DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH Applied Complex Variables and Asymptotic Methods MATH 6720 – Section 001 – Spring 2024 Homework 6 Solutions Residue Calculus, II

Due: Friday, March 29, 2024

Below, problem C in section A.B is referred to as exercise A.B.C.

Text: Complex Variables: Introduction and Applications, Ablowitz & Fokas,

Exercises: 4.2.1, parts (b) and (d) 4.2.2, parts (a), (d), and (g) 4.2.5 4.2.7 4.3.2 4.3.3 4.3.7, part (a) only. Note that 0 < k < 1 is the correct restriction on k. 4.3.13, only compute the first integral, i.e., the one involving $x^{1/2} \log x$. In addition, for this section the text considers the principal branch of $\log z$ and $z^{1/2}$ to correspond to $z = re^{i\theta}$ for $\theta \in [0, 2\pi)$.

Submit your homework assignment on Canvas via Gradescope.

4.2.1. Evaluate the following real integrals.

(b)
$$\int_0^\infty \frac{dx}{(x^2+a^2)^2}, \ a^2 > 0$$

(d) $\int_0^\infty \frac{dx}{x^6+1}$

Solution: The main technique will be using the Cauchy Residue Theorem on a closed contour that is the union of the real interval [-R, R] with a circular contour C_R , with C_R defined as the portion of $\partial B_R(0)$ in the upper half-plane. I.e., for a suitably defined f(z) with singularities $\{z_j\}_{j=1}^M$ in the upper half-plane, we will compute via the Cauchy Residue Theorem,

$$\lim_{R\uparrow\infty} \left[\int_{-R}^{R} f(z) \,\mathrm{d}z + \int_{C_R} f(z) \,\mathrm{d}z \right] = 2\pi i \sum_{j=1}^{M} \operatorname{Res}(f; z_j).$$

In this case, we will have,

$$\lim_{R\uparrow\infty} \int_{C_R} f(z) \, \mathrm{d}z = 0 \quad \Longrightarrow \quad \mathrm{PV} \int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 2\pi i \sum_{j=1}^{M} \mathrm{Res}(f; z_j), \tag{1}$$

and the equality above will be our main strategy for computing these integrals.

(b) We assume without loss that a > 0 (since $a \leftarrow -a$ leaves the integral unchanged). Since the integrand is even, then

$$\int_0^\infty \frac{\mathrm{d}x}{(x^2+a^2)^2} = \frac{1}{2} \mathrm{PV} \int_{-\infty}^\infty f(x) \,\mathrm{d}x, \quad \text{where } f(x) \coloneqq \frac{1}{x^2+a^2}$$

(The principal value is not needed here, but we'll continue to use it.) With C_R the circular contour described above, we have

$$\lim_{R\uparrow\infty}\int_{C_R}f(z)\,\mathrm{d}x=0,$$

since f is a rational function of z with f(z) = P(z)/Q(z) and deg $Q \ge \deg P + 2$. There is a lone singularity of f in the upper half-plane at z = ia, which is a pole of order 2 with residue,

$$2\pi i \operatorname{Res}(f; ia) = 2\pi i \frac{1}{1!} \frac{\mathrm{d}}{\mathrm{d}z} \left((z - ia)^2 f(z) \right) \Big|_{z = ia} = 2\pi i \frac{-2}{(ia + ia)^3} = \frac{\pi}{2a^3}$$

Using these in (1) yields,

$$\mathrm{PV} \int_{-\infty}^{\infty} f(z) \,\mathrm{d}z = \frac{\pi}{2a^3},$$

and therefore,

$$\int_0^\infty \frac{1}{(x^2 + a^2)^2} \, \mathrm{d}x = \frac{\pi}{4a^3}, \quad a > 0,$$

and thus for arbitrary real $a \neq 0$, we have

$$\int_0^\infty \frac{1}{(x^2 + a^2)^2} \, \mathrm{d}x = \frac{\pi}{4|a|^3}.$$

(d) Since the integrand is even, then

$$\int_0^\infty \frac{\mathrm{d}x}{x^6+1} = \frac{1}{2} \mathrm{PV} \int_{-\infty}^\infty f(x) \,\mathrm{d}x, \quad \text{where } f(x) \coloneqq \frac{1}{x^6+1}$$

(Again, the principal value is not really needed here.) With C_R the circular contour described above, we have

$$\lim_{R\uparrow\infty}\int_{C_R}f(z)\,\mathrm{d} x=0,$$

since f is a rational function of z with f(z) = P(z)/Q(z) and deg $Q \ge \deg P + 2$. The function f has 6 simple poles in \mathbb{C} , and three of them are in the upper half-plane. These are located at:

$$z_1 = e^{i\pi/6}, \qquad \qquad z_2 = e^{i\pi/2}, \qquad \qquad z_3 = e^{i5\pi/6}$$

