθ for θ ∈ [0, 2π).

Submit your homework assignment on Canvas via Gradescope.

4.2.1. Evaluate the following real integrals.
(b)

∫∞
0

dx
(x2+a2)2

, a2 > 0

(d)
∫∞
0

dx
x6+1

Solution: The main technique will be using the Cauchy Residue Theorem on a closed contour
that is the union of the real interval [−R,R] with a circular contour CR, with CR defined as the
portion of ∂BR(0) in the upper half-plane. I.e., for a suitably defined f(z) with singularities
{zj}Mj=1 in the upper half-plane, we will compute via the Cauchy Residue Theorem,

lim
R↑∞

[∫ R

−R
f(z) dz +

∫
CR

f(z) dz

]
= 2πi

M∑
j=1

Res(f ; zj).

In this case, we will have,

lim
R↑∞

∫
CR

f(z) dz = 0 =⇒ PV

∫ ∞

−∞
f(x) dx = 2πi

M∑
j=1

Res(f ; zj), (1)

and the equality above will be our main strategy for computing these integrals.
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(b) We assume without loss that a > 0 (since a← −a leaves the integral unchanged). Since
the integrand is even, then∫ ∞

0

dx

(x2 + a2)2
=

1

2
PV

∫ ∞

−∞
f(x) dx, where f(x) :=

1

x2 + a2

(The principal value is not needed here, but we’ll continue to use it.) With CR the
circular contour described above, we have

lim
R↑∞

∫
CR

f(z) dx = 0,

since f is a rational function of z with f(z) = P (z)/Q(z) and degQ ≥ degP + 2. There
is a lone singularity of f in the upper half-plane at z = ia, which is a pole of order 2
with residue,

2πiRes(f ; ia) = 2πi
1

1!

d

dz

(
(z − ia)2f(z)

) ∣∣
z=ia

= 2πi
−2

(ia+ ia)3
=

π

2a3
.

Using these in (1) yields,

PV

∫ ∞

−∞
f(z) dz =

π

2a3
,

and therefore, ∫ ∞

0

1

(x2 + a2)2
dx =

π

4a3
, a > 0,

and thus for arbitrary real a ̸= 0, we have∫ ∞

0

1

(x2 + a2)2
dx =

π

4|a|3
.

(d) Since the integrand is even, then∫ ∞

0

dx

x6 + 1
=

1

2
PV

∫ ∞

−∞
f(x) dx, where f(x) :=

1

x6 + 1

(Again, the principal value is not really needed here.) With CR the circular contour
described above, we have

lim
R↑∞

∫
CR

f(z) dx = 0,

since f is a rational function of z with f(z) = P (z)/Q(z) and degQ ≥ degP + 2. The
function f has 6 simple poles in C, and three of them are in the upper half-plane. These
are located at:

z1 = eiπ/6, z2 = eiπ/2, z3 = ei5π/6.
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The residues at these points are given by,

2πi Res(f ; z1) =
2πi

6z51
=

π

3
e−πi/3,

2πi Res(f ; z2) =
2πi

6z52
=

π

3
,

2πi Res(f ; z3) =
2πi

6z53
=

π

3
eπi/3

Therefore, by (1):

PV

∫ ∞

−∞
f(x) dx = 2πi

3∑
j=1

Res(f ; zj) =
π

3

(
1 + 2 cos

π

3

)
=

2π

3
,

and therefore, ∫ ∞

0

1

x6 + 1
dx =

π

3

4.2.2. Evaluate the following real integrals by residue integration:
(a)

∫∞
−∞

x sinx
x2+a2

dx, a2 > 0

(d)
∫∞
0

cos kx
x4+1

dx, k real

(g)
∫ π/2
0 sin4 θ dθ

Solution:
(a) Define I as the integral we seek to compute. Then

I = Im (J) , J :=

∫ ∞

−∞

xeix

x2 + a2
dx,

and we will compute J to determine I. Define f(z) as the rational part of the integrand
for J :

f(z) :=
z

z2 + a2
.