The residues at these points are given by,

$$2\pi i \operatorname{Res}(f; z_1) = \frac{2\pi i}{6z_1^5} = \frac{\pi}{3}e^{-\pi i/3},$$

$$2\pi i \operatorname{Res}(f; z_2) = \frac{2\pi i}{6z_2^5} = \frac{\pi}{3},$$

$$2\pi i \operatorname{Res}(f; z_3) = \frac{2\pi i}{6z_3^5} = \frac{\pi}{3}e^{\pi i/3}$$

Therefore, by (1):

$$PV \int_{-\infty}^{\infty} f(x) \, dx = 2\pi i \sum_{j=1}^{3} \operatorname{Res}(f; z_j) = \frac{\pi}{3} \left(1 + 2\cos\frac{\pi}{3} \right) = \frac{2\pi}{3},$$

and therefore,

$$\int_0^\infty \frac{1}{x^6+1} \,\mathrm{d}x = \frac{\pi}{3}$$

4.2.2. Evaluate the following real integrals by residue integration:

(a) $\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} dx, \quad a^2 > 0$ (d) $\int_{0}^{\infty} \frac{\cos kx}{x^4 + 1} dx, \quad k \text{ real}$ (g) $\int_{0}^{\pi/2} \sin^4 \theta \, d\theta$

Solution:

(a) Define I as the integral we seek to compute. Then

$$I = \operatorname{Im}(J), \qquad \qquad J \coloneqq \int_{-\infty}^{\infty} \frac{x e^{ix}}{x^2 + a^2} \, \mathrm{d}x,$$

and we will compute J to determine I. Define f(z) as the rational part of the integrand for J:

$$f(z)\coloneqq \frac{z}{z^2+a^2}$$

Let C_R be the circular contour that is the portion of $\partial B_R(0)$ in the upper half-plane. Then [-R, R] unioned with C_R is a closed contour. By the Cauchy Residue Theorem,

$$\lim_{R\uparrow\infty} \int_{C_R} f(z)e^{iz} \,\mathrm{d}z + \mathrm{PV} \int_{-\infty}^{\infty} e^{iz} f(z) \,\mathrm{d}z = 2\pi i \sum_{j=1}^{M} \mathrm{Res}(f(z)e^{iz}; z_j), \tag{2}$$

where $\{z_j\}_{j=1}^M$ the singularities of f in the upper half-plane. The function f has one such lone singularity (M = 1) at z = i|a|, with residue,

$$2\pi i \operatorname{Res}(f(z)e^{iz}; i|a|) = 2\pi i \frac{i|a|e^{-|a|}}{2i|a|} = e^{-|a|}\pi i.$$

Note that

$$\lim_{R\uparrow\infty} \max_{z\in C_R} |f(z)| \le \lim_{R\uparrow\infty} \frac{1}{R} = 0,$$

and so f uniformly decays to 0 on C_R as $R \uparrow \infty$. Thus, by Jordan's Lemma,

$$\lim_{R\uparrow\infty}\int_{C_R}f(z)e^{iz}\,\mathrm{d} z=0.$$

Putting all this together in (2), we have,

$$J = \mathrm{PV} \int_{-\infty}^{\infty} e^{iz} f(z) \,\mathrm{d}z = i\pi e^{-|a|},$$

and therefore,

$$I = \operatorname{Im}\left(J\right) = \pi e^{-|a|}.$$

(d) We use a similar technique as in part (a). With I the integral we seek to compute, then

$$I = \frac{1}{2} \operatorname{Re} \left(J \right), \qquad \qquad J \coloneqq \int_{-\infty}^{\infty} e^{i|k|x} x^4 + 1 \, \mathrm{d}x,$$

where we have used the fact that the integrand for I is an even function and is invariant under $k \leftarrow |k|$. Then with C_R as in part (a), the Cauchy Residue Theorem implies,

$$\lim_{R \uparrow \infty} \int_{C_R} f(z) e^{i|k|z} \, \mathrm{d}z + J = 2\pi i \sum_{j=1}^M \operatorname{Res}(f(z) e^{i|k|z}; z_j), \tag{3}$$

where

$$f(z) \coloneqq \frac{1}{z^4 + 1}$$

and $\{z_j\}_{j=1}^M$ are the singularities of f in the upper half-plane. We again have that f decays uniformly to 0 as $R \uparrow \infty$:

$$\lim_{R\uparrow\infty} \max_{z\in C_R} |f(z)| \le \lim_{R\uparrow\infty} \frac{1}{R^4 - 1} = 0,$$

and so by Jordan's Lemma,

$$\lim_{R\uparrow\infty}\int_{C_R}f(z)e^{i|k|z}\,\mathrm{d} z=0,\quad |k|>0.$$

The same result is true if k = 0 since f is a rational function f = P/Q with deg $Q \ge$ deg P + 2, i.e., we have

$$\lim_{R\uparrow\infty} \int_{C_R} f(z) e^{i|k|z} \,\mathrm{d}z = 0, \quad |k| \ge 0.$$

There are M = 2 singularities of $f(z)e^{i|k|z}$ in the upper half-plane located at $z_1 = e^{i\pi/4}$ and $z_2 = e^{3i\pi/4}$, with residues given by,

$$2\pi i \operatorname{Res}(f(z)e^{i|k|z}; z_1) = 2\pi i \frac{e^{i|k|z_1}}{4z_1^3} = -\frac{i\pi z_1}{2}e^{i|k|z_1},$$

$$2\pi i \operatorname{Res}(f(z)e^{i|k|z}; z_2) = 2\pi i \frac{e^{i|k|z_2}}{4z_2^3} = -\frac{i\pi z_3}{2}e^{i|k|z_3}.$$

so that (3) becomes,

$$J = -\frac{\pi}{2} \left(i z_1 e^{i|k|z_1} + i z_3 e^{i|k|z_3} \right)$$

= $-\frac{\pi e^{-|k|/\sqrt{2}}}{2} \left(i z_1 e^{i|k|/\sqrt{2}} + i z_3 e^{-i|k|/\sqrt{2}} \right)$
= $-\frac{\pi e^{-|k|/\sqrt{2}}}{2} \left(e^{i(3\pi/4 + |k|/\sqrt{2})} + e^{i(5\pi/4 - |k|/\sqrt{2})} \right).$

Therefore,

$$I = \frac{1}{2} \operatorname{Re} \left(J \right) = -\frac{\pi e^{-|k|/\sqrt{2}}}{4} \left(\cos \left(\frac{3\pi}{4} + \frac{|k|}{\sqrt{2}} \right) + \cos \left(\frac{5\pi}{4} - \frac{|k|}{\sqrt{2}} \right) \right)$$
$$= \frac{\pi e^{-|k|/\sqrt{2}}}{2\sqrt{2}} \left(\cos \frac{|k|}{\sqrt{2}} + \sin \frac{|k|}{\sqrt{2}} \right)$$

(g) Since $\sin^4 \theta$ has period $\pi/2$, then

$$I = \int_0^{\pi/2} \sin^4 \theta \,\mathrm{d}\theta = \frac{1}{4} \int_0^{2\pi} \sin^4 \theta \,\mathrm{d}\theta.$$

We now use the parameterization $z = e^{i\theta}$, so that $\sin \theta = \frac{1}{2i} (z - 1/z)$, yielding,

$$\int_0^{2\pi} \sin^4 \theta \, \mathrm{d}\theta = \int_{\partial B_1(0)} \frac{(z^2 - 1)^4}{16z^5} \frac{\mathrm{d}z}{i}.$$

We compute this latter integral via the Cauchy Residue Theorem:

$$\int_{\partial B_1(0)} \frac{(z^2 - 1)^4}{16z^5} \frac{\mathrm{d}z}{i} = \frac{2\pi i}{16i} \operatorname{Res}\left(\frac{(z^2 - 1)^4}{z^5}; 0\right)$$
$$= \frac{\pi}{8} \frac{1}{4!} \left(\frac{\mathrm{d}^4}{\mathrm{d}z^4} (z^2 - 1)^4\right) \Big|_{z=0}$$
$$= \frac{\pi}{8(4!)} \frac{\mathrm{d}^4}{\mathrm{d}z^4} \left(z^8 - 4z^6 + 6z^4 - 4z^2 + 1\right) \Big|_{z=0} = \frac{3\pi}{4}.$$

Thus,

$$I = \frac{1}{4}\frac{3\pi}{4} = \frac{3\pi}{16}$$

4.2.5. Consider a rectangular contour with corners at $b \pm iR$ and $b + 1 \pm iR$. Use this contour to show that,

$$\lim_{R \to \infty} \frac{1}{2\pi i} \int_{b-iR}^{b+iR} \frac{e^{az}}{\sin \pi z} \, \mathrm{d}z = \frac{1}{\pi (1+e^{-a})},$$

where 0 < b < 1 and $|\text{Im}(a)| < \pi$.