Let CR be the circular contour that is the portion of ∂BR(0) in the upper half-plane.
Then [−R,R] unioned with CR is a closed contour. By the Cauchy Residue Theorem,

lim
R↑∞

∫
CR

f(z)eiz dz + PV

∫ ∞

−∞
eizf(z) dz = 2πi

M∑
j=1

Res(f(z)eiz; zj), (2)

where {zj}Mj=1 the singularities of f in the upper half-plane. The function f has one such
lone singularity (M = 1) at z = i|a|, with residue,

2πiRes(f(z)eiz; i|a|) = 2πi
i|a|e−|a|

2i|a|
= e−|a|πi.

Note that

lim
R↑∞

max
z∈CR

|f(z)| ≤ lim
R↑∞

1

R
= 0,
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and so f uniformly decays to 0 on CR as R ↑ ∞. Thus, by Jordan’s Lemma,

lim
R↑∞

∫
CR

f(z)eiz dz = 0.

Putting all this together in (2), we have,

J = PV

∫ ∞

−∞
eizf(z) dz = iπe−|a|,

and therefore,

I = Im (J) = πe−|a|.

(d) We use a similar technique as in part (a). With I the integral we seek to compute, then

I =
1

2
Re (J) , J :=

∫ ∞

−∞
ei|k|xx4 + 1dx,

where we have used the fact that the integrand for I is an even function and is invariant
under k ← |k|. Then with CR as in part (a), the Cauchy Residue Theorem implies,

lim
R↑∞

∫
CR

f(z)ei|k|z dz + J = 2πi
M∑
j=1

Res(f(z)ei|k|z; zj), (3)

where

f(z) :=
1

z4 + 1
,

and {zj}Mj=1 are the singularities of f in the upper half-plane. We again have that f
decays uniformly to 0 as R ↑ ∞:

lim
R↑∞

max
z∈CR

|f(z)| ≤ lim
R↑∞

1

R4 − 1
= 0,

and so by Jordan’s Lemma,

lim
R↑∞

∫
CR

f(z)ei|k|z dz = 0, |k| > 0.

The same result is true if k = 0 since f is a rational function f = P/Q with degQ ≥
degP + 2, i.e., we have

lim
R↑∞

∫
CR

f(z)ei|k|z dz = 0, |k| ≥ 0.

There are M = 2 singularities of f(z)ei|k|z in the upper half-plane located at z1 = eiπ/4

and z2 = e3iπ/4, with residues given by,

2πi Res(f(z)ei|k|z; z1) = 2πi
ei|k|z1

4z31
= − iπz1

2
ei|k|z1 ,

2πi Res(f(z)ei|k|z; z2) = 2πi
ei|k|z2

4z32
= − iπz3

2
ei|k|z3 .
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so that (3) becomes,

J = −π

2

(
iz1e

i|k|z1 + iz3e
i|k|z3

)
= −πe−|k|/

√
2

2

(
iz1e

i|k|/
√
2 + iz3e

−i|k|/
√
2
)

= −πe−|k|/
√
2

2

(
ei(3π/4+|k|/

√
2) + ei(5π/4−|k|/

√
2)
)
.

Therefore,

I =
1

2
Re (J) = −πe−|k|/

√
2

4

(
cos

(
3π

4
+
|k|√
2

)
+ cos

(
5π

4
− |k|√

2

))
=

πe−|k|/
√
2

2
√
2

(
cos
|k|√
2
+ sin

|k|√
2

)
(g) Since sin4 θ has period π/2, then

I =

∫ π/2

0
sin4 θ dθ =

1

4

∫ 2π

0
sin4 θ dθ.

We now use the parameterization z = eiθ, so that sin θ = 1
2i (z − 1/z), yielding,∫ 2π

0
sin4 θ dθ =

∫
∂B1(0)

(z2 − 1)4

16z5
dz

i
.

We compute this latter integral via the Cauchy Residue Theorem:∫
∂B1(0)

(z2 − 1)4

16z5
dz

i
=

2πi

16i
Res

(
(z2 − 1)4

z5
; 0

)
=

π

8

1

4!

(
d4

dz4
(z2 − 1)4

) ∣∣
z=0

=
π

8(4!)

d4

dz4
(
z8 − 4z6 + 6z4 − 4z2 + 1

) ∣∣
z=0

=
3π

4
.

Thus,

I =
1

4

3π

4
=

3π

16

4.2.5. Consider a rectangular contour with corners at b± iR and b+1± iR. Use this contour
to show that,

lim
R→∞

1

2πi

∫ b+iR

b−iR

eaz

sinπz
dz =

1

π(1 + e−a)
,

where 0 < b < 1 and |Im (a) | < π.
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Solution: For finite R, let the left, right, bottom, and top sides of the rectange be denote Cℓ,
Cr, Cb, and Ct, respectively. The integrand has singularities at z = n, n ∈ Z, which are all
simple poles, but z = 1 is the only singularity lying inside this contour. Therefore,

Res

(
eaz

sinπz
; 1

)
=

ea

π cosπ
= −ea

π
.

Letting,

f(z) =
eaz

sinπz
,

then ∣∣∣∣∫
Cb

f(z) dz

∣∣∣∣ =
∣∣∣∣∣
∫ b+1

b

ea(x−iR)

sinπ(x− iR)
dx

∣∣∣∣∣
≤

∫ b+1

b

∣∣∣∣∣2iexRe(a)+RIm(a)ei(xIm(a)−RRe(a))

eiπx+πR − e−πR−iπx

∣∣∣∣∣ dx
= 2eRIm(a)

∫ b+1

b

exRe(a)

|eiπx+πR − e−πR−iπx|
dx

≤ 2eRIm(a)

eπR
1

1− e−2πR

∫ b+1

b
exRe(a) dx

≤ 2eR(Im(a)−π)max{ebRe(a), e(b+1)Re(a)}

1− e−2πR
.

Therefore, taking the limit in R and noting that Im (a)− π < 0, then,

lim
R↑∞

∫
Cb

f(z) dz = 0.

A similar computation can be carried out for Ct by simply performing the same computation
as on Cb but by making the replacement R← −R:∣∣∣∣∫

Ct

f(z) dz

∣∣∣∣ ≤ 2e−RIm(a)

∫ b+1

b

exRe(a)

|eiπx−πR − eπR−iπx|
dx

≤ 2
e−RIm(a)

eπR
1

1− e−2πR

∫ b+1

b
exRe(a) dx

≤ 2eR(−Im(a)−π)max{ebRe(a), e(b+1)Re(a)}
1− e−2πR

We also have −Im (a)− π < 0, so taking limits in R yields:

lim
R↑∞

∫
Ct

f(z) dz = 0.
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On the left contour, Cℓ, we have,∫
Cℓ

f(z) =

∫ b−iR

b+iR
f(z) dz

=

∫ −R

R
f(b+ iy)i dy

= −
∫ R

−R
f(b+ iy)idy

= −
∫ b+iR

b−iR
f(z) dz =: −2πi I(R),

i.e., we have defined

I(R) :=
1

2πi

∫ b+iR

b−iR

eaz

sinπz
dz.

On the right contour Cr we have,∫
Cr

f(z) =

∫ b+1+iR

b+1−iR

eaz

sinπz
dz

w=z−1
= ea

∫ b+iR

b−iR

eaw

sin(πw − π)
dw

= −ea
∫ b+iR

b−iR

eaw

sinπw
dw = −ea(2πi)I(R).

Then the Cauchy Residue Theorem states,∫
Cb

f(z) dz +

∫
Ct

f(z) dz +

∫
Cℓ

f(z) dz +

∫
Cr

f(z) dz = 2πiRes(f ; 1),

and using all our computations above yields,∫
Cb

f(z) dz +

∫
Ct

f(z) dz + 2πi (−1− ea) I(R) = −2πie
a

π

Taking limits in R:

lim
R↑∞

I(R) =
ea

π(1 + ea)
=

1

π(1 + e−a)
,

which is what we wished to show.