Solution: For finite R, let the left, right, bottom, and top sides of the rectange be denote C_{ℓ} , C_r , C_b , and C_t , respectively. The integrand has singularities at z = n, $n \in \mathbb{Z}$, which are all simple poles, but z = 1 is the only singularity lying inside this contour. Therefore,

$$\operatorname{Res}\left(\frac{e^{az}}{\sin \pi z};1\right) = \frac{e^a}{\pi \cos \pi} = -\frac{e^a}{\pi}.$$

Letting,

$$f(z) = \frac{e^{az}}{\sin \pi z},$$

then

$$\begin{split} \left| \int_{C_b} f(z) \, \mathrm{d}z \right| &= \left| \int_b^{b+1} \frac{e^{a(x-iR)}}{\sin \pi (x-iR)} \, \mathrm{d}x \right| \\ &\leq \int_b^{b+1} \left| 2i \frac{e^{x \operatorname{Re}(a) + R\operatorname{Im}(a)} e^{i(x \operatorname{Im}(a) - R\operatorname{Re}(a)))}}{e^{i\pi x + \pi R} - e^{-\pi R - i\pi x}} \right| \, \mathrm{d}x \\ &= 2e^{R\operatorname{Im}(a)} \int_b^{b+1} \frac{e^{x \operatorname{Re}(a)}}{|e^{i\pi x + \pi R} - e^{-\pi R - i\pi x}|} \, \mathrm{d}x \\ &\leq \frac{2e^{R\operatorname{Im}(a)}}{e^{\pi R}} \frac{1}{1 - e^{-2\pi R}} \int_b^{b+1} e^{x \operatorname{Re}(a)} \, \mathrm{d}x \\ &\leq 2e^{R(\operatorname{Im}(a) - \pi)} \frac{\max\{e^{b \operatorname{Re}(a)}, e^{(b+1) \operatorname{Re}(a)}\}}{1 - e^{-2\pi R}}. \end{split}$$

Therefore, taking the limit in R and noting that $\text{Im}(a) - \pi < 0$, then,

$$\lim_{R\uparrow\infty}\int_{C_b}f(z)\,\mathrm{d} z=0.$$

A similar computation can be carried out for C_t by simply performing the same computation as on C_b but by making the replacement $R \leftarrow -R$:

$$\begin{split} \left| \int_{C_t} f(z) \, \mathrm{d}z \right| &\leq 2e^{-R\mathrm{Im}(a)} \int_b^{b+1} \frac{e^{x\mathrm{Re}(a)}}{|e^{i\pi x - \pi R} - e^{\pi R - i\pi x}|} \, \mathrm{d}x \\ &\leq 2\frac{e^{-R\mathrm{Im}(a)}}{e^{\pi R}} \frac{1}{1 - e^{-2\pi R}} \int_b^{b+1} e^{x\mathrm{Re}(a)} \, \mathrm{d}x \\ &\leq 2e^{R(-\mathrm{Im}(a) - \pi)} \frac{\max\{e^{b\mathrm{Re}(a)}, e^{(b+1)\mathrm{Re}(a)}\}}{1 - e^{-2\pi R}} \end{split}$$

We also have $-\text{Im}(a) - \pi < 0$, so taking limits in R yields:

$$\lim_{R\uparrow\infty}\int_{C_t}f(z)\,\mathrm{d}z=0.$$

On the left contour, C_{ℓ} , we have,

$$\begin{split} \int_{C_{\ell}} f(z) &= \int_{b+iR}^{b-iR} f(z) \, \mathrm{d}z \\ &= \int_{R}^{-R} f(b+iy) i \, \mathrm{d}y \\ &= -\int_{-R}^{R} f(b+iy) i \, \mathrm{d}y \\ &= -\int_{b-iR}^{b+iR} f(z) \, \mathrm{d}z =: -2\pi i \ I(R), \end{split}$$

i.e., we have defined

$$I(R) \coloneqq \frac{1}{2\pi i} \int_{b-iR}^{b+iR} \frac{e^{az}}{\sin \pi z} \, \mathrm{d}z.$$

On the right contour C_r we have,

$$\int_{C_r} f(z) = \int_{b+1-iR}^{b+1+iR} \frac{e^{az}}{\sin \pi z} dz$$
$$\stackrel{w=z-1}{=} e^a \int_{b-iR}^{b+iR} \frac{e^{aw}}{\sin(\pi w - \pi)} dw$$
$$= -e^a \int_{b-iR}^{b+iR} \frac{e^{aw}}{\sin \pi w} dw = -e^a (2\pi i) I(R).$$