4.2.7. Use a sector contour with radius R, as in Figure 4.2.6 in the text, centered at the origin
with angle 0 ≤ θ ≤ 2π

5 to find, for a > 0,∫ ∞

0

dx

x5 + a5
=

π

5a4 sin π
5

.

Solution: We use the Cauchy Residue Theorem, and so proceed to define and integrate along
a closed contour. The contour we consider contains two rays of length R, one extending from
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the origin at angle 0, and the second extending from the origin at angle 2π
5 . We denote these

two contours by C0 (angle 0) and C+ (angle 2π/5), respectively. We will call the circular arc
of radius R connecting these as CR. Defining,

f(z) =
1

z5 + a5
,

which satisfies,

lim
R→∞

max
z∈CR

|zf(z)| = lim
R→∞

max
z∈CR

R

|z5 + a5|
≤ lim

R→∞
max
z∈CR

R

R5 − a5
= 0,

then we have,

lim
R→∞

∫
CR

f(z) dz = 0.

Along the contour C0, through the parameterization z = x as x ranges from 0 to R, we have,

lim
R→∞

∫
C0

f(z) dz =

∫ ∞

0

dx

x5 + a5
=: I.

Along the contour C+, through the parameterization z = re2πi/5, as r ranges from R to 0, we
have,

lim
R→∞

∫
C+

f(z) dz =

∫ 0

∞

e2πi/5 dr

r5 + a5
= −e2πi/5I

Finally, the singularities of f are all simple poles at the points,

z = zj := a1/5eiπ/5ei2πj/5, j = 0, 1, 2, 3, 4,

and only one of these poles, z0, lies inside the contour. Its corresponding residue is,

2πi Res(f ; z0) =
2πi

5z40
=

2πi

5a4
e−4πi/5

Finally, the Cauchy Residue Theorem integrating over C0, CR, and C+, after taking the limit
R→∞, reads,

I + 0− e2πi/5I =
π

5a4
2ie−4πi/5

Rearranging, this yields,

I =
π

5a4
2ie−4πi/5

eiπ/5
(
e−iπ/5 − eiπ/5

)
=

π

5a4
−2i

e−iπ/5 − eiπ/5

=
π

5a4
1

sin π
5

,

which is what we wanted to show.
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4.3.2. Show that, ∫ ∞

0

sinx

x(x2 + 1)
dx =

π

2

(
1− 1

e

)
.

Solution: We start by defining,

f(z) =
eiz

z(z2 + 1)
.

Then we have,

J :=

∫ ∞

0
f(z) dz, I = Im (J) ,

where I is the integral we seek to compute. We will evaluate J using the Cauchy Residue
Theorem, with a closed loop consisting of (i) a radius R semicircular contour CR centered at
0 in the upper half-place with large R, (ii) the integral along the real interval I− = (−R,−ϵ)
for ϵ > 0 small, (iii) the semicirular contour Cϵ in the upper half plane centered at 0, (iv)
the integral along the real interval I+ = (ϵ, R). We will take limits as R ↑ ∞ and ϵ ↓ 0. We
proceed to compute these integrals.
First, we have that,

lim
ϵ→0

∫
Cϵ

f(z) dz = −iπRes(f ; 0) = −iπ e0

(02 + 1)
= −iπ.

since Cϵ sweeps out an angle of π with clockwise orientation. For |z| = R > 1, we have,∣∣∣∣ 1

z(z2 + 1)

∣∣∣∣ ≤ 1

R(R2 − 1)

R→∞→ 0,

and hence by Jordan’s Lemma,

lim
R→∞

∫
CR

f(z) dz = lim
R→∞

∫
CR

eiz

z(z2 + 1)
dz = 0.

We next compute the two integrals on the real line:

lim
ϵ→0+,R→∞

∫
I+

f(z) dz = J,

and

lim
ϵ→0+,R→∞

∫
I−

f(z) dz = lim
ϵ→0+,R→∞

−
∫ ∞

ϵ

e−ix

x(x2 + 1)
dx = −J.