Then the Cauchy Residue Theorem states,

$$\int_{C_b} f(z) \, dz + \int_{C_t} f(z) \, dz + \int_{C_\ell} f(z) \, dz + \int_{C_r} f(z) \, dz = 2\pi i \operatorname{Res}(f; 1),$$

and using all our computations above yields,

$$\int_{C_b} f(z) \, \mathrm{d}z + \int_{C_t} f(z) \, \mathrm{d}z + 2\pi i \left(-1 - e^a\right) I(R) = -2\pi i \frac{e^a}{\pi}$$

Taking limits in R:

$$\lim_{R \uparrow \infty} I(R) = \frac{e^a}{\pi (1 + e^a)} = \frac{1}{\pi (1 + e^{-a})},$$

which is what we wished to show.

4.2.7. Use a sector contour with radius R, as in Figure 4.2.6 in the text, centered at the origin with angle $0 \le \theta \le \frac{2\pi}{5}$ to find, for a > 0,

$$\int_0^\infty \frac{\mathrm{d}x}{x^5 + a^5} = \frac{\pi}{5a^4 \sin \frac{\pi}{5}}$$

Solution: We use the Cauchy Residue Theorem, and so proceed to define and integrate along a closed contour. The contour we consider contains two rays of length R, one extending from

the origin at angle 0, and the second extending from the origin at angle $\frac{2\pi}{5}$. We denote these two contours by C_0 (angle 0) and C_+ (angle $2\pi/5$), respectively. We will call the circular arc of radius R connecting these as C_R . Defining,

$$f(z) = \frac{1}{z^5 + a^5},$$

which satisfies,

$$\lim_{R \to \infty} \max_{z \in C_R} |zf(z)| = \lim_{R \to \infty} \max_{z \in C_R} \frac{R}{|z^5 + a^5|} \le \lim_{R \to \infty} \max_{z \in C_R} \frac{R}{R^5 - a^5} = 0,$$

then we have,

$$\lim_{R \to \infty} \int_{C_R} f(z) \, \mathrm{d}z = 0.$$

Along the contour C_0 , through the parameterization z = x as x ranges from 0 to R, we have,

$$\lim_{R \to \infty} \int_{C_0} f(z) \, \mathrm{d}z = \int_0^\infty \frac{\mathrm{d}x}{x^5 + a^5} \eqqcolon I.$$

Along the contour C_+ , through the parameterization $z = re^{2\pi i/5}$, as r ranges from R to 0, we have,

$$\lim_{R \to \infty} \int_{C_+} f(z) \, \mathrm{d}z = \int_{\infty}^0 \frac{e^{2\pi i/5} \, \mathrm{d}r}{r^5 + a^5} = -e^{2\pi i/5} I$$

Finally, the singularities of f are all simple poles at the points,

$$z = z_j := a^{1/5} e^{i\pi/5} e^{i2\pi j/5}, \qquad j = 0, 1, 2, 3, 4,$$

and only one of these poles, z_0 , lies inside the contour. Its corresponding residue is,

$$2\pi i \operatorname{Res}(f; z_0) = \frac{2\pi i}{5z_0^4} = \frac{2\pi i}{5a^4} e^{-4\pi i/5}$$

Finally, the Cauchy Residue Theorem integrating over C_0 , C_R , and C_+ , after taking the limit $R \to \infty$, reads,

$$I + 0 - e^{2\pi i/5}I = \frac{\pi}{5a^4}2ie^{-4\pi i/5}$$

Rearranging, this yields,

$$I = \frac{\pi}{5a^4} \frac{2ie^{-4\pi i/5}}{e^{i\pi/5} (e^{-i\pi/5} - e^{i\pi/5})}$$
$$= \frac{\pi}{5a^4} \frac{-2i}{e^{-i\pi/5} - e^{i\pi/5}}$$
$$= \frac{\pi}{5a^4} \frac{1}{\sin\frac{\pi}{5}},$$

which is what we wanted to show.

4.3.2. Show that,

$$\int_0^\infty \frac{\sin x}{x(x^2+1)} \, \mathrm{d}x = \frac{\pi}{2} \left(1 - \frac{1}{e} \right).$$

Solution: We start by defining,

$$f(z) = \frac{e^{iz}}{z(z^2+1)}.$$

Then we have,

$$J \coloneqq \int_0^\infty f(z) \, \mathrm{d}z, \qquad \qquad I = \mathrm{Im} \left(J \right),$$

where I is the integral we seek to compute. We will evaluate J using the Cauchy Residue Theorem, with a closed loop consisting of (i) a radius R semicircular contour C_R centered at 0 in the upper half-place with large R, (ii) the integral along the real interval $I_- = (-R, -\epsilon)$ for $\epsilon > 0$ small, (iii) the semicirular contour C_{ϵ} in the upper half plane centered at 0, (iv) the integral along the real interval $I_+ = (\epsilon, R)$. We will take limits as $R \uparrow \infty$ and $\epsilon \downarrow 0$. We proceed to compute these integrals.