Finally, the only residue of f in the upper half plane is located at z = i:

2πiRes(f ; i) = 2πi
e−1

i(2i)
= − iπ

e

Akil Narayan: akil (at) sci.utah.edu 9



Homework 6 Solutions
6720 Applied Complex Variables and Asymptotic Methods University of Utah

Finally, the Cauchy Residue Theorem yields:

lim
ϵ→0+,R→∞

[∫
CR

f(z) dz +

∫
I−

f(z) dz +

∫
Cϵ

f(z) dz +

∫
I+

f(z) dz

]
= 2πiRes(f ; i),

i.e.,

−iπ + J − J = − iπ

e
=⇒ I = Im (J) =

1

2

(
π − π

e

)
=

π

2

(
1− 1

e

)

4.3.3. Show that, ∫ ∞

−∞

cosx− 1

x2(x2 + a2)
dx = − π

a2
+

π

a3
(
1− e−a

)
, a > 0.

Solution: We use the same contour as in the previous problem’s solution (4.3.2), in particular
with the curves I±, Cϵ, and CR. We define,

f(z) =
eiz − 1

z2(z2 + a2)
,

whose single residue in the upper half-plane is at z = ia:

2πiRes(f ; ia) = 2πi
e−a − 1

−a2(2ia)
= π

1− e−a

a3
.

To evaluate along CR, we note that for |z| = R,∣∣∣∣ 1

z2 + (z2 + a2)

∣∣∣∣ ≤ 1

R2(R2 − a2)

R→∞→ 0,

and hence by a combination of Jordan’s Lemma, and the result that the integral along CR of
a rational function P (z)/Q(z) with degQ(z) ≥ degP (z) + 2 goes to 0, we have,

lim
R→∞

∫
CR

f(z) dz = 0.

To evaluate along Cϵ, first note that,

f(z) =
eiz − 1

z2(z2 + a2)
=

1

z2 + a2

(
i

z
− 1

2
+ . . .

)
,

and hence f as a simple pole at z = 0 with Res(f ; 0) = i/a2. Then,

lim
ϵ→0

∫
Cϵ

f(z) dz = −iπRes(f ; 0) = π/a2.

On the intervals I± we have, after taking limits:∫
I+

f(z) dz →
∫ ∞

0

eix − 1

x2(x2 + a2)
dx∫

I−

f(z) dz →
∫ 0

−∞

eix − 1

x2(x2 + a2)
dx =

∫ ∞

0

e−ix − 1

x2(x2 + a2)
dx
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Finally, putting things together with the Cauchy Residue Theorem yields,∫ ∞

0
2

cosx− 1

x2(x2 + a2)
dx+

π

a2
= π

1− e−a

a3
,

and using the fact that the integrand above is even, this implies∫ ∞

−∞

cosx− 1

x2(x2 + a2)
dx = − π

a2
+

π

a3
(
1− e−a

)
4.3.7. Use the keyhole contour of Figure 4.3.6 in the text to show that on the principal branch
of xk,
(a)

I(a) =

∫ ∞

0

xk−1

(x+ a)
dx =

π

sin kπ
ak−1, 0 < k < 1, a > 0

Solution: We use the same notation as in the figure: Cϵ denotes a circle of radius ϵ > 0
traversed clockwise with a small opening at arg z = 0, and CR denotes a circle of radius R≫ 1
with a small opening at arg z = 0 traversed counterclockwise. We let I+ denote the integral
along [ϵ, R] with small positive imaginary part, and I− the same integral but small negative
imaginary part. Define

f(z) =
zk−1

z + a
.

We begin by computing the (single) residue inside the contour at z = −a:

2πiRes(f ;−a) = 2πi(aeiπ)k−1 = −2πiak−1eiπk.

On the contour CR with |z| = R, we have,

|zf(z)| ≤ RRk−1

R− a
= Rk−1 1

1− a/R

R→∞→ 0,

where we have used k − 1 ∈ (−1, 0) since 0 < k < 1. Since this limit is uniform in z, then

lim
R→∞

∫
CR

f(z) dz = 0.