First, we have that,

$$\lim_{\epsilon \to 0} \int_{C_{\epsilon}} f(z) \, \mathrm{d}z = -i\pi \mathrm{Res}(f; 0) = -i\pi \frac{e^0}{(0^2 + 1)} = -i\pi$$

since C_{ϵ} sweeps out an angle of π with clockwise orientation. For |z| = R > 1, we have,

$$\left|\frac{1}{z(z^2+1)}\right| \leq \frac{1}{R(R^2-1)} \stackrel{R \to \infty}{\to} 0,$$

and hence by Jordan's Lemma,

$$\lim_{R \to \infty} \int_{C_R} f(z) \, \mathrm{d}z = \lim_{R \to \infty} \int_{C_R} \frac{e^{iz}}{z(z^2 + 1)} \, \mathrm{d}z = 0.$$

We next compute the two integrals on the real line:

$$\lim_{\epsilon \to 0^+, R \to \infty} \int_{I_+} f(z) \, \mathrm{d}z = J,$$

and

$$\lim_{\epsilon \to 0^+, R \to \infty} \int_{I_-} f(z) \, \mathrm{d}z = \lim_{\epsilon \to 0^+, R \to \infty} - \int_{\epsilon}^{\infty} \frac{e^{-ix}}{x(x^2 + 1)} \, \mathrm{d}x = -\overline{J}.$$

Finally, the only residue of f in the upper half plane is located at z = i:

$$2\pi i \operatorname{Res}(f;i) = 2\pi i \frac{e^{-1}}{i(2i)} = -\frac{i\pi}{e}$$

Finally, the Cauchy Residue Theorem yields:

$$\lim_{\epsilon \to 0^+, R \to \infty} \left[\int_{C_R} f(z) \, \mathrm{d}z + \int_{I_-} f(z) \, \mathrm{d}z + \int_{C_\epsilon} f(z) \, \mathrm{d}z + \int_{I_+} f(z) \, \mathrm{d}z \right] = 2\pi i \mathrm{Res}(f; i),$$

i.e.,

$$-i\pi + J - \overline{J} = -\frac{i\pi}{e} \implies I = \operatorname{Im}\left(J\right) = \frac{1}{2}\left(\pi - \frac{\pi}{e}\right) = \frac{\pi}{2}\left(1 - \frac{1}{e}\right)$$

4.3.3. Show that,

$$\int_{-\infty}^{\infty} \frac{\cos x - 1}{x^2 (x^2 + a^2)} \, \mathrm{d}x = -\frac{\pi}{a^2} + \frac{\pi}{a^3} \left(1 - e^{-a} \right), \quad a > 0.$$

Solution: We use the same contour as in the previous problem's solution (4.3.2), in particular with the curves I_{\pm} , C_{ϵ} , and C_R . We define,

$$f(z) = \frac{e^{iz} - 1}{z^2(z^2 + a^2)},$$

whose single residue in the upper half-plane is at z = ia:

$$2\pi i \operatorname{Res}(f; ia) = 2\pi i \frac{e^{-a} - 1}{-a^2(2ia)} = \pi \frac{1 - e^{-a}}{a^3}.$$

To evaluate along C_R , we note that for |z| = R,

$$\left|\frac{1}{z^2 + (z^2 + a^2)}\right| \le \frac{1}{R^2(R^2 - a^2)} \stackrel{R \to \infty}{\to} 0,$$

and hence by a combination of Jordan's Lemma, and the result that the integral along C_R of a rational function P(z)/Q(z) with deg $Q(z) \ge \deg P(z) + 2$ goes to 0, we have,

$$\lim_{R \to \infty} \int_{C_R} f(z) \, \mathrm{d}z = 0$$

To evaluate along C_{ϵ} , first note that,

$$f(z) = \frac{e^{iz} - 1}{z^2(z^2 + a^2)} = \frac{1}{z^2 + a^2} \left(\frac{i}{z} - \frac{1}{2} + \dots\right),$$

and hence f as a simple pole at z = 0 with $\operatorname{Res}(f; 0) = i/a^2$. Then,

$$\lim_{\epsilon \to 0} \int_{C_{\epsilon}} f(z) \, \mathrm{d}z = -i\pi \mathrm{Res}(f;0) = \pi/a^2.$$

On the intervals I_{\pm} we have, after taking limits:

$$\begin{split} &\int_{I_{+}} f(z) \, \mathrm{d}z \to \int_{0}^{\infty} \frac{e^{ix} - 1}{x^{2}(x^{2} + a^{2})} \, \mathrm{d}x \\ &\int_{I_{-}} f(z) \, \mathrm{d}z \to \int_{-\infty}^{0} \frac{e^{ix} - 1}{x^{2}(x^{2} + a^{2})} \, \mathrm{d}x = \int_{0}^{\infty} \frac{e^{-ix} - 1}{x^{2}(x^{2} + a^{2})} \, \mathrm{d}x \end{split}$$

Finally, putting things together with the Cauchy Residue Theorem yields,

$$\int_0^\infty 2\frac{\cos x - 1}{x^2(x^2 + a^2)} \,\mathrm{d}x + \frac{\pi}{a^2} = \pi \frac{1 - e^{-a}}{a^3},$$

and using the fact that the integrand above is even, this implies

$$\int_{-\infty}^{\infty} \frac{\cos x - 1}{x^2 (x^2 + a^2)} \, \mathrm{d}x = -\frac{\pi}{a^2} + \frac{\pi}{a^3} \left(1 - e^{-a} \right)$$

4.3.7. Use the keyhole contour of Figure 4.3.6 in the text to show that on the principal branch of x^k ,

(a)

$$I(a) = \int_0^\infty \frac{x^{k-1}}{(x+a)} \, \mathrm{d}x = \frac{\pi}{\sin k\pi} a^{k-1}, \quad 0 < k < 1, \quad a > 0$$

Solution: We use the same notation as in the figure: C_{ϵ} denotes a circle of radius $\epsilon > 0$ traversed clockwise with a small opening at $\arg z = 0$, and C_R denotes a circle of radius $R \gg 1$ with a small opening at $\arg z = 0$ traversed counterclockwise. We let I_+ denote the integral along $[\epsilon, R]$ with small positive imaginary part, and I_- the same integral but small negative imaginary part. Define

$$f(z) = \frac{z^{k-1}}{z+a}.$$

We begin by computing the (single) residue inside the contour at z = -a:

$$2\pi i \operatorname{Res}(f; -a) = 2\pi i (ae^{i\pi})^{k-1} = -2\pi i a^{k-1} e^{i\pi k}.$$

On the contour C_R with |z| = R, we have,

$$|zf(z)| \leq \frac{RR^{k-1}}{R-a} = R^{k-1} \frac{1}{1-a/R} \stackrel{R \to \infty}{\to} 0,$$

where we have used $k - 1 \in (-1, 0)$ since 0 < k < 1. Since this limit is uniform in z, then

$$\lim_{R \to \infty} \int_{C_R} f(z) \, \mathrm{d}z = 0.$$

A similar computation can be carried out on C_{ϵ} , where $|z| = \epsilon$ and $\epsilon \ll 1$:

$$|zf(z)| \le \frac{\epsilon^k}{a-\epsilon} \stackrel{\epsilon \to 0^+}{\to} 0,$$

which holds uniformly in z where again we have used 0 < k < 1. To understand the integrals on I_{\pm} , we define the branch of the function z^k to be so that $\arg z \in [0, 2\pi)$. The integral along I_+ is given via the parameterization z = x,

$$\int_{\epsilon}^{R} \frac{x^{k-1}}{x-a} \, \mathrm{d}x \to I(a),$$

and along I_{-} we use the parameterization $z = xe^{2\pi i}$ to yield¹,

$$\int_{R}^{\epsilon} \frac{x^{k-1} e^{2\pi i (k-1)}}{x e^{2\pi i} - a} e^{2\pi i} \, \mathrm{d}x = -e^{2\pi i k} \int_{\epsilon}^{R} \frac{x^{k-1}}{x+a} \, \mathrm{d}x \to -e^{2\pi i k} I(a).$$

Putting everything together with the Cauchy Residue Theorem yields,

$$I(a) = -2\pi i a^{k-1} e^{i\pi k} \frac{1}{1 - e^{2\pi i k}} = \pi a^{k-1} \frac{2i}{e^{i\pi k} - e^{-i\pi k}} = \frac{\pi}{\sin k\pi} a^{k-1}$$