A similar computation can be carried out on Cϵ, where |z| = ϵ and ϵ≪ 1:

|zf(z)| ≤ ϵk

a− ϵ

ϵ→0+→ 0,

which holds uniformly in z where again we have used 0 < k < 1. To understand the integrals
on I±, we define the branch of the function zk to be so that arg z ∈ [0, 2π). The integral along
I+ is given via the parameterization z = x,∫ R

ϵ

xk−1

x− a
dx→ I(a),
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and along I− we use the parameterization z = xe2πi to yield1,∫ ϵ

R

xk−1e2πi(k−1)

xe2πi − a
e2πi dx = −e2πik

∫ R

ϵ

xk−1

x+ a
dx→ −e2πikI(a).

Putting everything together with the Cauchy Residue Theorem yields,

I(a) = −2πiak−1eiπk
1

1− e2πik
= πak−1 2i

eiπk − e−iπk
=

π

sin kπ
ak−1

4.3.13. Use the keyhole contour of Figure 4.3.6 to show for the principal branch of x1/2 and
log x, ∫ ∞

0

x1/2 log x

(1 + x2)
dx =

π2

2
√
2

Solution: We use the same notation for the keyhole contour as in the solution to the previous
problem (4.3.7), in particular for the contours CR, Cϵ, and I±. Define,

f(z) =
z1/2 log z

1 + z2
,

where for both z1/2 and log z we define our branch as that associated to arg z ∈ [0, 2π). This
function has two residues inside the keyhole contour located at z = ±i:

2πiRes(f ; i) = 2πi
i1/2 log i

2i
= 2πi

eiπ/4iπ2
2i

= i
π2

2
eiπ/4

2πiRes(f ;−i) = 2πi
(−i)1/2 log(−i)

−2i
= 2πi

ei3π/4i3π2
−2i

= −i3π
2

2
ei3π/4,

so that,

2πi (Res(f ; i) + Res(f ;−i)) = π2

2
eiπ/4(3 + i) = π2

(
1√
2
+ i
√
2

)
.

On the contour CR, we note that for |z| = R with R > 1:

|zf(z)| = |z|
3/2| log z|
|z2 + 1|

≤ R3/2 (logR+ 2π)

R2 − 1

R↑∞→ 0,

uniformly for z ∈ CR, which implies,

lim
R→∞

∫
CR

f(z) dz = 0.

Similarly on Cϵ, for |z| = ϵ and ϵ < 1, we have,

|zf(z)| = |z|
3/2| log z|
|z2 + 1|

≤ ϵ3/2 (log ϵ+ 2π)

1− ϵ2
ϵ↓0→ 0,

1Techically, the parameterization is z = xei(2π−δ) for infinitesimal δ > 0.
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again uniformly for z ∈ Cϵ, and therefore,

lim
ϵ→∞

∫
Cϵ

f(z) dz = 0.

We can now compute the integrals on the contours I±. On I+, we use the parameterization
z = x with x real to obtain,∫

I+

f(z) dz =

∫ R

ϵ

x1/2 log x

x2 + 1
dx

R↑∞,ϵ↓0−−−−−→
∫ ∞

0

x1/2 log x

x2 + 1
dx =: J.

On I−, we use the parameterization z = xe2πi to yield,∫
I−

f(z) dz =

∫ ϵ

R

(xe2πi)1/2 log xe2πi

1 + (xe2πi)2
e2πi dx

=

∫ R

ϵ

x1/2 (log x+ 2πi)

1 + x2
dx

R↑∞,ϵ↓0−−−−−→ J + 2πi

∫ ∞

0

x1/2

1 + x2
dx.

Combining all this with the Cauchy Residue Theorem (and taking limits) yields,

2J + 2πi

∫ ∞

0

x1/2

x2 + 1
dx =

π2

√
2
+ i
√
2π2,

and taking real parts of the above equality implies,∫ ∞

0

x1/2 log x

(1 + x2)
dx = J =

π2

2
√
2
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