4.3.13. Use the keyhole contour of Figure 4.3.6 to show for the principal branch of $x^{1/2}$ and $\log x$,

$$\int_0^\infty \frac{x^{1/2} \log x}{(1+x^2)} \, \mathrm{d}x = \frac{\pi^2}{2\sqrt{2}}$$

Solution: We use the same notation for the keyhole contour as in the solution to the previous problem (4.3.7), in particular for the contours C_R , C_{ϵ} , and I_{\pm} . Define,

$$f(z) = \frac{z^{1/2} \log z}{1 + z^2},$$

where for both $z^{1/2}$ and $\log z$ we define our branch as that associated to $\arg z \in [0, 2\pi)$. This function has two residues inside the keyhole contour located at $z = \pm i$:

$$2\pi i \operatorname{Res}(f;i) = 2\pi i \frac{i^{1/2} \log i}{2i} = 2\pi i \frac{e^{i\pi/4} i \frac{\pi}{2}}{2i} = i \frac{\pi^2}{2} e^{i\pi/4}$$
$$2\pi i \operatorname{Res}(f;-i) = 2\pi i \frac{(-i)^{1/2} \log(-i)}{-2i} = 2\pi i \frac{e^{i3\pi/4} i \frac{3\pi}{2}}{-2i} = -i \frac{3\pi^2}{2} e^{i3\pi/4}$$

so that,

$$2\pi i \left(\operatorname{Res}(f;i) + \operatorname{Res}(f;-i) \right) = \frac{\pi^2}{2} e^{i\pi/4} (3+i) = \pi^2 \left(\frac{1}{\sqrt{2}} + i\sqrt{2} \right).$$

On the contour C_R , we note that for |z| = R with R > 1:

$$|zf(z)| = \frac{|z|^{3/2} |\log z|}{|z^2 + 1|} \le \frac{R^{3/2} (\log R + 2\pi)}{R^2 - 1} \stackrel{R\uparrow\infty}{\to} 0,$$

uniformly for $z \in C_R$, which implies,

$$\lim_{R \to \infty} \int_{C_R} f(z) \, \mathrm{d}z = 0.$$

Similarly on C_{ϵ} , for $|z| = \epsilon$ and $\epsilon < 1$, we have,

$$|zf(z)| = \frac{|z|^{3/2} |\log z|}{|z^2 + 1|} \le \frac{\epsilon^{3/2} \left(\log \epsilon + 2\pi\right)}{1 - \epsilon^2} \stackrel{\epsilon \downarrow 0}{\to} 0,$$

¹Techically, the parameterization is $z = x e^{i(2\pi - \delta)}$ for infinitesimal $\delta > 0$.

again uniformly for $z \in C_{\epsilon}$, and therefore,

$$\lim_{\epsilon \to \infty} \int_{C_{\epsilon}} f(z) \, \mathrm{d} z = 0.$$

We can now compute the integrals on the contours I_{\pm} . On I_{+} , we use the parameterization z = x with x real to obtain,

$$\int_{I_+} f(z) \,\mathrm{d}z = \int_{\epsilon}^{R} \frac{x^{1/2} \log x}{x^2 + 1} \,\mathrm{d}x \xrightarrow{R \uparrow \infty, \epsilon \downarrow 0} \int_{0}^{\infty} \frac{x^{1/2} \log x}{x^2 + 1} \,\mathrm{d}x \eqqcolon J.$$

On I_{-} , we use the parameterization $z = xe^{2\pi i}$ to yield,

$$\begin{split} \int_{I_{-}} f(z) \, \mathrm{d}z &= \int_{R}^{\epsilon} \frac{(x e^{2\pi i})^{1/2} \log x e^{2\pi i}}{1 + (x e^{2\pi i})^2} e^{2\pi i} \, \mathrm{d}x \\ &= \int_{\epsilon}^{R} \frac{x^{1/2} \left(\log x + 2\pi i\right)}{1 + x^2} \, \mathrm{d}x \\ &\xrightarrow{R\uparrow\infty,\epsilon\downarrow0} J + 2\pi i \int_{0}^{\infty} \frac{x^{1/2}}{1 + x^2} \, \mathrm{d}x. \end{split}$$

Combining all this with the Cauchy Residue Theorem (and taking limits) yields,

$$2J + 2\pi i \int_0^\infty \frac{x^{1/2}}{x^2 + 1} \, \mathrm{d}x = \frac{\pi^2}{\sqrt{2}} + i\sqrt{2}\pi^2,$$

and taking real parts of the above equality implies,

$$\int_0^\infty \frac{x^{1/2} \log x}{(1+x^2)} \, \mathrm{d}x = J = \frac{\pi^2}{2\sqrt{2}}$$